

LA-UR-14-24695

Approved for public release; distribution is unlimited.

Title: Safeguards at Gas Centrifuge Enrichment Plants: Why is Iran a Threat?

Author(s): Boyer, Brian D.

Intended for: Class at Brookhaven National Laboratory on June 18, 2014 in "Nuclear Non-proliferation, Safeguards, and Security in the 21st Century"

Issued: 2014-06-25

Disclaimer:

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Safeguards at Gas Centrifuge Enrichment Plants: Why is Iran a Threat?

Brian D. Boyer

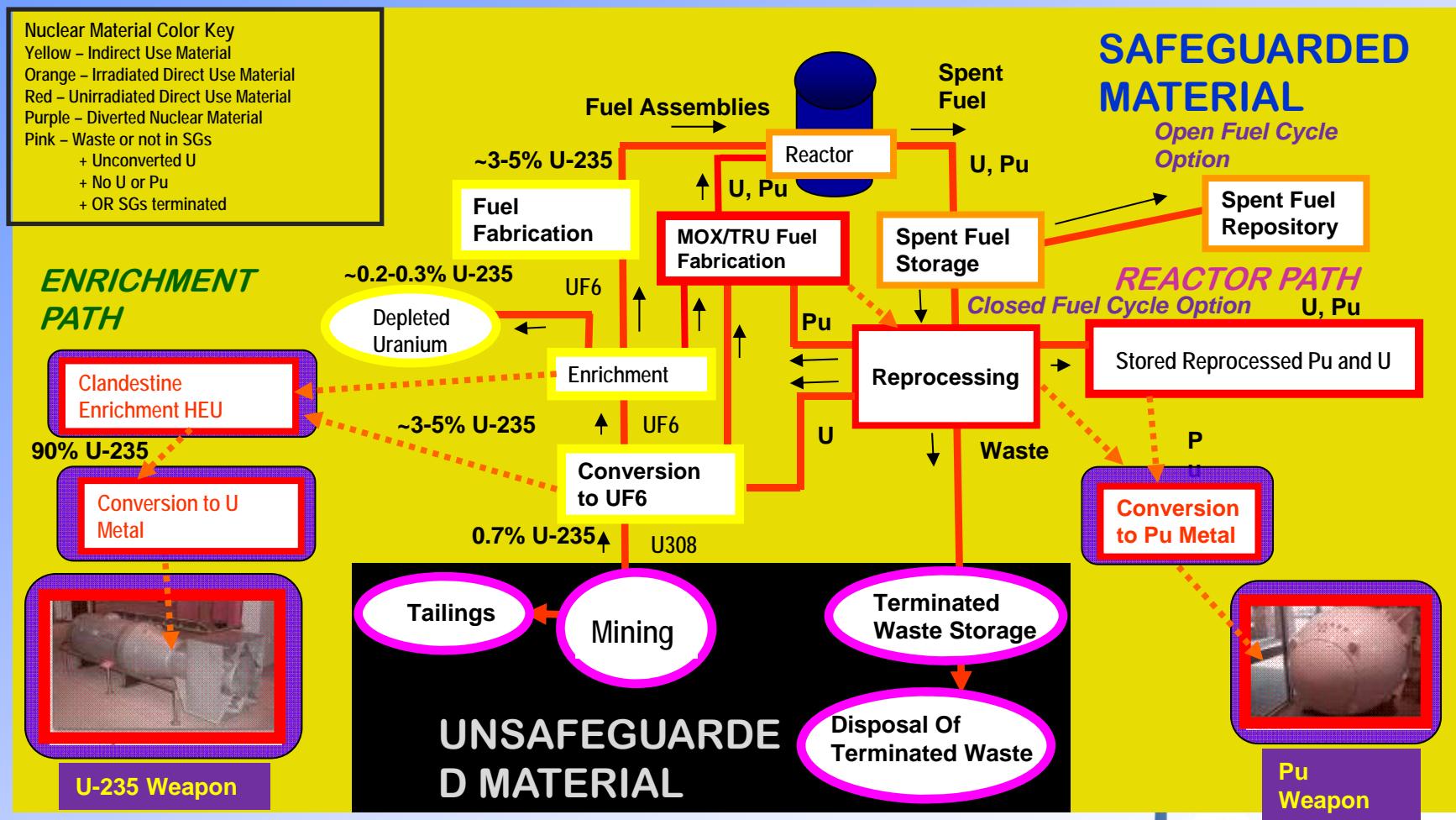
R&D Engineer 5/

*Project Leader International Safeguards
NEN-5*

June 18, 2014

With thanks to ISPO and ORNL IAEA Enrichment Course for training and ideas on enrichment tech and safeguards

Special thanks to S. Pepper (ISPO - BNL) and J. M. Whitaker (ORNL)



U.S. DEPARTMENT OF
ENERGY

Nuclear Nonproliferation,
Safeguards, and Security
in the 21st Century

Nuclear Fuel Cycle – Proliferation Aspects

Centrifuges – 21st Century Technology for Enrichment

Why Such Proliferation Concerns/ Int'l Headlines?

