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Choosing Good Designed Experiments based on Multiple Optimization Criteria

Christine Anderson-Cook
Statistical Sciences Group
Los Alamos National Laboratory

When selecting which designed experiment to run, there are often multiple competing objectives of
interest which we wish to simultaneously consider. Using the Pareto front approach, better alternatives for
designs can be constructed and compared. The talk will give background on the Pareto front approach to
multiple criteria optimization for the general scenarios, and then describe how this approach has been
adapted for design of experiments applications. The approach is very flexible and any set of user-
specified objectives can be used in the optimization. Several examples of different experiment design
scenarios will be illustrated.
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A Very Brief History of Design of Experiments
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A Non-Standard Design Problem

* Problem : Resources to run a 14-run designed experiment
to estimate the model:

Y=p0,+p,A+B;B+pB.C+p,D+p.E

£~ N(0,0?)
+B,,AB+ B, AC+ B, BD + B.,CE +¢

We are worried that some of the other 2-factor interactions
(AD,AE,BC,BE,CD,DE) might be active

* What design should we run?
* What basis should we use for choosing?

Outline

1. Motivation — why should we consider more than one
objective during design construction and selection?

2. Basics of Pareto front approach (2 criteria)

= e

3. Example revisited
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4. Conclusions
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etrics for Good Designs
1. Result in good fit of the model to the data Good estimation
2. Provide good model parameter estimates and prediction for
3. Provide good prediction throughout the design
space. chosen model
4. Provide an estimate of “pure” experimental
error. Ability to test
5. Give sufficient information to allow for lack of fit [  various aspects of
test. ‘ the model
6. Provide a check on the homogeneous variance
assumption.
7. Be insensitive (robust) to the presence of Protection if things
outliers in the data. go wrong
8. Be robust to to errors in the control of design f
levels.
9. Allow models C?f increasin] order to be Flexibility to run and
constructed sequentially. expand experiment
10. Allow for experiments to be done in blocks. : P
11. Be cost-effective. _ Cost
Myers, Montgomery, Anderson-Cook RSM (2009) p. 282

The Weakness of Single Criterion Optimization
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Deciding Between Points on the Pareto Front

Traditional Strategy:
Choose point closest to Utopia Point

But this depends on scaling!

This reflects how much we
weight each objective
(stretching makes more
important)
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Connecting the Utopia Point Approach to Statistical
Approaches to Multiple Objective Optimization

Utopia Point
& o .
% t\\ Desirability function:
8% 6 0 6 ' Swc  C el0,1]
Rz | &
@00 NS ' (Popularized by
° o ‘ Derringer & Suich, 1980)

Stretch of axis <:> Larger weight to criterion

Multiplicative form:

[Ty celo
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Transform each criterion <:>

. tologscale
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For the Example — A Screening Design

* |If the model is correct:
» Good estimation of model parameters

« |f the model is incorrect (some of AD,AE,BC,BE,CD,DE

active)
= Estimates for terms in model minimally affected

= Estimation of variance minimally affected

How do we quantify this?
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Example — Choosing a “Best” Screening Design Basec
on Multiple Criteria

Design requirements:
* N =14 runs
+ 5 factors
* possible factor levels (-1, +1)
* estimate all 5 main effects (A — E)
» estimate the following interactions: AB, AC, BD, CE
experts suggest that remaining interactions unlikely

! ®
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Criterion to Consider — (1) D-Optimality

Quantifies how well model parameters are estimated for the model

Y, =8,+B,4+ BB+ B.C+p,D+[.E+ iad.

& ~ N(O,crz)
BAB+ ,BACAC + BppBD + B..CE +¢
D-criterion
maximize | M |=] )r(’X |/N* p = # parameters

/
design matrix expanded to model form

*inversely proportional to the square of the volume of the
AR confidence region on the regression coefficients
g LosAIarr)gg Slide 11
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Criterion to Consider — (2) Bias on Model Terms

Assumed model: y=XB, +¢
X,€{4,B,C,D,E,AB, AC,BD,CE}

y=XB +X,B, +¢
X.3 €{AD,AE,BC,BE,CD, DE}

Model to protect against:

Bias if model incorrect: E(B,)—EB,) =[B, +(X/X,)" X!X,B,]1-B,

E(SS,..) = E(B,A'AB,) = APy
=E(tr(A’AB,B))) If these exist, then size unknown
= 2 ! . .
A, = 0, tr(AA"). Therefore, minimize tr(AA')
E %Algm UNCLASSIFIED Stide 12
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Estimate

For same X,€{4,B,C,D,E,AB, AC,BD,CE}
X, €{AD, AE,BC, BE,CD, DE}

Bias on estimate of error,

EMSE . ) - o’ = Bz [X,A-X, ]I[XIA -X, 1B,/ p,
= BIzR‘RBz /pl

Therefore, minimize tr(R'R)

- Los Alamos Shide 13
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Process for Selecting a Best Design
» The process for finding a best design for our specific
goals can be summarized by a multi-stage algorithm:
1. Create designs, and measure the criteria for all designs.

— 2. Construct the Pareto front, which consists of all designs
which are not inferior to (Pareto dominated by) any other
designs [OBJECTIVE]

3. Select a best design from the Pareto front which best
suits the needs of the experimenter [SUBJECTIVE].
Pareto Aggregating Point Exchange (PAPE) Algorithm:
efficiently creates designs and builds Pareto front

mos Lu, Anderson-Cook, Robinson (2011 Technometrics)
’ ..Lgus»‘A'Aammu-v UNCLASSIFIED Stide 14
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Pareto Front for Example 1
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Comparing Designs
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for Design (in various publications)

* Example 2 (Screening Experiment):

= D-optimality [maximize |X'X] ]
= Good estimation of pure error [maximize dfgg ]
= Good estimation of lack of fit [maximize tr(R'R) /(m-p)]

« Example 3 (Reliability Estimation of Complex System):

= Good precision of system estimate _—
» Good precision of sub-system estimates [
Cost of new observation Pt a4 3 PSR B
System (12) R
I I S SO ]| -
it A

Slide 17




Examples (continued)

* Example 4 (Robust Parameter Design Experiment):

» Good estimation of mean model [max Dg-mean ]
= Good estimation of variance model [max D,-variance]
= Size of experiment [min N]

* Example 5 (Split Plot Design):
« Good estimation of terms when WP to SP variance ratio is

unknown [max D(1), max D(10)]
= Size of experiment [min N]
= Number of Whole Plots [min #WP]
~ 2 2

y = XB + Z5+ ¢ N0 =22

o 3~N(0,621,,) o
* ..L.?osuﬁl.a.mv?.sv UNCLASSIFIED Side 18
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onclusions

» Looking at multiple characteristics can lead to better choices of
which design to run (do well for several priorities — not just one!)

* Different designs have different advantages and risks — select
criteria to consider which best capture the important considerations
for your experiment. It is now possible to focus on what is most
important to the experimenter — and do well on those objectives.

* The Pareto front approach can divide possible designs into (1) those
consider further and (2) those to eliminate, because they are
dominated by other better choices. This objective step selects which
designs are sensible to consider.

« Once the Pareto front has been selected, there are multiple ways of
selecting the final design — but the key is to examine and
understand the trade-offs between the choices. This subjective

- phase allows experimenter needs to be emphasized.
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