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Project synopsis

This project purports to develop a new scheme for forming consensus among alternative climate models,
that give widely divergent projections as to the details of climate change, that is more intelligent than
simply averaging the model outputs, or averaging with ex post facto weighting factors. The method under
development effectively allows models to assimilate data from one another in run time with weights that
are chosen in an adaptive training phase using 20" century data, so that the models synchronize with one
another as well as with reality. An alternate approach that is being explored in parallel is the automated

combination of equations from different models in an expert-system-like framework.



Results and Primary Activities

The project takes a hierarchical approach. The model-fusion-via-synchronization scheme is new, so there
is a fair amount to be learned from the study of the scheme as applied to simple systems of ordinary
differential equations (ODESs). Rather than deal with the computational demands of full climate models,
the second stage of the project, currently underway, will construct *“supermodels” from simple
guasigeostrophic models and somewhat more complex intermediate models. In the final year, a software-
intensive activity will apply the scheme to full climate models. Details of the current status are as

follows:

Unlike the simplest systems of ODEs, the climate system is characterized by a multiplicity of time scales.
It is not a priori clear how a supermodel formed from different ocean models and different atmospheric
models would be trained. The issue was examined using a 2-box ocean model coupled to a Lorenz "84

atmosphere model, given by the following system of equations:
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where X,y, and z are the Lorenz "84 variables, and T,S are the ocean temperature and salinity gradients.
Three copies of the above system were coupled to a single *“truth”, in the generic supermodeling
framework with fixed nudging coefficients (or more generally, Kalman gains) and connection coefficients

adapted according to the general training law

dc 'fdt = a(x X )(x — %x )

where i,j,k are 1, 2, or 3 (indexing the three models) and x can be replaced by the other variables y, z, T,
or S. The three models differ in the parameters a, Fo, F1, b, Gy, Gy, Tay, Ka, Ku, ¥, S0, 81, ®, and .

Both ocean and atmosphere supermodel variables converged to truth after training, better than an average
of the individual model variables, with a very rapid convergence of T and S. But the very rapid

convergence of the ocean variables was seen to be due to the fact that while the parameters appearing in



the T and S equations are much smaller than the parameters in the x, y, and z equations, the nudging
coefficients were of the same order, effectively forcing the ocean models to truth. The simple lesson is
that an atmospheric supermodel can be trained using ocean truth or climatology and then an ocean
supermodel can be trained on longer time scales.

Supermodeling is achieved, as originally conceived, by introducing nudging terms between corresponding
variables in the different models, e.g.

dx'dt = f/(xy',2') + X,CI( - )

using the average over models (that are almost synchronized) , e.g . x= (1/3) X, X' as the supermodel
variable. A stronger form of supermodeling can be imagined, in which one takes linear combinations of
the tendencies as prescribed by the different models, e.g. dx/dt = >;w' f ' (x',y',z"), for some set of fixed
weights w' to form the supemodel directly. It was found that this approach was sometimes competitive,

although the learning task for the weights can be more demanding.

As the number of independently trained connections increases, there is a risk that the learning algorithm
will find locally optimal combinations of coefficients that are significantly inferior to the globally optimal
combination. The addition of noise in the training scheme can help avoid such situations and lead to an
improved supermodel. A comparison was made between two established machine learning algorithms,
one deterministic and the other stochastic that are described in detail in [1]. The algorithms were applied
to a simple Lorenz supermodel and the quality of the results was measured using the temporal auto-
correlation function for each variable. The deterministic scheme gave autocorrelations resembling the true
ones more closely, for all three variables, suggesting that stochasticity, as introduced though the particular

algorithms used, is effective for avoiding local optima.

In [2, 4] we introduced improved model that represents interactive ensemble of individual models. The
improved model's performance is tested with the Lorenz 96 toy model. One complex model is considered
as reality, while its imperfect models are taken to be structurally simpler and with lower resolution. The
improved model is defined as one with tendency that is weighted average of the tendencies of individual
models. The weights are calculated from past observations by minimizing the average difference between
the improved model's tendency and that of the reality. It is numerically verified that the improved model

has better ability for short-term prediction than any of the individual models.