- Small footprint compared to Gaseous Diffusion Plant (GDP) – energy use and size
 - Clandestine plants – possible and likely! Iran facilities – did IAEA find them all? (Shell game)
 - Harder to detect than GDP! 1/50th the electrical consumption – less waste heat
- Compact size of centrifuges – 1-3m tall / 0.5m dia
- Small specific inventory / Short equilibrium time
 - Can change from LEU to HEU production far quicker than GDP
 - Timeliness a concern
- Technology was limited to certain NWS and stable NNWS
 - Khan network starting in Pakistan changed this status quo
 - Iran moved to acquire technology and build own industry
 - Libya, DPRK,...?
- NSG – Trigger List Items – Dual Use
- Iran operates declared plants – ability to reach 3-5%, ~20% enrichment capacity
- Naval reactors – loophole in NPT/INFCIRC 153

U.S. DEPARTMENT OF
ENERGY

Nuclear Nonproliferation,
Safeguards, and Security
in the 21st Century

Safeguards Concerns at LEU GCEPs

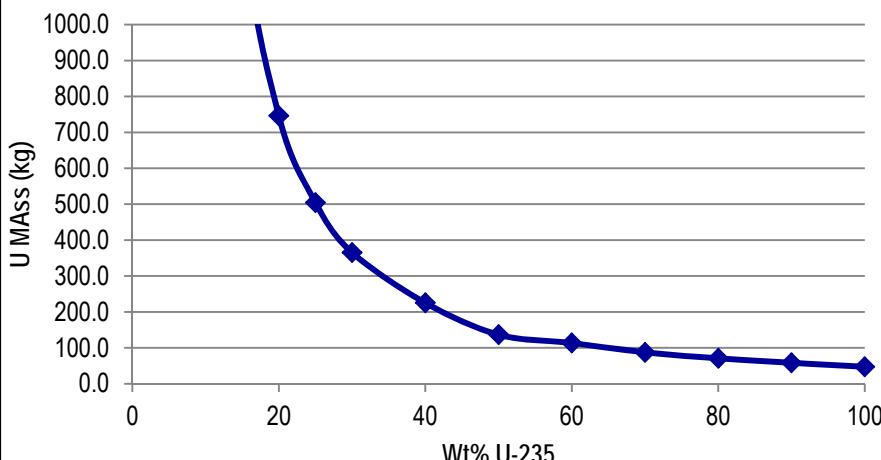
Basic Diversion Scenarios

1. *Timely detection of the misuse of the facility to produce HEU (or any UF₆ at higher-than-declared enrichment levels)*
2. *Timely detection of the diversion of declared UF₆*
3. *Timely detection of the misuse of the facility to produce undeclared LEU (at declared enrichment levels) from undeclared feed*
 - Take undeclared material / enrich as feed for clandestine HEU plant (DU, LEU, lower levels of HEU)

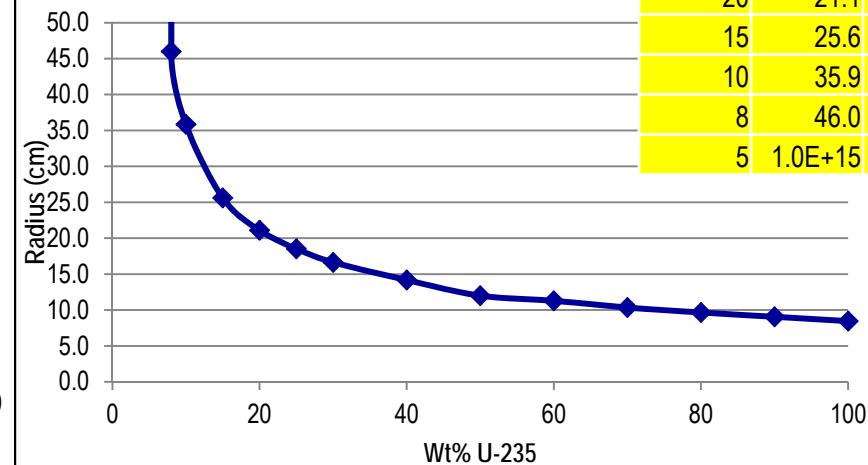
Safeguards Concerns of U-235

IAEA Significant Quantities/Timeliness

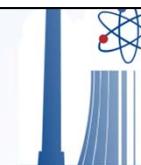
U-235 --- 75 kg U-235 in U (Wt% of U-235 <20%)


(timeliness = 1 year)

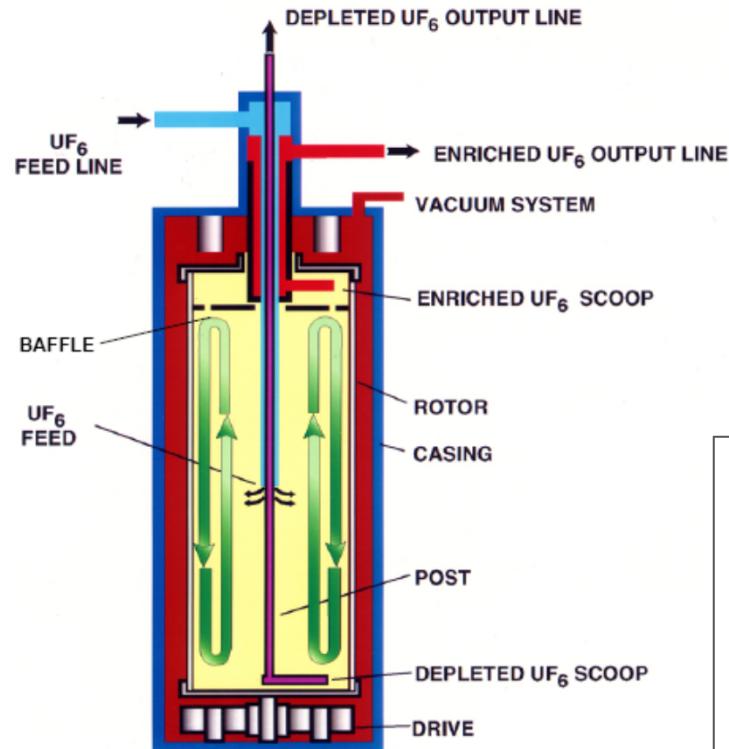
U-235 --- 25 kg U-235 in U (Wt% of U-235 =>20%)


(timeliness = 1 month (unirradiated) / 3 months (irradiated))

