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1. INTRODUCTION

1.1 PROJECT OVERVIEW

In response to the Fuel Economy and Greenhouse Gas (GHG) emissions standards, automobile
manufacturers will need to adopt new technologies to improve the fuel economy of their vehicles
and to reduce the overall GHG emissions of their fleets. The U.S. Environmental Protection
Agency (EPA) has developed the Optimization Model for reducing GHGs from Automobiles
(OMEGA) to estimate the costs and benefits of meeting GHG emission standards through
different technology packages. However, the model does not simulate the impact that increased
technology costs will have on vehicle sales or on consumer surplus. As the model
documentation states, “While OMEGA incorporates functions which generally minimize the cost
of meeting a specified carbon dioxide (CO,) target, it is not an economic simulation model which
adjusts vehicle sales in response to the cost of the technology added to each vehicle.”

Changes in the mix of vehicles sold, caused by the costs and benefits of added fuel economy
technologies, could make it easier or more difficult for manufacturers to meet fuel economy and
emissions standards, and impacts on consumer surplus could raise the costs or augment the
benefits of the standards. Because the OMEGA model does not presently estimate such impacts,
the EPA is investigating the feasibility of developing an adjunct to the OMEGA model to make
such estimates. This project is an effort to develop and test a candidate model. The project
statement of work spells out the key functional requirements for the new model.

“ORNL shall develop a Nested Multinomial Logit (NMNL) or other appropriate model capable of
estimating the consumer surplus impacts and the sales mix effects of GHG emission standards. The
model will use output from the EPA’s Optimization Model for reducing Emissions of Greenhouse
gases from Automobiles (OMEGA), including changes in retail price equivalents, changes in fuel
economy, and changes in emissions, to estimate these impacts. ...The model will accept
approximately 60 vehicle types, with the flexibility to function with fewer or more vehicle types, and
will use a 15 year planning horizon, matching the OMEGA parameters. It will be calibrated to
baseline sales projection data provided by the EPA and will include a buy/no-buy option to simulate
the possibility that consumers will choose to keep their old vehicle or to buy a used vehicle. The first
version of the model must be completed by the spring of 2011. Additional versions may be created in
the future, pending further discussion and negotiation between the consultant and the EPA.”

Briefly, given changes in each vehicle’s price and fuel economy, the model

(1) calculates impacts of standards on vehicle sales mix, and
(2) calculates cost of standards in terms of consumer surplus.

The initial version of the model, at least, is not intended to project market trends due to other
factors, although this might be a fruitful area for future research and development. The goal of
this project is to create a simple model to test the concept of incorporating market share and
consumer surplus changes to the OMEGA model and to produce a working initial model.
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A research team at Oak Ridge National Laboratory (ORNL) has designed and implemented a
Consumer Vehicle Choice Model (CVCM) for the project based on NMNL theory with a
representative consumer. This document will detail CVCM design principles, model equations,
parameter calibration, implementation and user guide. Specifically, Section 1.2 further explains
CVCM functionality and intended usage and summarizes possible sources of prediction errors.
Section 2 reviews relevant new vehicle type choice models in the literature and compares their
merits and limitations. Then Section 3 describes NMNL equations and model calibration
procedure. Finally, Section 4 gives instructions to use the model.

1.2 MODEL USAGE AND RESULTS INTERPRETATION

1.2.1 Model Functionality and Usage

The CVCM is intended to perform specific functions as an adjunct to the EPA’s OMEGA model.
As such, it has been designed to use the same theoretical basis and premises as the OMEGA
model. Specifically, it has been designed to self-calibrate to the baseline vehicle sales
distribution used by OMEGA and, given estimates for each individual vehicle of (1) changes in
vehicle fuel economy, and (2) changes in vehicle prices, it:

1. -calculates impacts of those changes on vehicle sales and the distribution of
vehicle sales and the resulting impact on manufacturers’ abilities to meet fuel
economy standards and,

2. - calculates changes in consumers’ surplus as a consequence of the changes in fuel
economy and vehicle purchase cost.

The CVCM is not intended to be a tool for forecasting the future vehicle fleet. There is no doubt
that, over time periods longer than a few years, vehicle designs will come and go, new vehicle
models will be introduced and others retired, new manufacturers will enter the U.S. market,
existing manufacturers will exit, and there will be mergers and divestitures. However, predicting
such events is outside the scope of the CVCM. 1t is also likely that over future time periods
manufacturers will introduce new types of vehicles: plug-in hybrid, battery electric, hydrogen
fuel cell vehicles and perhaps vehicles that are not foreseen at the present time. The CVCM was
not designed to predict consumers’ acceptance of these advanced technology vehicles. This
capacity was left for future research and development.

The CVCM was developed to test the concept of predicting the differential sales impacts of fuel
economy changes together with price changes brought about by fuel economy standards. It is
intended to produce credible estimates of such changes to determine whether they may have
important implications for manufacturers’ abilities to meet the standards and for consumer well-
being. Given the EPA’s need for periodic and timely analyses to support its responsibilities for
GHG emissions and fuel economy rulemakings, the CVCM should be capable of being readily
calibrated to new data sets and updated with new sales and fuel economy data.

Given the intended purpose and functions of the model, it is most appropriately used for
estimating changes in the following variables relative to the baseline values:



1. Market-wide consumers’ surplus, total sales, total gross revenue, and fleet average miles
per gallon (MPG) and GHG emissions,

2. Sales, average MPG and GHG emissions by manufacturer, and

3. Sales by market segment.

The CVCM models vehicle type choice at the most complete level of detail possible,
corresponding to the level of detail at which fuel economy measurements are made by the EPA.
Given that the price sensitivity of consumers’ choices is greatest at the lowest' level of the
NMNL nest, i.e., when vehicles are the closest substitutes, modeling at the greatest feasible level
of detail can capture the full range of sales mix shifts. If vehicle type choice were modeled at a
more aggregate level, the modeling process may be open to the questions about whether it misses
important sales mix changes that would have been evident had the model operated at a greater
level of detail. However, the CVCM prediction at the lowest level (i.e., make, model, engine and
transmission configuration) is most sensitive to changes in input data and model parameters.
Reporting results at this level may imply a higher degree of precision than is appropriate. Thus,
we recommend reporting CVCM predictions at more aggregate levels.

The model provides highly detailed results. For reasons discussed in Section 1.2.2, the model’s
predictions are unlikely to be as precise as is suggested from the model output. The detail is
provided for situations where the CVCM would be used iteratively with OMEGA, where the
detail may provide advantages for model convergence. On the other hand, when final results are
presented for consideration, false precision should be avoided. The sensitivity analyses we have
done (see Appendix B) suggest that outputs should be presented to no more than three digits and
perhaps only two in the case of consumers’ surplus impacts and impacts on total vehicle sales.