Several approaches of ensemble of interacting imperfect models combined based on observed data either
by adaptive synchronization, optimized couplings or weighted combining have been proposed and

reviewed in [3]. In [3] we examined the weighted combining method using the Hindmarsh-Rose (HR)



neuron model and the different outcomes that we can expect. We generated data with an HR model
usually referred as ‘truth’ and used the data to train an ensemble of HR models with perturbed parameter
values, so that together they mimic the truth. The results show that the weights of the ensemble can be
learned using data from a truth HR model exhibiting bursting, in order to represent the same bursting

behavior as well as other behaviors such as spiking and random bursting [3].

Contemporary tools for reducing model error in weather and climate forecasting models include empirical
correction techniques. In [5] we explored the use of such techniques on low-order atmospheric models.
We presented an iterative linear regression method for model correction that works efficiently when the
reference truth is sampled at large time intervals, which is typical for real world applications. Furthermore
we investigated two recently proposed empirical correction techniques on Lorenz models with constant
forcing while the reference truth is given by a Lorenz system driven with chaotic forcing. Both methods
indicate that the largest increase in predictability comes from correction terms that are close to the
average value of the chaotic forcing [5].

The question concerns the minimum density of coupling points, should we choose to couple the different
models in physical space. The question was investigated using a one-dimensional PDE, the Kuramoto-
Sivishinsky (KS) model. It was found [6] that the maximum coupling distance required for synchronizing
two KS models, and for coupling them in a supermodel, corresponded roughly to the width of typical
coherent structures (fingers) that form in the model. Further, coupling three different KS systems resulted
in an effective supermodel with fixed coefficients, and a better one was obtained if the coefficients were

adapted according to the scheme described above for Lorenz systems [6].

As ongoing activity, we are constructing supermodels from simple QG models and from more complex
intermediate models with which to test a key hypothesis: If the North-South temperature gradient is
increased, the inter-model connection scheme found by training with a lower temperature gradient should
still be effective. Toward this end, we are using a T42 ““true” system to train a supermodel consisting of

T21 models. The SPEEDO model introduces an ocean component.
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Presentations and Meetings Attended

1) Attended kickoff meeting of the European project: Supermodeling by Combining Imperfect Models,
Skopje, Macedonia, Nov. 2010.

2) G.Duane, F. Selten, N. Keenlyside, W. Wiegerinck, J. Kurths, and L. Kocarev, **Supermodeling” by
adaptive synchronization of climate models (poster), Annual Meeting of the European Geophysical
Union, Vienna, Austria, April 2011.

3) G.S. Duane, L. Kocarev, and F. Selten: “Supermodeling” climate by combining alternative models,
Annual Conference of the National Society of Black Physicists, Austin, TX, Sept. 2011.

4) G. Duane, L. Kocarev, and F. Selten: Consensus among climate models via synchronized chaos, DOE
climate modeling Pl meeting, Sept., 2011.

5) Session convener: "Supermodeling Climate by Combining Alternative Models", Fall Meeting of the
American Geophysical Union, San Francisco, Dec. 2011, with presentations

G. S. Duane and L. Kocarev: Supermodeling by synchronization of alternative climate models



J. Tribbia, G. Duane, I. Trpevski, D. Trpevski, and A. Karspeck: Toward a practical implementation of
an interactive multimodel with full GCMs (poster)

6) M. Mirchev and L. Kocarev “On the Approach of Ensemble of Interacting Imperfect Models”,
International Conference on Theory and Application in Nonlinear Dynamics (ICAND 2012), Washington,
USA

7) L. Basnarkov and L. Kocarev, “Interactive Ensembles of Imperfect Models: Lorenz 96 System”,
International Conference on Theory and Application in Nonlinear Dynamics (ICAND 2012), Washington,
USA

8) L Basnarkov, G Duane, and L Kocarev, “Supermodel - Interactive Ensemble of Low-dimensional
Models” EGU General Assembly 2013, held 7-12 April, 2013 in Vienna, Austria, p.14076 Publication
Date: 04/2013

9) L Basnarkov, G. Duane, and L Kocarev, “Forecast improvement by interactive ensemble of
atmospheric models American Geophysical Union”, Fall Meeting 2013, abstract #NG31A-1561, 12/2013

Travel

Travel to all of the above meetings and presentations and additionally Travel for Daniel Trpevski (student
of Kocarev) to Boulder to work with Alicia Karspeck on software development for the revised DART,
April 2011.