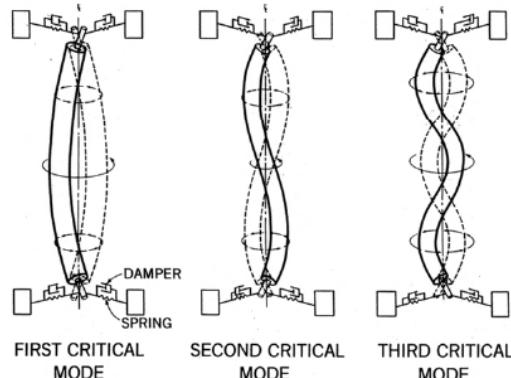
Weight% U235	R (cm)	Mass (kg)
100	8.5	47.5
90	9.1	58.4
80	9.7	70.9
70	10.4	87.5
60	11.3	113.5
50	12.0	136.7
40	14.2	225.5
30	16.6	365.6
25	18.5	504.7
20	21.1	746.3
15	25.6	1334.8
10	35.9	3663.2
8	46.0	7739.5
5	1.0E+15	1.0E+15


Bare Critical Mass (U-235)

Bare Critical Radius (U-235)



U.S. DEPARTMENT OF
ENERGY


Nuclear Nonproliferation,
Safeguards, and Security
in the 21st Century

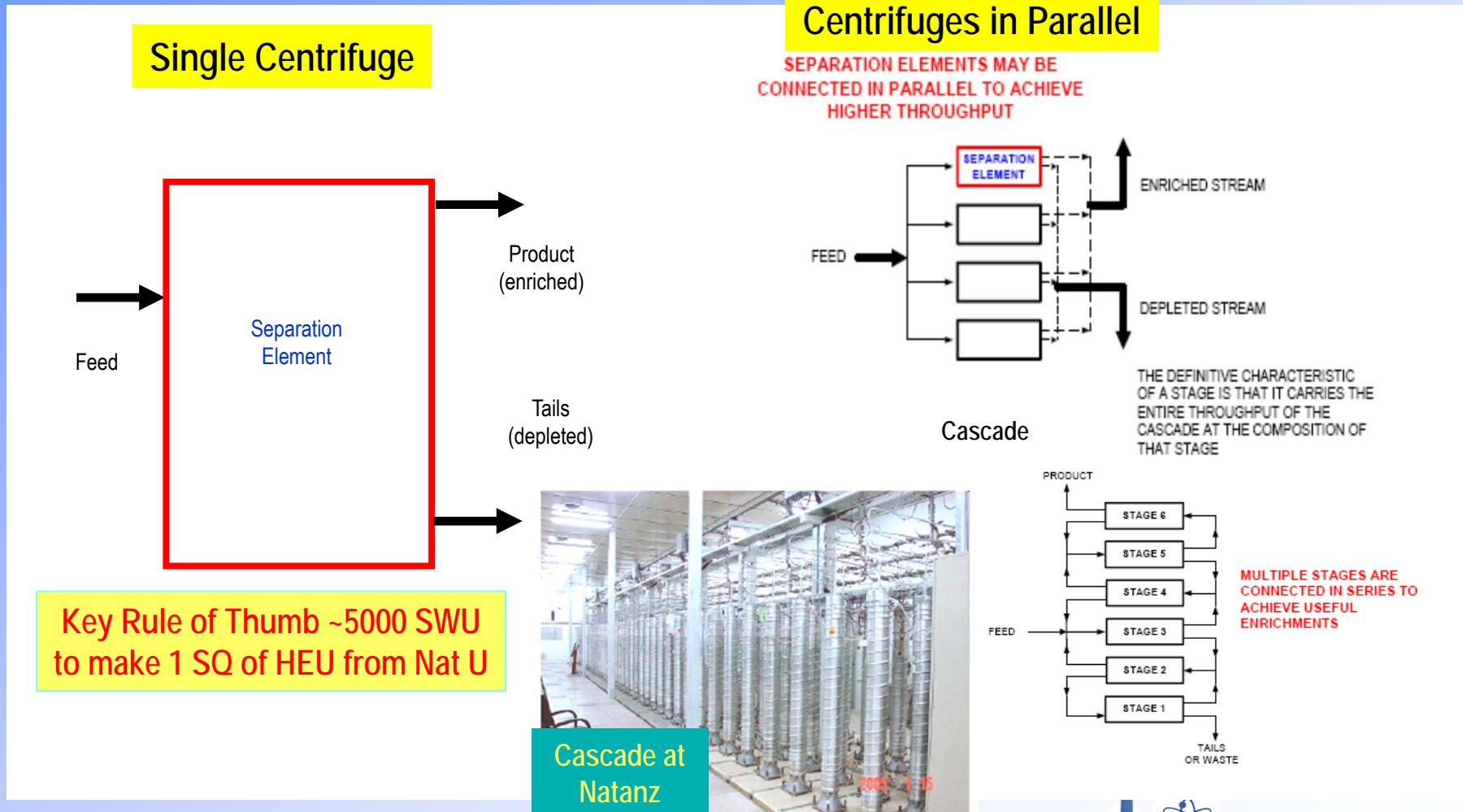
What Is a Centrifuge?

Schematic of Gas Centrifuge

MODE SHAPES OF FIRST THREE FLEXURAL CRITICALS OF A CENTRIFUGE ROTOR

Separative work unit (SWU) = function of the amount of uranium processed, the composition of the starting material, and the degree to which it is enriched; it is proportional to the total machine operation time required to achieve this, but is defined independent of the enrichment technology.