1.2.2 Prediction Errors

The aggregate, or representative consumer, NMNL model makes simplifying assumptions about
consumer behavior. Since consumer behavior is complex, we have focused the modeling
initially on the decisions by consumers to trade-off fuel savings for higher vehicle prices, holding
all other vehicle attributes constant. A change in a particular vehicle’s fuel economy is translated
into a change in price equivalent (present value dollars) based on a model or theory of how
consumers value fuel economy. The change in the present value of future fuel costs perceived
by consumers is added to the estimated change in the vehicle’s price Ap . A price sensitivity

parameter, B, translates the resulting net change in present value into a change in a utility index

that determines a vehicle’s market share. The change in utility for the i" vehicle in nest j, U ;18

the following, where PV represents whatever function is chosen to transform a change in fuel
economy to a change in the present value of fuel savings considered in the vehicle purchase
decision.

AU, = B, (Ap, — PV{ fuel savings}) (D

"In this document, the higher/lower levels are referred to by their relative positions in the nested tree/nesting structure
(Figure 1 in chap. 3) which has a buy/no-buy decision at the top/highest level and vehicle configurations (combinations of make,
model, engine, and transmission) at the bottom/lowest level. It implies that the lower levels in the tree are more disaggregated.
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The NMNL model is a tool for estimating changes in market shares as a function of changes in
the present value (in dollars) of vehicles. If the changes are small relative to the prices of the
vehicles and if the price sensitivity parameters are reasonably accurate, the NMNL model should
give reasonably accurate predictions.” Prediction errors arise from incorrectly estimating
changes in the utility index, caused either by errors in the estimation of the role of a change in
fuel economy or inaccurate specification of the price sensitivity parameter, B. Such errors have
a specific functional form in logit models.

For illustrative purposes, consider a simple multinomial logit (MNL) model (a derivation of the
NMNL model that begins with a specification of the simple MNL model can be found in section
2.2.1 below).” The derivative of a vehicle’s market share S; with respect to a change in its utility
index is the following:

U;
i i ijle

Since, in general, S; (which is between 0 and 1) will be approximately two orders of magnitude
larger than (S,)?, the change in market share dS; is approximately the change in utility weighted

by the vehicle’s market share, SidU;. As changes in utility are propagated up the nesting
structure (as inclusive values, or expected utility changes) this simple relationship applies at each
step. Since a shock (error) in the utility index of vehicle i is a change in its utility, the impact of
errors in the utility index on the predicted share is proportional to the market share of vehicle i.

Prediction errors will be negatively correlated between alternatives within a nest. At the lowest
level of nesting, shocks to the utilities of individual vehicles are independent and identically
distributed, in theory. However, the errors in one vehicle’s utility index induce a change in the
predicted shares of other vehicles that are negatively related to changes for the initial vehicle.
The error term of a utility function directly induces a change in utility so its impact can be
described by the derivative of the share of vehicle i with respect to a change in (shock to) the
utility of vehicle j.

oS, 0 e U, ( - U, j_z U;
[ =e’ (—1) e’ e’ :_SiSi (3)
oU, U, Zj’:le”f ,Z; ‘

Thus, a shock to the utility index of vehicle j induces a negative error in the prediction of the
share of vehicle i that is proportional to the product of their shares, and prediction errors within a
nest are negatively correlated. Because of this, errors in utility functions within a nest will tend
to cancel, and the sum of the shares within a nest (i.e., the share of that nest) will have a smaller
relative error than the relative errors of the individual vehicles within the nest.

% There is reason to expect the changes in dollar value to be small relative to the vehicle’s price in that they will, in
general, be comprised of an increase in price (>0) minus a present value of future fuel savings (also >0).
3 Each lowest level nest of a NMNL model is a simple multinomial logit model.
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In reality, prediction errors can arise from a number of simplifications in the CVCM, errors in
parameters and errors in input data.

Non-optimizing consumer behavior

Aggregate NMNL model applied to heterogeneous consumers
Errors in NMNL model structure

Errors in NMNL parameters

Omitted variables (including manufacturer pricing decisions)
Inaccuracies in baseline sales data

Inaccuracies in OMEGA model predictions

Unanticipated technological innovations over time

A S Al o

Changes in consumers’ behavior over time

There is substantial evidence that consumers’ decision-making in markets for energy efficiency,
and in particular fuel economy, may not correspond to the classical rational economic model
(e.g., Jaffe and Stavins, 1994; Greene, 2009). A review of the econometric evidence found
contradictory and inconclusive results (Greene, 2010). If, as Greene (2011) proposes, consumers’
decisions about fuel economy are best described by prospect theory of behavioral economics,
then the theory of utility maximization that underlies random utility models like the NMNL
model would not be the most appropriate context for evaluating consumers’ surplus impacts.
Further theoretical and empirical research is needed to better understand how consumers' value
fuel economy and how fuel economy and emissions standards affect consumers' surplus.

The CVCM is a market or representative consumer NMNL. It does not explicitly represent
differences in consumers’ preferences. The only recognition of differences in consumers’ tastes
is in the logit formulation itself which assumes that each individual perceives a different value
for each vehicle (e.g., Train, 1993 ch. 2). However, this representation of heterogeneity is very
limited and, in particular, does not allow for different price sensitivities. The population of
consumers is undoubtedly heterogeneous but it is not known how important that heterogeneity is
to the intended purpose of the CVCM. If further research and development is undertaken,
investigating the importance of consumer heterogeneity should be given a high priority. Explicit
heterogeneity was not incorporated in the CVCM in order to keep the model and its calibration
simple.

The nesting structure used in the CVCM is similar to nesting structures used in empirically
estimated models and in constructed models such as Bunch et al. (2011) and NERA (2009).
Grouping vehicles by size, functionality and price is intuitive and consistent with the theoretical
requirement that vehicles in a nest be similar with respect to unobserved attributes, i.e., be close
substitutes. However, there is no guarantee that the nesting structure chosen is the best possible
nesting structure.

Price sensitivities and alternative-specific constants are the two classes of parameters of the
CVCM. Price sensitivities are the most important because the constants are computed so that the
model exactly predicts the baseline market shares, given the assumed price sensitivities. The
price sensitivities have been chosen to be consistent with the estimates in the published literature



and to conform to the theoretical requirement that price sensitivities increase in absolute value as
one moves down along the nesting tree. However, the price sensitivity parameters have not been
estimated to be consistent with a specific data set and it is always possible that an additional
empirical analysis could yield insights missing from the existing literature.

Numerous possible explanatory variables have been excluded from the CVCM. Indeed, the only
variables included are the changes in price and fuel economy supplied by the OMEGA model.
Other variables are implicitly held constant in that they are included in the baseline constant
terms. Including factors such as income and demographic variables may be desirable in a model
to be used for estimation over an extended time period. However, this would require predicting
values for those variables over the same time period. A potentially important endogenous
variable in the OMEGA/CVCM system might be internal pricing decisions by manufacturers to
meet especially stringent (strongly binding) fuel economy and emissions standards. This is
beyond the scope of the current CVCM project, however.

To the extent that the baseline sales data, including the definitions of individual vehicles, differ
from the actual market data, errors could be induced in the CVCM estimates. OMEGA is itself a
model and thus its estimates undoubtedly contain some differences from what will occur, and
these will also affect the accuracy of CVCM estimates.