Separative work = SWUs, kg SW, or kg UTA (from the German *Urantrennarbeit*)


1 SWU = 1 kg SW = 1 kg UTA

1 kSWU = 1 tSW = 1 t UTA

1 MSWU = 1 ktSW = 1 kt UTA

Alpha = separation factor ..>1.3 for GCEPs

Centrifuges and Cascades – Theory (Plus Example)

BROOKHAVEN
NATIONAL LABORATORY

U.S. DEPARTMENT OF
ENERGY

NNSA
National Nuclear Security Administration

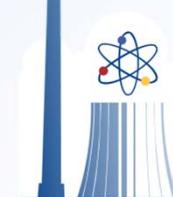
Nuclear Nonproliferation,
Safeguards, and Security
in the 21st Century

What is a UF₆ Cylinder

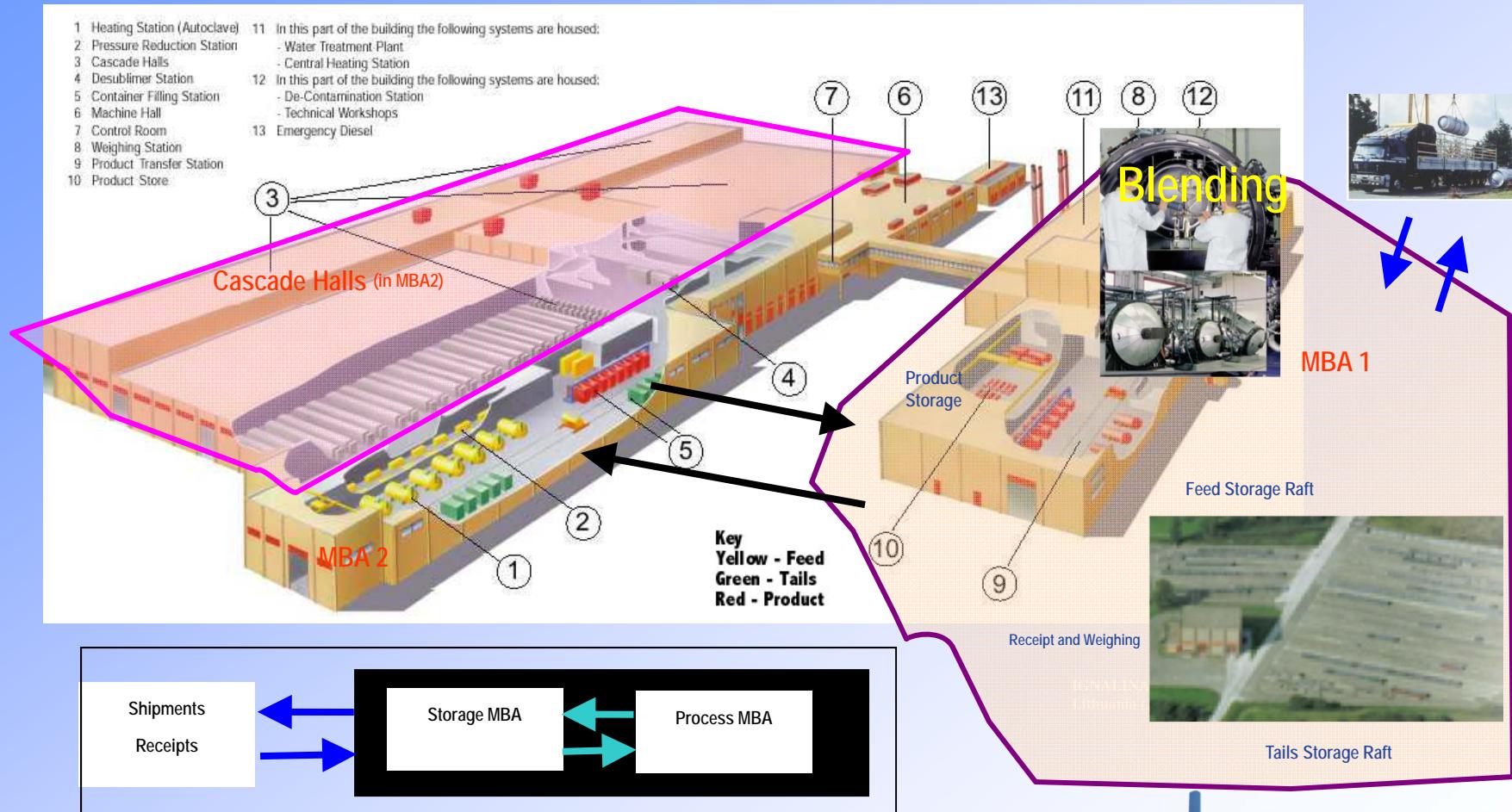
Where Inspectors Find/Verify U and U-235 Material

30B Product (2.5 ton)- Product

48G (14 ton) - Tails


48Y (14 ton) - Feed

5a (25 kg) – HEU – Criticality Safe



U.S. DEPARTMENT OF
ENERGY

Nuclear Nonproliferation,
Safeguards, and Security
in the 21st Century

Gas Centrifuge Enrichment Plant (GCEP) Process Areas

IAEA Detection Goals - Perspective

What Shall We Focus on Iran's Paths?

1. *Timely detection* of the misuse of the facility to produce HEU (or any UF_6 at higher-than-declared enrichment levels)
2. *Timely detection* of the diversion of declared UF_6
3. *Timely detection* of the misuse of the facility to produce undeclared LEU (at declared enrichment levels) from undeclared feed
 - Take undeclared material / enrich as feed for clandestine HEU plant

Bushehr (PWR/VVER-1000 Hybrid)

Fuel = 3.5% U-235 Enriched

- Iran's Bushehr 1 VVER-1000 Reactor
 - Maximum 3.62% enriched Fuel from Russia
- Sets up declared GCEPs capacity for
 - 3-5% enriched Fuel
- SWUs for production of HEU ~(90%) from LEU?