Over extended time periods, automotive technology will change, and may change in ways that
cannot be foreseen at the present time. Furthermore, consumers’ preferences may also change in
unpredictable ways. The 2002 National Research Council report on the CAFE standards and
potential for fuel economy improvement did not foresee a successful market for hybrid vehicles
(NRC, 2002). The emergence of minivans, SUVs, crossovers, the near disappearance of station
wagons, and more, could not have been predicted with any certainty a long time period (e.g. 15
years) in advance. Assessment of technological innovation and trends in consumers’ preferences
is beyond the state-of-the-art in economic modeling and is probably best handled by scenario
analysis.

The CVCM was designed to estimate the impacts of changes in vehicle prices and fuel economy
provided by the OMEGA model on consumers’ surplus and changes in vehicle sales that could
impact manufacturers’ abilities to meet fuel economy and GHG emissions standards. It was
developed as a first test of the potential for such estimations to contribute to improved rule
making. The goal was to develop a simple model that could be readily calibrated and operated in
conjunction with the OMEGA model, and that had a sound theoretical and empirical basis.



2. LITERATURE REVIEW ON NEW VEHICLE TYPE CHOICE
MODELING

The impacts of changes in vehicle prices and fuel economy on vehicle sales and consumer
surplus can be estimated by means of systems of demand equations and discrete choice models,
which are reviewed in this section. The emphasis is on two types of discrete choice models —
NMNL and Mixed Logit (ML) models.

2.1 AGGREGATE DEMAND MODELS

Automobile demand by type of vehicle can be represented by a system of linear or non-linear
demand equations. Kleit (2004, 2002a & b, 1990) created a market segment vehicle demand
model that he used to evaluate the costs and benefits of CAFE standards. Kleit divided the
market into eleven vehicle classes and four manufacturers. Demand functions, in the 2002b
paper at least, were specified as simple linear functions of vehicle price (i.e., Q = a + bDP).
These equations can be calibrated given an initial set of prices and quantities and own price
elasticities. Kleit estimated own price elasticities and cross price elasticities by exercising a
proprietary model developed by GM (Table 1). Own price elasticities for the eleven vehicle
classes ranged from -1.5 for large trucks to -4.5 for large cars. The own price elasticity for
luxury cars is -1.7, less than those of standard cars (-2.8 to -4.5) but of the same order of
magnitude. In general, cross price elasticities are small relative to own price elasticities. Cross
elasticities are not symmetric because classes with high sales volumes have a greater effect on
classes with low sales volumes than vice versa. However, there are sets of classes for which
cross price elasticities are substantial, indicating that the vehicle types are relatively close
substitutes. The groupings in Kleit’s model suggest that standard cars are relatively close
substitutes, with small cars being better substitutes for medium cars than for large cars. Small
and Large SUVs are relatively good substitutes, as are small and large (pickup) trucks. Cars and
pickup trucks are not close substitutes, and the only vehicle that is even a weak substitute for a
full size van is a minivan. In the discussion of discrete choice models below, such grouping
become “nests”.

Table 1 Demand Elasticities of Kleit's Vehicle Class Demand Model (Kleit, 2004)

1 2 3 4 5 6 7 8 9 10 11

1 Small Car -2.808 0423 0.063 0.018 0.000 0.036 0.027 0.009 0.009 0.009 0.000
2 Medium Car 0.684 -3.528 1.107 0.027 0.018 0.018 0.018 0.036 0.045 0.054 0.009
3 Large Car 0.270 1926 -4.500 0.027 0.216 0.009 0.054 0.018 0.063 0.054 0.009
4 Sport Car 0.549 0423 0324 -2250 0.009 0.090 0.198 0.045 0.108 0.018 0.000
5 Luxury Car 0.045 0405 1.062 0.009 -1.737 0.000 0.027 0.045 0.189 0.072  0.009
6 Small Truck 0.162 0.099 0.000 0.009 0.000 -2.988 0.702 0.045 0.054 0.009 0.009
7 Large Truck  0.063 0.072 0.018 0.009 0.000 0.234 -1.548 0.027 0.090 0.018 0.036
& Small SUV 0.216 0279 0.099 0.027 0.009 0.090 0351 -3.645 0.747 0.108 0.072
9 Large SUV 0.117 0243 0.171 0.018 0.018 0.054 0387 0414 -2.043 0.234 0.108
10 Minivan 0.081 0.171  0.063 0.000 0.009 0.009 0.045 0.027 0.135 -2.286 0.180
11 Van 0.027 0.036 0.009 0.009 0.000 0.009 0.054 0.036 0.072 0.387 -2.385




Automobile supply was represented by assuming a short-run price elasticity of supply of +2 and
a long-run elasticity of +4.

Bordley4 (1993) estimated own and cross price elasticities for 200 passenger car nameplates
using aggregate time-series sales data by market segment plus survey data on the first and second
choices of consumers who had just purchased a new car. The aggregate sales data allowed
estimation of own price elasticities for seven passenger car market segments and an overall price
elasticity of automobile demand. The survey data were used to estimate “diversion fractions”
quantifying the propensity of purchasers of one nameplate to buy any of the others given an
increase in its price. Bordley estimated an own price elasticity for passenger car purchases
versus all other commodities of -1.0. Car segment elasticities ranged from -1.7 for small cars
to -3.4 for sporty cars (Table 2). Elasticities for individual nameplates ranged from -1.7 to -8.2;
mean values within segments ranged from -2.4 to -4.7.

Table 2 Market Segment and Nameplate Own Price Elasticities Estimated by Bordley (1993)

Car Class Class Elasticity Car Nameplate Elasticities
Minimum Average Maximum
Economy -1.9 -3.3/-34 -4.7 -8.2/-8.1
Small -1.7 -1.9/-1.7 2.4 -3.1/-3.4
Compact -2.0 -2.1/-2.2 -3.1 -4.9/-4.7
Midsize 2.3 -2.3/-2.6 -3.3 -4.6/-4.2
Large -3.0 -3.1/-3.5 -3.8 -4.3/-4.0
Luxury 2.4 -3.2/-3.4 -3.7 -5.3/-4.5
Sporty -3.4 -2.6/-3.4 -4.2 -6.5/-5.3

Bordley’s method could be used to calibrate a system of linear nameplate demand equations, as
was done by Kleit (1990). More complex systems including cross price elasticities can also be
calibrated, as Bordley (1993) points out, but does not explicitly describe calibration of such a
model.

Austin and Dinan (2005) used the own- and cross-price elasticity matrix developed by Kleit
(2002a) to estimate the impacts of changes in vehicle prices due to fuel economy standards on
consumers’ demand for 10 vehicle classes. Consumer demand for a class is a linear function of
the difference between vehicle price and the value of future fuel savings induced by the
standards. For manufacturer i, demand for its vehicle classes is given by the following matrix
equation,

g, =A(p;—¢) )
in which g; is the vector of quantities for each of the 10 vehicle classes, p; is the vector of prices,

c; 1s the vector of present value of fuel economy improvements and A; is a matrix of own- and
cross-price elasticities. Austin and Dinan (2005) do not provide the numerical values for the

* Bordley was employed by General Motors Research Laboratory at the time he conducted and published his study.
Thus, there may be a relationship between Kleit’s elasticity estimates, which are based on a GM model, and Bordley’s.
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elasticities they used in their model, nor does Kleit (2002a), apparently because the model is
proprietary.