XF	0.00711	XF	0.00711	XF	0.035
XP	0.9	XP	0.035	XP	0.9
XW	0.003	XW	0.003	XW	0.003
ΔU	5.36 MTSWU	ΔU	3.42 MTSWU	ΔU	1.981 MTSWU
F=	43.10902 kgU235	F=	43.62858 kgU235	F=	27.25951 kgU235
P=	25.0029 kgU235	P=	27.58426 kgU235	P=	25.00634 kgU235
W=	18.10611 kgU235	W=	16.04432 kgU235	W=	2.253175 kgU235

63% of SWUs
Done in LEU
Stage

U.S. DEPARTMENT OF
ENERGY

Nuclear Nonproliferation,
Safeguards, and Security
in the 21st Century

Teheran Research Reactor (TRR)

Fuel = 19.75% U-235 Enriched

- Iran declares need for fuel for TRR
 - 19.75% enriched Fuel
- Sets up declared GCEPs capacity for
 - 19.75% enriched Fuel
- SWUs for production of HEU ~(90%)

XF	0.00711	XF	0.00711	XF	0.1975
XP	0.9	XP	0.1975	XP	0.9
XW	0.003	XW	0.003	XW	0.003
ΔU	5.36	MTSWU	ΔU	5.32	MTSWU
F=	43.10902	kgU235	F=	47.37698	kgU235
P=	25.0029	kgU235	P=	27.80911	kgU235
W=	18.10611	kgU235	W=	19.56787	kgU235
				W=	0.301453 kgU235

91% of SWUs
Done in TRR
Stages (2-Steps)

U.S. DEPARTMENT OF
ENERGY

Nuclear Nonproliferation,
Safeguards, and Security
in the 21st Century

Non-application of Safeguards ... In Non-Peaceful Activities

The State shall inform the Agency of the activity, making it clear:

- i. That the use of the *nuclear material* in a **non-proscribed military activity** will not be in conflict with an undertaking the State may have given and in respect of which Agency safeguards apply, that the *nuclear material* will be used only in a peaceful nuclear activity; and
- ii. That during the period of non-application of safeguards the *nuclear material* will not be used for the production of nuclear weapons or other nuclear explosive devices;

Iran's Navy Fuel = 5-90%? U-235 Enriched

- Iran declares need for fuel for naval reactors
 - Can set up need for 50-60% enriched Fuel
- Navy enrichment/fuels program
 - Non-application of safeguards – NPT
 - Plant unsafeguarded by IAEA
 - Need about 5-6 SQs of material (50%-90% perhaps?)
- SWUs to get HEU ~(90%) -100% at (90%) or...

XF	0.00711	XF	0.00711	XF	0.54
XP	0.9	XP	0.54	XP	0.9
XW	0.003	XW	0.003	XW	0.003
ΔU	5.36 MTSWU	ΔU	5.22 MTSWU	ΔU	0.156 MTSWU
F=	43.10902 kgU235	F=	43.23926 kgU235	F=	25.10333 kgU235
P=	25.0029 kgU235	P=	25.13448 kgU235	P=	25.04736 kgU235
W=	18.10611 kgU235	W=	18.10478 kgU235	W=	0.055972 kgU235

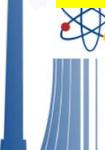
97% of SWUs
Done for 54%
enriched reactor
3 Enrichment Stages

U.S. DEPARTMENT OF
ENERGY

Nuclear Nonproliferation,
Safeguards, and Security
in the 21st Century

The Iran Snapshot – Latest Status of UF6

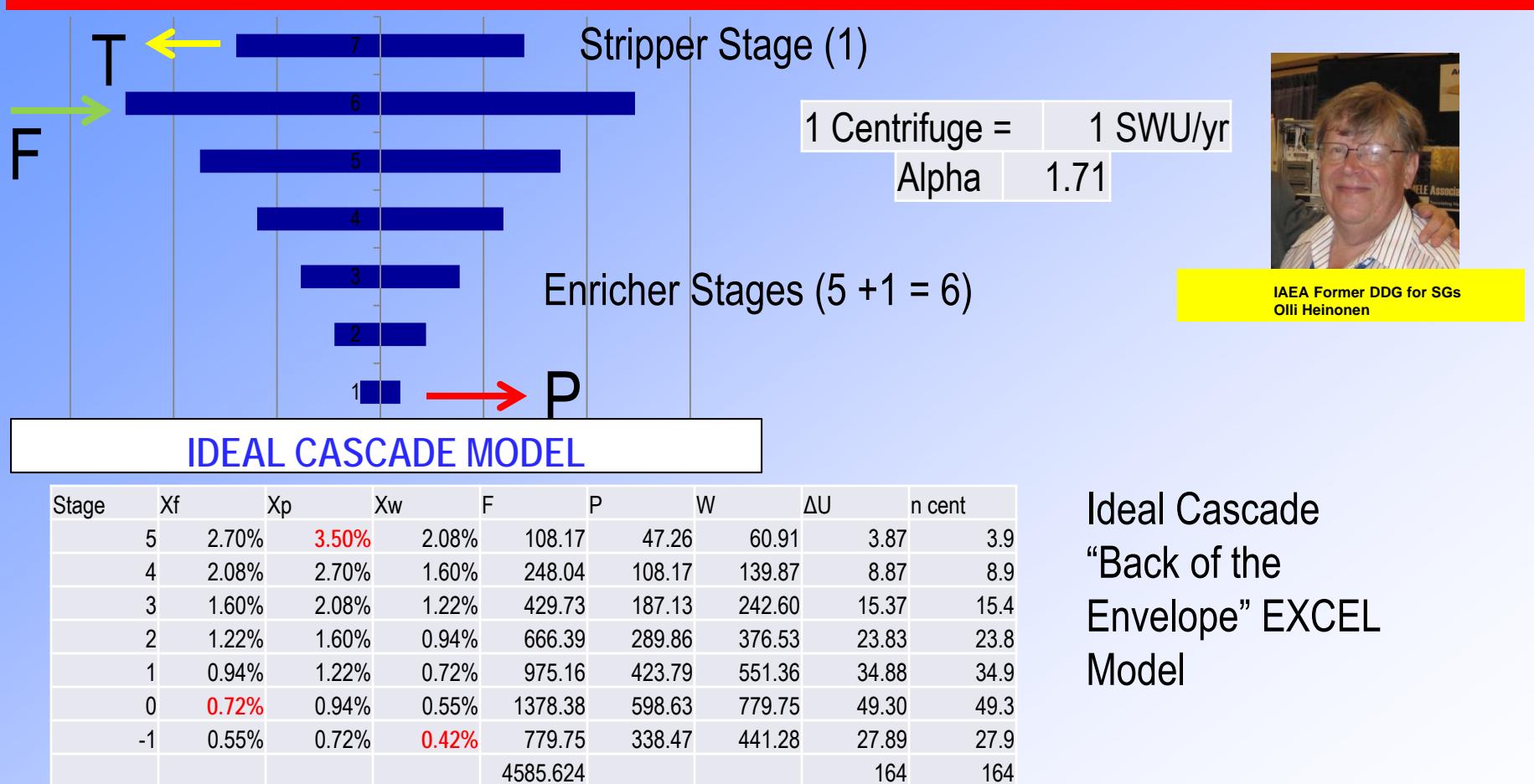
	Conversion NU UF6	UF6 Feed to GCEPs	UF6 GCEPs Product	UF6 GCEPs Tails
kg UF6	550000	134843	11870	122973
Purity	0.6761	0.6761	0.6761	0.6761
kg U	371855	91167	8025	83142
Enrichment	0.711%	0.711%	3.49%	0.49%
kg U-235	2643.9	648.2	280.1	404.1
SQ DNLEU U-235	35.3	8.6	3.7	5.4
SQ U-235 (25kg)	105.8	25.9	11.2	16.2
Cylinders 48 in	44.0	10.8		9.8
Cylinders 30 in			5.3	



FARS NEWS AGENCY Photo : Majid Saeedi

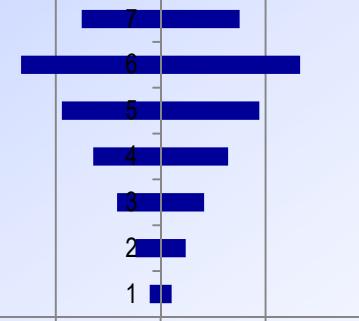
Isfahan UCF

Natanz GCEP


Nuclear Nonproliferation,
Safeguards, and Security
in the 21st Century

U.S. DEPARTMENT OF
ENERGY

Ideal Cascade – Use of IAEA Board Reports



Ideal Cascade – Open Source Data

- Natanz Model estimated from BOG Reports
- Assume – 54 cascades of 164 centrifuges – 9 MtSWU/yr

Stage	Xf	Xp	Xw	F	P	W	ΔU	n cent
5	2.70%	3.50%	2.08%	5841.257	2552.25	3289.007	208.9064	208.906394
4	2.08%	2.70%	1.60%	13394.12	5841.257	7552.859	479.0264	479.026443
3	1.60%	2.08%	1.22%	23205.32	10105.11	13100.21	829.9138	829.913811
2	1.22%	1.60%	0.94%	35985.09	15652.46	20332.63	1286.969	1286.96881
1	0.94%	1.22%	0.72%	52658.54	22884.88	29773.66	1883.277	1883.27711
0	0.72%	0.94%	0.55%	74432.64	32325.91	42106.73	2662.005	2662.00474
-1	0.55%	0.72%	0.42%	42106.73	18277.39	23829.34	1505.903	1505.90268
				247623.7			8856	8856

Alpha | 1.71

IDEAL CASCADE MODEL
164 X 54

F=	26382 kgU/yr	188 kgU235/yr	0.711% U235 ENR
P=	2552 kgU/yr	88.2 kgU235/yr	3.5% U235 ENR
W=	23829. kgU/yr	101 kgU235/yr	0.42% U235 ENR