2.2 DISCRETE CHOICE OR RANDOM UTILITY MODELS

Discrete choice models, sometimes referred to as random utility (RU) models, are by far the
most common methodology used to mathematically model automobile demand. Baltas and
Doyle (2001) succinctly summarize the methodology.

“In RU models, preferences for such discrete alternatives are determined by the realization of latent
indices of attractiveness, called product utilities. Utility maximization is the objective of the
decision process and leads to observed choice in the sense that the consumer chooses the alternative
for which the utility is maximal. Individual preferences depend on characteristics of the alternatives
and the tastes of the consumer.... The analyst cannot observe all the factors affecting preferences and
the latter are treated as random variables.” (Baltas and Doyle, 2001, pp. 115).

Since the early applications of random utility models in the 1970s (McFadden, 1973),
formulations of RU models have proliferated. Baltas and Doyle (2001) identified fourteen
different methods which they grouped into three fundamentally different approaches depending
on the nature of the random utility:

e Unobserved product heterogeneity,
e Taste Variation (consumer heterogeneity), and
¢ Choice Set Heterogeneity.

Nearly all applications of random utility models to automobile choice fall into the first two
groups because the availability of different types of automobiles is rarely a significant issue.
Randomness in the simple multinomial logit model derives primarily from unobserved attributes.
Its error term may also include unobserved variations in taste but the representation of these
variations is limited and simplistic. The same applies to NMNL Models although their ability to
represent randomness in unobserved attributes and tastes is much more complex. In these
models, heterogeneity in consumers’ preferences is commonly represented by explicit functional
relationships between product attributes and consumer characteristics. MNL models allow
variations in consumers’ preferences to be represented by random coefficients, whose
distributions can be inferred either from survey or market shares data.

Which methodology is best for a given application depends not only on the richness of the
modeling approach but on the objectives of the exercise, as well as practical constraints,
including data and resource availability. Baltas and Doyle sum up the dilemma well.

“Finally, a general concern relates to overall model practicality. As our discussion illustrates, recent
developments have increased model complexity and made estimation, interpretation, and forecasting
less straightforward. Some specifications are still rather impractical. The issue can be viewed as the
common dilemma between simplicity and flexibility. There is no universal answer to this question as
it depends on one’s rate of exchange between the two criteria.” (Baltas and Doyle, 2001, p. 123).



2.2.1 Multinomial Logit

The first application of a multinomial logit model to automobile choice appears to be the seminal
paper by Lave and Train (1979) which estimated a multinomial logit model of consumers’
choices among 10 vehicle classes using what was then a new method for analyzing qualitative
choice behavior (McFadden, 1973). The probability of an individual consumer choosing a
vehicle class was assumed to be a function of a vector of vehicle attributes and household
attributes. The model formulation allowed for interaction of household and vehicle variables in a
linear “representative” utility function. Let Xjj be the K" variable, for the jth vehicle class and the
i" consumer. The representative utility function is defined as,

K
sz = Z:kaijk T &, &)
k=1

in which the fis are fixed coefficients and the ¢;s are independent, identically distributed
random variables that have extreme value distributions. The probability that consumer i will
purchase a vehicle from class j is a multinomial logit function of the representative utilities of all
classes.

e
F==i— (6)
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e
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In the Lave and Train model, vehicle price was represented by price divided by household
income and the same variable squared. The results implied both that sensitivity to price
decreased with increasing vehicle price and that price sensitivity decreased with increasing
income. The model was calibrated to survey data from 541 households collected in seven U.S.
cities in 1976.

McCarthy and Tay (1998) estimated a MNL model of consumers’ choices among 68 makes and
models. Their objective was to test whether buyers of domestic, European and Japanese
manufactured vehicles valued vehicle attributes in the same way. Their analysis rejected the
hypothesis that vehicle attributes are similarly valued regardless of country of origin. They also
noted certain “anomalies” in their coefficient estimates. For example, faster acceleration
decreased the probability of choosing American and Japanese vehicles, while operating costs
were an insignificant variable for makes and models of Japanese manufacture. Similar results
have been observed in other studies and may point to an inherent difficulty in estimating random
utility models. A key assumption of such models is that the unobserved attributes are
uncorrelated with the observed attributes. If they are not, then biased estimates can result.
Given the strong correlations among many observed attributes (e.g., size, price, horsepower, fuel
economy, weight, interior volume, number of seats, etc.), the assumption that unobserved
attributes are uncorrelated with observed attributes seems unlikely. In addition, the problem of
defining and obtaining measures of precisely the right attributes that determine consumers’
choices has also been a persistent issue for random utility models. Is acceleration best measured
by the ratio of horsepower to weight, by 0-60 mph time, or by the various measures the industry
uses to capture the experiences of launch from a stop, intermediate speed range acceleration,
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passing acceleration, and responsiveness? Inaccuracies in defining and measuring attributes lead
to errors in observed variables. Correlated omitted variables, errors in observed variables and
correlated observed variables makes statistical inferences challenging indeed.

Lave and Train (1979) noted two key limitations of the MNL model. First is the so-called
Independence of Irrelevant Alternatives (ITA) property, which makes the ratio of the probabilities
of choice of any two alternatives independent of the presence or attributes of any other
alternatives. A related property is that all alternatives are assumed to have the same probability
distribution of unobserved utility (i.e., € has the same distribution for every alternative) and that
these distributions are independent. These properties severely restrict the patterns of substitution
the model can represent. For example, apart from the measured utility component, Lave and
Train’s MNL model implies that a two-seater sports car is just as good a substitute for a luxury
sedan as it is for a sporty subcompact. Note that the measured utility component in the Lave-
Train model directly accounted for factors such as the number of seats, household size and
acceleration performance. Unobserved factors might be such things as styling or image.

Second, because automobile attributes do not vary across the population of consumers, it is not
possible to estimate a MNL model that includes vehicle attributes and a vehicle specific constant.
In a model estimated using household data, attributes can only be entered when interacted with
some household characteristic. On one hand, this allows attribute values to vary across
individuals. On the other, it imposes specific functional relationships on how attribute values
vary that may not be supported by any theory. Thus, heterogeneity of consumers’ preferences is
an inherent property of MNL models estimated using household data but is restricted to specific
functional relationships chosen by the researcher.

2.2.2 Probit and Nested Multinomial Logit

The shortcomings of the simple MNL model, especially its IIA property, led researchers to
explore alternative formulations that allowed greater flexibility in patterns of substitution among
vehicles and representations of heterogeneous consumer preferences. The probit model was
derived by relaxing the assumptions of independent, identical error distributions (see, e.g., Train,
1993). Instead the error terms in a probit model are assumed to be jointly normally distributed.
Instead of leading to a simple, closed form equation for the choice probabilities (like equation (6)
for the MNL model), the probit model requires numerical integration of a series of integrals. The
probit model’s inherent complexity, combined with the ability of a variant of the MNL model to
overcome most of its limitations, is responsible for the very infrequent use of probit models in
modeling automobile choice.

The NMNL Model, a special case of the Generalized Extreme Value (GEV) model, is based on
the premise that the full choice set can be portioned into subsets (nests) within which the IIA
property is appropriate but across which it is not. Put another way, within a nest all vehicles are
assumed to be equal substitutes, conditional on their observed utility. Formally, within a subset
alternatives error terms are independent and identically distributed. Across subsets, they are not.