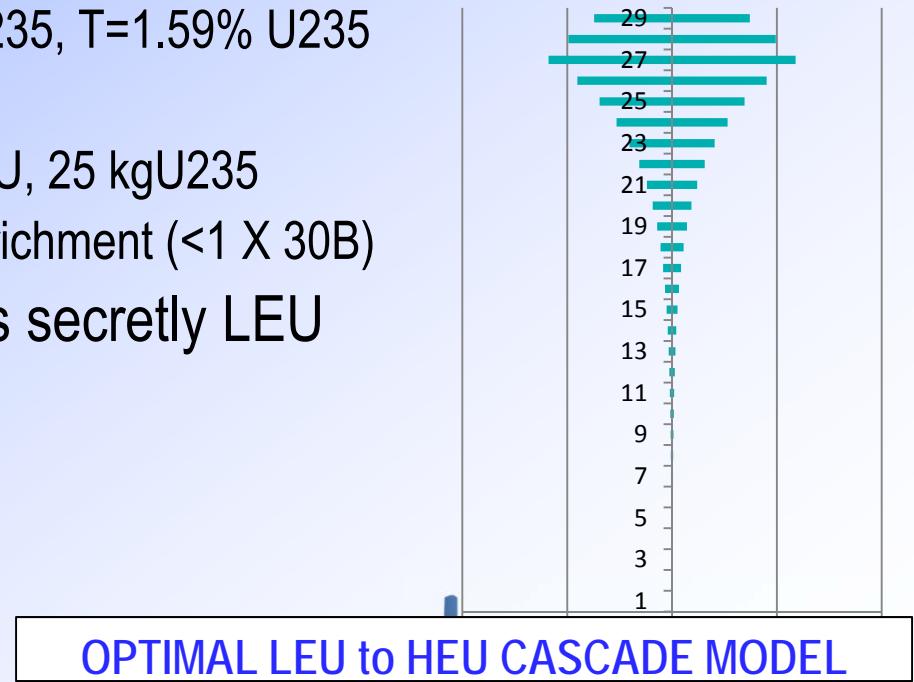
U.S. DEPARTMENT OF
ENERGY

Nuclear Nonproliferation,
Safeguards, and Security
in the 21st Century

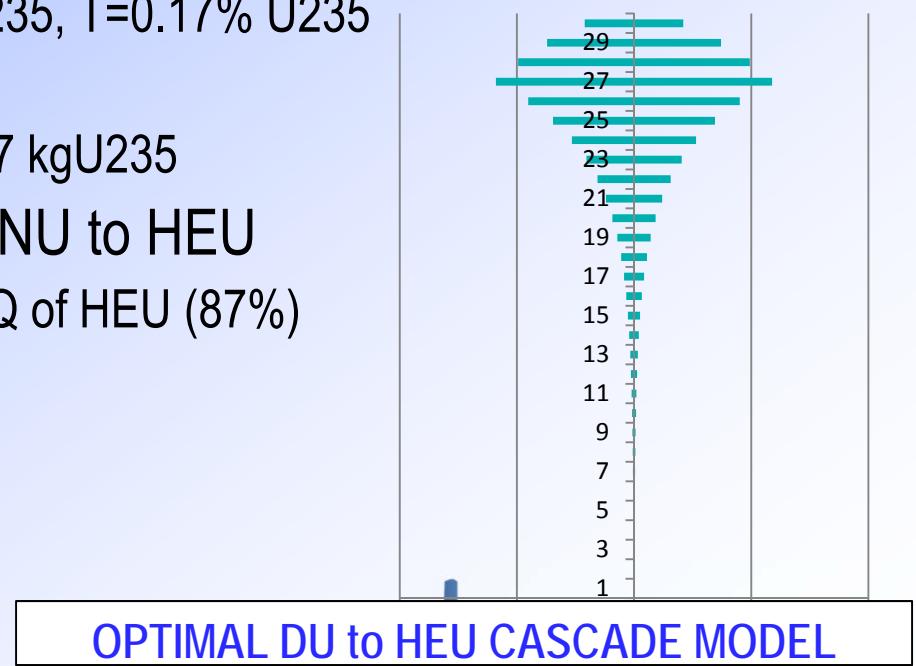
Diversion/Breakout/Clandestine Pathways

Acquisition Pathways

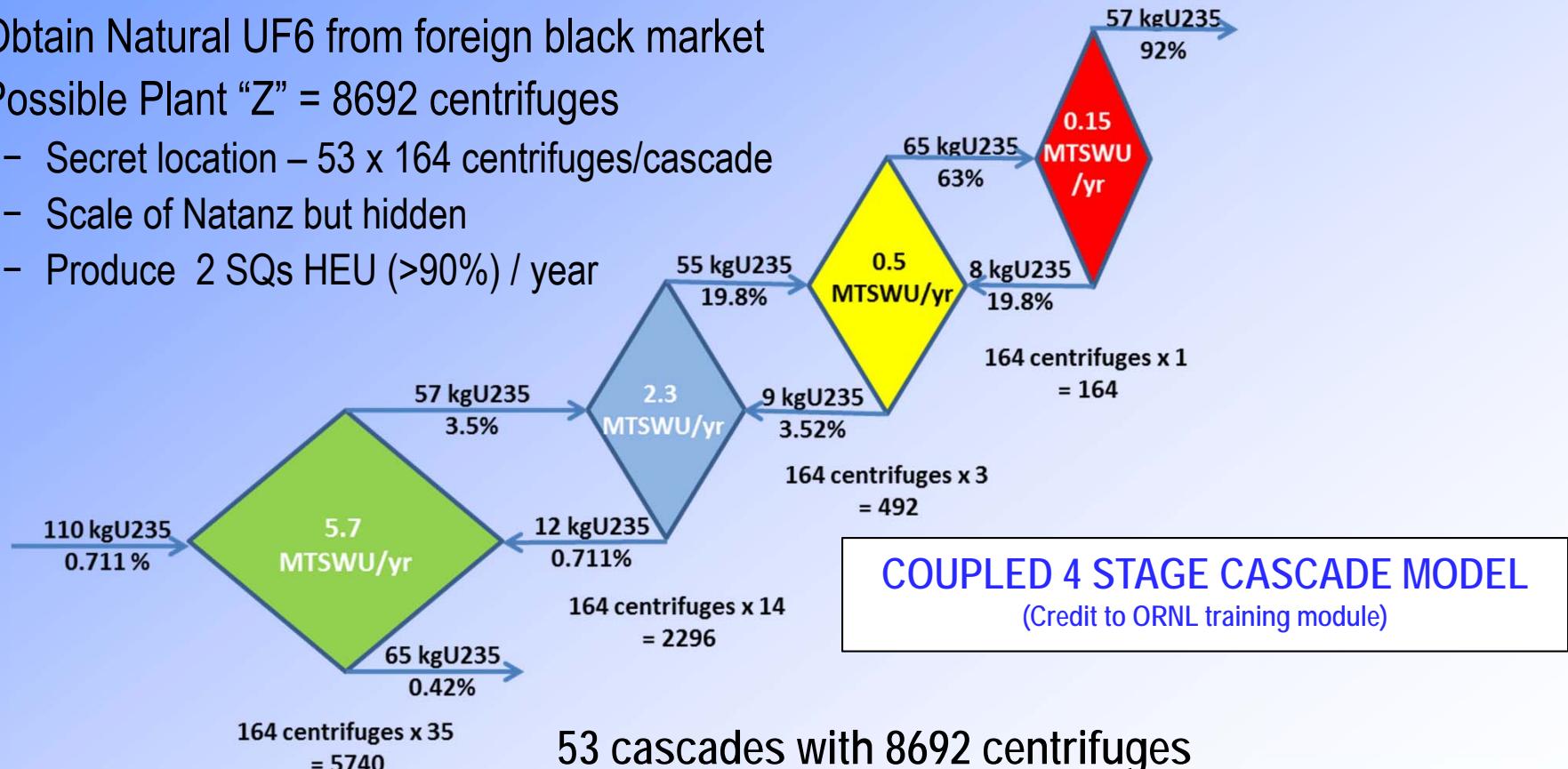
- 1) Breakout or misuse at Natanz declared 54 cascades x 164 machines
 - Take LEU and enrich to HEU - up to 4 stages total
- 2) Diversion of LEU to Possible Plant “X” – clandestine HEU enrichment plant
- 3) Diversion of tails to Possible Plant “Y” – clandestine HEU enrichment plant
- 4) Clandestine NUF6 at Possible Plant “Z”
 - Clandestine conversion or acquisition of NUF6
 - Enrich – NU to HEU at Plant “Z”