Building on the notation of equations (5) and (6), the probability that a consumer will choose a
specific make, model, engine and transmission configuration, m, given that the consumer will

choose a vehicle in nest (class) j, is a simple MNL probability.
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The probability that consumer i will choose class j is a function of the utility of attributes
common to class j, Vj, as well as a function of the composite utility of all vehicles within class j,
1.
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P=— 8
Y ZlL_leviz‘*'ﬂzliz ( )

The term I;; is the “inclusive value” or expected value of the utility of vehicles in set j. It is
defined by equation (9).

M f‘ﬁjkxijmk
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In equation (9) each nest has a different set of coefficients that map vehicle attributes into the
utility index. In particular for this model, these coefficients differ across nests. This allows
different degrees of substitutability for the choices within different nests. The unconditional
probability of consumer i choosing vehicle m in class j is the following.

(10)

Another feature of the NMNL model that helps overcome the limitations of the MNL model is
the ability to define any number of levels of nesting. A key advantage of this is that the top nest
can represent the choice to buy or not to buy a new automobile. Thus, an NMNL market model
can predict the impacts of changes in vehicle attributes and other factors on total vehicle sales as
well as the type of vehicles purchased.

The flexibility and mathematical simplicity of the NMNL model have made it the most widely
used tool for modeling automobile choices. Goldberg (1995, 1998) estimated NMNL models of
automobile choice in order to evaluate the impacts of fuel economy standards. In the 1995 study,
her nests comprised (1) small cars including subcompacts and compacts, (2) luxury automobiles
including sports cars, and (3) all other vehicles. A likelihood ratio test was used to test (and
reject) the hypothesis that coefficient values within the three nests were equal. While such tests
can be used to reject a nesting structure, there is no accepted methodology for identifying a
correct nesting structure. Goldberg’s 1998 study used nine vehicle classes, within which
consumers could choose between a foreign or domestic car. This structure was chosen to allow
exploration of differential impacts of standards on foreign and domestic manufacturers.

Stated preference survey data were used by Brownstone et al. (1996) to estimate a NMNL model
of consumers’ choices among conventional and alternative fuel vehicles. The 1993 California
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survey asked households to choose among hypothetical vehicles that included alternative fuel
vehicles. Stated preference methods were necessitated by the fact that very few households
purchase or have any experience with vehicles powered by non-petroleum fuels.

Most often, NMNL models are calibrated via statistical inference based on the vehicle choices of
individual consumers or households. However, MNL and NMNL models can also be interpreted
as representing the choice probabilities of a representative consumer or a population of
consumers with diverse tastes (Anderson et al., 1988). In this interpretation, the random error
term (g¢) represents not only unobserved attributes but also unobserved variations in tastes and
errors in perception and optimization by consumers (Madalla, 1992, p. 60). Several modelers
have used NMNL models in this way to represent aggregate market behavior.

Greene (1994) constructed a NMNL choice model for predicting market shares of alternative
fuel vehicles. Rather than estimating a model based on stated preference survey data, Greene
followed a methodology invented by Donndenlinger and Cook (1997) to infer the values of
automobile attributes. The model coefficients were constructed by postulating how vehicle
attributes such as range or fuel economy would be valued by consumers, deriving a coefficient
that translates unit changes in each variable to a present dollar value and applying a multiplier to
transform that coefficient into one that translates unit changes into the utility index. This
multiplier is referred to as generalized cost coefficient in the remainder of this document. Greene
reasoned that since the overwhelming majority of consumers had no first-hand experience with
alternative fuel vehicles (e.g., battery electric vehicles, compressed natural gas vehicles, etc.)
stated preference surveys data would likely be misleading. The model did not include a buy/no-
buy decision. The first level nest included eight alternative fuel technologies. The second level
nest comprised the choice of fuel for bi-fuel or flex-fuel vehicles. A similar model also
constructed by Greene (2001) contained Conventional Internal Combustion Engine (ICE)
vehicles, Dedicated Alternative Fuel vehicles (CNG and LPG), Hydrogen Fuel Cell vehicles and
Battery Electric vehicles in the first level nest and subcategories of these vehicle technologies in
the second. E.g., ICE was divided into conventional liquid fuel vehicles, hybrid vehicles and
gaseous-fueled vehicles. Within the conventional liquid fuel nest, consumers chose among
gasoline, diesel, ethanol FFVs and methanol FFVs. Within the FFV nests, consumers chose fuel
types, e.g., gasoline or E85. To estimate price coefficients for the nests in his model, Greene
(2001) relied on existing studies and the theoretical requirement that sensitivity to price must
increase from the top nest to the bottom (from vehicle technology choice to fuel choice). Since
the overall price elasticity of automobile demand is generally believed to be approximately -1.0
(Kleit, 1990; McCarthy, 1996; Bordley, 1993) and the choice of fuel is highly but not infinitely
elastic (approximately -10 or more: Greene, 1998, p. 228), this bounds the range of price
sensitivity for nests in between. Although this range is an order of magnitude, with three nests
between the top and bottom choices it provides useful information that can be used in
conjunction with estimates from published studies to greatly reduce the uncertainty about
coefficient values.

Greene et al. (2005) and Greene (2009) calibrated constructed NMNL models to the market
shares of over 800 carline/engine/transmission configurations. The data sets included every
vehicle in the National Highway Traffic Safety Administration’s (NHTSA) model year 2000 and
2005 fuel economy data sets, respectively, except those with annual sales below 25 units per year.
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Generalized cost coefficients were chosen based on the published literature and the relative value
rule for nests described above. Vehicle-specific constants were used to insure the model exactly
fit the base year data. The ability to calibrate the model to fit any given year’s sales data is an
advantage for use in policy analysis where the correspondence of model estimates to real world
experience is of value.

Harrison et al. (2008), like Greene et al. (2005), used a constructed NMNL model to evaluate the
benefits and costs of the 2011-2015 CAFE standards. The authors assumed a plausible nesting
structure based on their judgments about the substitutability of different types of vehicles. The
guiding principle is that vehicles within a nest are closer substitutes for one another than they are
for vehicles in other nests.” Consumers are assumed to decide to buy or not to buy at the top nest,
then choose among three car classes: passenger cars, pickup truck/full-size van, or
SUV/minivans. The next level contains 14 vehicle classes based on size and price. Within these
subclasses are non-intersecting subsets of over 200 vehicle models. Like Greene et al. (2005),
Harrison et al. made use of the NMNL requirement that price sensitivity (price coefficients) must
decrease in absolute value (increase in value) as one moves up the nesting tree. They began with
a price elasticity of -1.0 for the buy/no-buy decision, and then assumed the ratios of parameters
at each level in order to calculate price coefficients for each lower nest. Harrison et al. also
calculated a constant term for each model, as Greene et al. did, but then regressed those constant
terms against other vehicle attributes in an effort to infer the value of those attributes.

2.2.3 Mixed Logit Model (MLM)

The MLM adds to the NMNL a greater capability to include heterogeneous consumer tastes.
The utility of vehicle m to consumer i is given by equation (11).

K H
Uim = 5m + Zﬁk Ximk + Zﬂih Zimh + gim (1 1)
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In equation (11), J,, represents the average utility (intercept term) of vehicle m, the X, are
vehicle attributes interacted with consumer characteristics, the f; are mean coefficient values for
these variables, the u;; are individual specific random coefficients reflecting deviations of
individual tastes from those f; for which tastes vary, and the z;,,, are vehicle attributes interacted
with consumer characteristics for which tastes vary (Train and Winston, 2007). Assuming that
the ¢;, are independent and identically distributed and have an extreme value distribution, the
probability that consumer i chooses vehicle m is given by the mixed logit model (the integral
sign represents many integrals over the many probability distributions of the random variables).

efsm +Z,ilﬁk Xk +Z::]/lih Zimh
= (12)
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> More accurately, the vehicles are more similar with respect to their unobserved attributes. Vehicles may differ greatly
with respect to the measured attributes that enter the utility index function yet still belong in the same nest.
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Train and Winston (2007) estimated a mixed logit model of vehicle choice using a random
sample of 458 U.S. consumers who had just purchased a new model year 2000 vehicle in order
to investigate reasons for the declining market shares of U.S. auto manufacturers. Each
consumer’s choice set consisted of 200 makes and models. There is no closed form solution for
estimating the parameters of the MLM. Instead, simulation was used to approximate the
integrals for choice probabilities and the resulting log likelihood function.

The parameters of the MLM are functions of consumer attributes and random variables. For
example, the price coefficient in the Train and Winston model is,

= 00732100 086V
Y, ¥

1 1

(13)

The variable v is a standard normal random variable. This adds richness to the model by
representing varying tastes across the population. There is even some small probability of
finding a consumer who prefers higher prices (f>0). On the other hand, the functional form is,
to a degree, chosen a priori by the researcher, and both estimating the model and predicting with
it are substantially more complicated but still quite feasible. Both require simulations (perhaps
only a few hundred) and both require information about the distributions of consumer
characteristics (available from national surveys).

A comparison of MLM and NMNL models was made by Brownstone et al. (2000), combining
stated and revealed preference survey data for California households. The authors observed that
the MLM improves the fit of model to data, and indicated substantial heterogeneity of
preferences across the population. They also noted that revealed preference (RP) data are
essential for obtaining realistic predictions of consumers’ choices of vehicle types. However,
they also commented on the difficulty of statistical inference using RP data.

“RP data appear to be critical for obtaining realistic body-type choice and scaling information, but
they are plagued by multicollinearity and difficulties with measuring vehicle attributes. SP data are
critical for obtaining information about attributes not available in the marketplace, but pure SP
models with these data give implausible forecasts.” (Brownstone et al., 2000)

Bento et al. (2005, 2009) estimated a mixed logit model of vehicle choice and a paired model of
vehicle use using data from the 2001 National Household Travel Survey. They divided vehicles
into 10 vehicle classes, 5 age categories and 7 manufacturers. The paired models not only
estimate new vehicle choices but vehicle use, as well as aging and scrappage. Jacobsen (2010)
used the model to assess the impacts of CAFE standards on manufacturers but did not include in
his model the option they have to use technology to improve the fuel economy of vehicles at
increased cost. The mean price elasticity of new vehicle demand was estimated to be -2.0,
substantially more than the unit elasticity found in models cited above.

Cambridge Econometrics (2008) estimated a mixed logit model of vehicle choice in the UK

based on a survey of households who had purchased a new or less than 1-year-old vehicle during
the years 2004 to 2007. Households identified the manufacturer, model and engine size of their
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vehicle, which the researchers matched to a separate data base of vehicle attributes. The survey
asked what attributes consumers considered important to the purchase of a vehicle. Respondents
cited many difficult to measure factors, such as reliability, safety, comfort, warranty and security.
Estimated mean price elasticities by vehicle class ranged from -0.96 for multi-passenger vehicles,
to -3.51 for luxury vehicles. Relatively elastic market segments included Minicars (-2.46),
Upper Medium cars (-2.81) and Executive cars (-3.24). Less price elastic segments were
Superminicars (-1.15), Lower Medium cars (-1.15), Sports cars (-1.79) and 4X4s (-1.75). The
observed patterns of own- and cross- price elasticities led the researchers to comment on the
importance of models that allow flexibility in substitution patterns.

“We observe substitution patterns that represent a significant departure from proportional
substitution, i.e. there is a higher level of substitution between similar models of cars.” (Cambridge
Econometrics, 2008, p. vii)

Mixed logit models can also be estimated using aggregate market shares, as first shown by Boyd
and Mellman (1980) and Cardell and Dunbar (1980) and later in a seminal paper by Berry,
Levinsohn and Pakes (BLP) (1995). BLP provided a practical method of estimating a mixed
logit model from aggregate sales data. Prices are endogenous in the BLP model, an issue they
addressed by means of instrumental variables comprised of the attributes of other vehicles.
Estimates relying on instrumental variables in this context can be unreliable, as Knittel and
Metaxoglou (2008) demonstrated using BLP’s data. Noting that the objective function in the
BLP model is highly nonlinear and thus prone to multiple local optima, they tested 10 different
optimization algorithms, using 50 different starting values for each. Their results call for caution
both in interpreting parameter estimates from BLP-type models and in their use for forecasting.

“We find that convergence may occur at a number of local extreme, at saddles and in regions of the
objective function where first-order conditions are not satisfied. We find own- and cross-price
elasticity estimates that differ by a factor of over 100 depending on the set of candidate parameter
estimates.” (Knittel and Metaxoglou, 2008)

On the other hand, other researchers, using variants of the BLP model and different estimation
procedures, have obtained more stable results.

Moon, Shum and Weidner (2010) extend the BLP method by adding interactive fixed effects to
the unobserved product characteristics. The specification multiplicatively combines time-
specific fixed effects with vehicle-specific fixed effects. The consumer’s utility function is,
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in which o’s are coefficients measuring the marginal value of each of the K vehicle attributes X,
whose mean value also includes the R interactive fixed effects of product j, plus Jj, represented
by the third hand side term. The difference between this formulation and that of BLP is the
specific structure imposed on the distribution of product-specific tastes. The final term, g, is the
individual, product and time specific utility component. Note that if there are on the order of 10°
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vehicles and just a few time periods, this model has thousands of parameters. In addition,
projecting taste heterogeneity into the future requires specifying future values for f,; and J;, or
assuming they remain constant. If these are assumed to be constant at the values of a given year
or at average values, the heterogeneity of tastes is limited to product-specific heterogeneity.

An advantage of the Moon et al. approach is that it explicitly represents some endogenous factors
by means of interactive fixed effects and thereby reduces the need for instrumental variables, in
particular, to represent price endogeneity. The authors find that, given their formulation,
coefficient estimates produced by methods that assume prices are exogenous versus endogenous
differ little.

The Moon et al. method also produces price elasticities that are much higher in absolute value
than those obtained by the standard BLP model estimation methods. This is apparently due to
the inclusion of the fixed effect variables. They applied the method to the same data used by
BLP (1995). Own and cross price elasticities were estimated for 23 vehicle classes. Using their
interactive fixed effect formulation and assuming prices to be endogenous produced own price
elasticities ranging from -7.0 for Cadillacs to -36.5 for large Mercurys. Twenty of the 23
estimated elasticities were more price elastic than -25.0. Omitting the interactive fixed effects
produced own price elasticity estimates ranging from -7.8 (again, for Cadillac) to -17.6 for a
“remainder of the market” category. This time, 10 of the 23 elasticity estimates were more
elastic than -15.0.

In a study for the UK Department of Transport, the Economics for the Environment Consultancy
(EFTEC) estimated a MLM model of consumers’ choices of automobiles in the UK (EFTEC,
2008). The researchers estimated their model using the method of BLP and data on new car
market shares for 2,190 different vehicle types registered by private households in 11 regions of
the UK. They note that their choice set is considerably larger than that of any previous study.
The ability to calibrate a model to such a large choice set is a consequence of the BLP estimation
procedure. Vehicles were nested into 9 classes based on size, body style and price. Estimated
median price elasticities ranged from -1.3, for vehicles in the SUV class with a range from -2.4
(90™ percentile) to -1.0 (10" percentile), to -5.4 for vehicles in the small-to-medium size family
car segment with a range from -7.1 (90™) to -4.5 (10™). Sports cars also had relatively low price
elasticities and subcompact and mini car choices were relatively price elastic.

A number of recent studies have employed forms of the Mixed Logit model to estimate the
relative effects of vehicle price and fuel economy or fuel costs on vehicle choice (e.g., Allcott
and Wozny, 2009; Klier and Linn, 2008; Gramlich, 2008; Sawhill, 2008). These and other
related studies were reviewed by Greene (2010). All used extensive, detailed data bases on
vehicle purchases in the United States but reached very different conclusions about how
consumers trade off vehicle price and fuel economy. Some of the differences can be attributed to
how consumers form expectations about future fuel prices, although most models assumed static
expectations based on the observation that fuel prices appear to follow a random walk.

Aggregate, mixed logit type models can be used to predict market shares and estimate changes in

consumer surplus. For example, Greene and Liu (1988) used both a random coefficient MNL
model and Lave and Train’s (1979) model to estimate the impacts of changes in vehicle
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attributes related to fuel economy on the consumer surplus associated with automobiles sold in
the United States between 1978 and 1985. The random coefficient model utilized Monte Carlo
simulation to execute repeated draws from the vector distribution of random coefficients.
Greene and Liu found that the estimated mean consumer surplus values were highly sensitive to
the mean values of attributes but they did not test sensitivity of consumer surplus estimates to the
variance of attribute values.

2.3 SUMMARY OBSERVATIONS

All three categories of models (aggregate demand models, NMNL, and MLM) can be used to
estimate changes in market shares and consumer surplus due to increases in vehicle prices and
fuel economy. Aggregate demand models, like those developed by Kleit (2002a) or Austin and
Dinan (2005), could, in principle, produce estimates for 60 or even 800 vehicle types. Given
own- and cross-price elasticities, calibration of such models to sales data would be
straightforward. Estimating the price elasticity matrix, however, is a major challenge. An 800
by 800 matrix would require 640,000 elasticity estimates and even a 60 by 60 matrix would need
3,600 elasticity values. Bordley’s (1993) method offers a potential solution to this problem but it
requires rarely available data on consumers’ first and second choices. Perhaps this is why it
appears not to have been used in subsequent studies.

The ability of mixed logit models to represent consumer heterogeneity also comes at the price of
greater information requirements for model calibration and simulation. Mixed logit models
require specification of not only the central tendencies of key parameters but also their variance,
and possibly their correlations. Running a mixed logit model requires repeated randomized
draws from the distributions of parameters. Fortunately, software is available for performing the
necessary simulations. Calibration and updating of MLMs requires considerable effort. Survey
based estimation methods require extensive, detailed survey data. Aggregate methods have more
modest data requirements but the validity of the estimates by the most prevalent algorithms has
been called into question by recent research (Knittel and Metaxoglou, 2008). In either case,
there is presently no evidence that MLMs produce more accurate predictions than other methods.
Should the EPA determine that vehicle choice modeling can make an important contribution to
its regulatory analyses, it may be worthwhile to determine whether the potential benefits of using
mixed logit models to represent consumer heterogeneity are worth the extra complexity and data
requirements of the mixed logit model.

NMNL models have been constructed, calibrated and used in policy analyses of fuel economy
issues by Greene et al. (2005), Harrison et al. (2008) and Bunch et al. (2011). All three
applications modeled vehicle choices at a fine level of detail, ranging from 200 makes and
models to over 800 make/model/engine/transmission combinations. This high level of detail was
considered necessary to adequately represent the changes in market shares that might result from
fuel economy and emissions standards or fiscal policies. Given that the price sensitivity of
consumers’ choices is greatest at the lowest level of the NMNL nest, i.e. when vehicles are the
closest substitutes, modeling at the greatest feasible level of detail should produce a model with
the potential to measure the full impacts of price and fuel economy changes on fleet average fuel
economy and consumer surplus.
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Given a nesting structure and corresponding price coefficients, NMNL models can be quickly
and precisely calibrated to historical or projected sales data using closed form equations. NMNL
models are capable of accommodating the introduction, termination, or modification of product
lines. They are not capable, however, of predicting when product lines will be introduced or
terminated. NMNL models that must be calibrated to sales data are also not able to predict the
sales of newly introduced vehicles, since there is no vehicle-specific constant term available for
new products. This is a general limitation of models that include fixed effects to accurately
predict sales shares and applies to Mixed Logit Models and other formulations, as well.

For the purpose of developing an initial model to test the value of making such estimates, the
NMNL method appears to be a good compromise between flexibility and simplicity. It can be
readily calibrated with only a small amount of information about price elasticities and base year
sales data. It allows for substantial flexibility in representing substitutions among vehicle types.
On the other hand, it does not allow great flexibility in representing heterogeneous consumer
preferences. This may be a fruitful area of future research and development, especially if it can
be shown that more detailed representations of consumer tastes lead to more accurate predictions.
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3. METHODOLOGY

This project constructs and calibrates a NMNL model along the line of Greene et al. (2005) and
Bunch et al. (2011). Generalized cost coefficients are derived from the literature and NMNL
properties. Given generalized cost coefficients, constant terms of the model are calibrated to
baseline sales data such that the model prediction replicates baseline market share.

3.1 NESTING STRUCTURE

Choice alternatives in the CVCM are represented in detail, by make, model, engine and
transmission, corresponding to the level of detail at which fuel economy measurements are made
by the EPA. There are on the order of 1,000 choice alternatives. Individual vehicles are grouped
into nests as in Figure 1 to allow differential substitution patterns within and between nests. The
structure has 5 levels: LevO (Buy a new vehicle/Don’t buy a new vehicle), Levl (Passenger
Vehicles, Cargo Vehicles and Ultra Prestige vehicles), Lev2 (vehicle types: Two Seaters,
Prestige Cars, Standard Cars, Prestige SUVs, MiniVans, Standard SUVs, Pickup Trucks, Vans,
and Ultra Prestige Vehicles), Lev3 (vehicle classes (see Table 3) and Lev4 (vehicle
configurations (one configuration is defined as a combination of make, model, engine size and
transmission type)). Define Lev0 as the highest level and Lev4 as the lowest level. Right above
Lev0 is root node (not drawn in Figure 1), which is the origin of the nesting structure/tree.

! Buy a New : Don'’t Buy

Vehicle

[ 1 ]
Passenger Cargo Ultra

Vehicle Vehicle Prestige

Prestige Standard Prestige e Standard 5

‘ 2 Seater ‘ Car ‘ Car SUV H Minivan H SUV ‘ ’ Van ‘ ‘ Pick-up ‘ Brashion
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Vehicle Vehicle Vehicle
Configuration Configuration Configuration

Figure 1 Nested Multinomial Logit Structure of Consumer Choice Model

Note: “Standard” is synonymous with “Non-Prestige”

The nesting structure in Figure 1 is defined according to general principles that group closer
substitutes in a nest and ensure price sensitivity (price coefficient) and substitutability increase as
one goes down to the bottom of the nesting structure’. The inclusion of the buy/no-buy option is
necessary to predict impacts on total sales, not just the distribution of sales among makes,

® The requirement that price sensitivity increases as one goes down to the bottom is explained in Appendix A.
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models and vehicle classes. Conditioning on buying a new vehicle, vehicle configurations are
grouped according to functionality and size of vehicles and prestige/non-prestige. Thus levl
distinguishes between passenger vehicles, cargo vehicles, and ultra-prestige vehicles (see its
definition in Table 3), which are least substitutable. Lev2 further divides passenger vehicles into
Two Seaters, Prestige Cars, Standard Cars, Prestige SUVs, Standard SUVs, and MiniVans,
acknowledging increasing substitutability among these alternatives (e.g. Standard SUVs and
MiniVans, which are both passenger vehicles, are closer substitutes than Standard SUVs and
Small Pickup Trucks, because Small Pickup Trucks are cargo vehicles). Cargo vehicles are
divided into Pickup Trucks and Vans. Lev3 continue dividing some nodes in lev2 by vehicle size
or prestige/non-prestige.

The literature provides evidence that support our definition of nesting structure. A no-buy
alternative is often included in previous studies (e.g., Berkovec, 1985; Berry, 1994; Berry et al.,
1995; Goldberg, 1995; NERA, 2009). It is very common to segment vehicle market by vehicle
size, functionality, and prestige/non-prestige (e.g. Lave and Train, 1979; Berkovec and Rust,
1985; Berkovec, 1985; Goldberg, 1995; Kleit, 2004; NERA, 2009). For example, Kleit (2004)
classifies vehicles into small car, midsize car, large car, sports car, luxury car, small truck, large
truck, small SUV, large SUV, minivan, and van, which is consistent with our class definition
(Table 3). Moreover, our structure has advantages over other structures in the literature:

(1) It models vehicle market at a high level of detail, which enables the CVCM to potentially
simulate the full range of sales mix shifts. The structure includes 5 levels, and choice
alternatives are vehicle configurations (on the order of 1000), while the literature studies
typically include two or three levels, and choice alternatives are vehicle size classes or
makes/models (on the order of 200);

(2) The passenger and cargo vehicle distinction in Lev1 is fully compatible with EPA emissions
standards’ compliance categories for cars and trucks;

(3) Our structure has a more thorough treatment of prestige vehicles in consideration that they
have different price sensitivities from non-prestige vehicles. In addition to grouping prestige
two seaters, cars and SUVs into their own nests in Lev2 and Lev3, the structure also groups
ultra-prestige vehicles into a nest in Lev1. The special treatment of ultra-prestige vehicles is
to recognize that these vehicles have very distinct consumer demand and thus are hardly
ever substitutes for other inexpensive vehicles. Technically speaking, positioning ultra-
prestige vehicle nest in Lev1 allows us to assign a small price coefficient to these vehicles.

The structure in Figure 1 is implemented in the CVCM by default. Future versions of the CVCM
could support user-defined structure. Alternative structures may have impacts on sales
predictions. Sales in the level of vehicle configurations will be most sensitive to the structure
change. The degree of sensitivity diminishes as the prediction is targeted at more aggregate
levels.
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Table 3 Vehicle Class Definition in the CVCM

No. of
CVCM Class Configurations' Corresponding EPA Class
1. Prestige” Two-Seaters 27 Two Seaters
2. Prestige Subcompact Cars 49 Subcompact Cars, Minicompact Cars
3. Prestige Compact Cars and Small Station
Wagons 71 Compact cars, Small Station Wagons
4. Prestige Midsize Cars and Station Wagons 66 Midsize Cars, Midsize Station Wagons
5. Prestige Large Cars 17 Large Cars
6. Two-Seater 26 Two Seaters
7. Subcompact Cars 58 Subcompact Cars, Minicompact Cars
8. Compact Cars and Small Station Wagons 82 Compact Cars, Small Station Wagons
9. Midsize Cars and Station Wagons 100 Midsize Cars, Midsize Station Wagons
10. Large Cars 29 Large Cars
11. Prestige SUVs 109 SUVs
12. Small’ SUVs 17 SUVs
13. Midsize SUVs 72 SUVs
14. large SUVs 137 SUVs
15. MiniVans 19 MiniVans
16. Cargo/Large Passenger Vans 42 Cargo Vans, Passenger Vans
17. Small Pickup Trucks 49 Small Pickup Trucks
18. Standard Pickup Trucks 67 Standard Pickup Trucks
19. Ultra Prestige Vehicles® 93 See the definition (note 4) below
Notes:

(1) Number of configurations is the number of configurations which a CVCM class contains. It is not
an attribute of the model itself, but specific to the vehicle data base to which the model is
calibrated: a configuration is a record in the data base and a CVCM class consists of multiple

records.

(2) Prestige and non-prestige classes are defined by vehicle price: the prestige are vehicles whose
prices are higher than or equal to unweighted average price in the corresponding EPA class, and
vice versa for non-prestige vehicles; these calculations are done after ultra-prestige vehicles (see
below) are put in a separate nest. E.g., Prestige Two-Seater class is the set of relatively expensive
vehicle configurations in EPA class of two seaters with prices higher than or equal to the

unweighted average price of EPA two seaters.

(3) Non-prestige SUVs are divided into small, midsize and large SUVs by vehicle’s footprint (small:
footprint <43; midsize: 43<=footprint<46; large: footprint>=46)
(4) Ultra Prestige class is defined as the set of vehicles whose prices are higher than or equal to

$75,000.
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3.2 EQUATIONS

The CVCM includes a series of equations to define or calculate vehicle utilities, to calculate
market share and sales of each vehicle configuration, and to estimate consumer surplus change
brought by the installation of fuel economy technologies.

3.2.1 Prelude

We start from a review of Multinomial Logit (MNL) equations. The representative component of
the utility expression for an alternative is defined in terms of four parts — the attributes x,,
attribute coefficients £, , alternative specific constant @, , and scale parameter 4 . With the

assumption that the variance of unobserved factors is distributed extreme value with variance
2

- (Train, 2009), the utility of alternative j for individual n is
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where the sum G ; represents a “generalized cost” (Greene, 2001) for alternative j, 8, is the

coefficient of vehicle price attribute and the scale parameter 4 is proportional to the inverse of
the standard deviati