Path 1 - Breakout or Misuse at Natanz

- Take LEU at Natanz as feed ~8400 kgUF6 available ~(4x30B)
- Stage 2 – F 3.5%, P 19.2%, T 1.9% (Alpha = 1.88)
 - 104 days – produce 770 kgUF6, 521kgU, 100 kgU235
- Stage 3 – F 19.2%, P 61 %, T 11.2% (Alpha = 1.88)
 - 11 days – produce 124kgUF6, 84kgU, 51kgU235
- Stage 4 – F 61 %, P 91%, T 46% (Alpha = 1.88)
 - 2 days – produce 42kgUF6, 28.6kgU, 26.2kgU235
- 1 SQ of U235 produced – 117 days of production
- ~4 months to breakout or misuse Natanz
 - Can safeguards detect misuse? How to deter breakout?

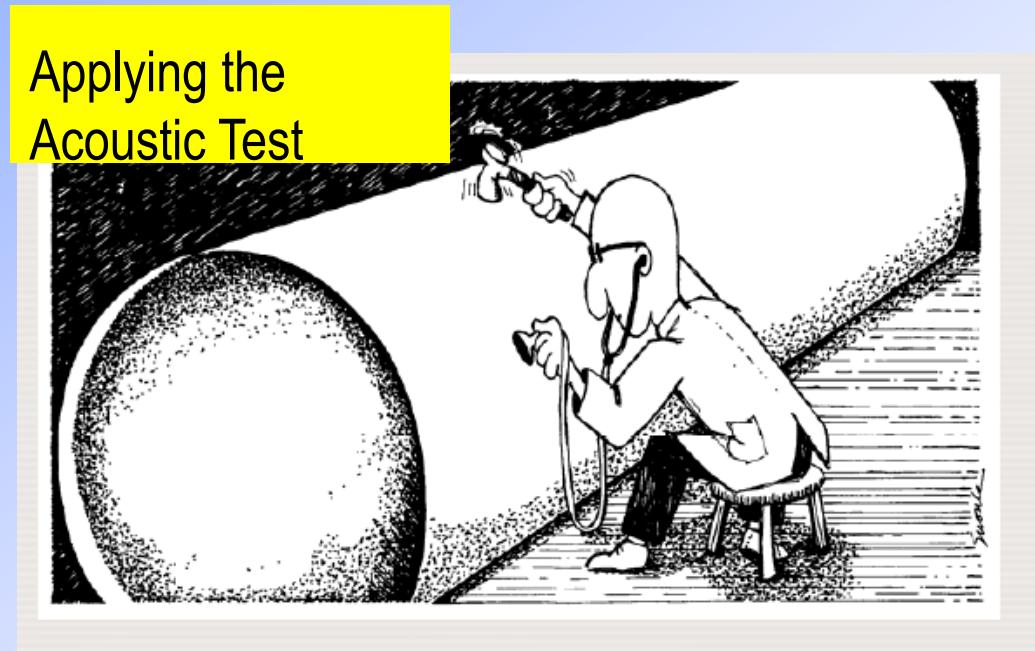

Path 2 - Diversion of LEU to Possible Plant “X”

- Take LEU at Natanz as feed - ~8400 kgUF6 available ~(4x30B)
- Divert ONE 30B to possible Plant “X” – attempt to hide diversion
- Plant “X” = 2900 centrifuges ~ similar to Fordow plant – secret location
- Built as one *optimized cascade* to go from LEU to 91% HEU
 - 20 stages up/2 stages down – P=91% U235, T=1.59% U235
 - 21 enrich / 2 strip
 - 140 days – produce 40.7 kgUF6, 27.5 kgU, 25 kgU235
 - Feed for 1 SQ = 1916 kgUF6 at 3.5% enrichment (<1 X 30B)
- ~5 months to use Plant “X” to process secretly LEU


Path 3 - Diversion of DU tails to Possible Plant "Y"

- Take DU at Natanz as feed - ~123 tonnes UF6 available ~(10x48Y)
- Divert 48Y (10%) to Plant "Y" – attempt to hide diversion – 12,500 kgUF6
- Plant "Y" = 2900 centrifuges ~ similar to Fordow plant – secret location
- Built as one *optimized cascade* to go from DU to 87% HEU
 - 26 stages up/3 stages down – P=87% U235, T=0.17% U235
 - 27 enrich / 3 strip
 - ~3 years – produce 46 kgUF6, 31 kgU, 27 kgU235
- Clandestine plant designed to enrich NU to HEU
 - Can use ONE tails cylinder to produce SQ of HEU (87%)

Path 4 - Clandestine Ops - Possible Plant "Z"


- Mine U ore clandestinely and convert to UF6 in possible clandestine NU conversion plant
- Obtain Natural UF6 from foreign black market
- Possible Plant "Z" = 8692 centrifuges
 - Secret location – 53 x 164 centrifuges/cascade
 - Scale of Natanz but hidden
 - Produce 2 SQs HEU (>90%) / year

IAEA Accountancy Verification Methods

GCEPS Applications to DETECT Diversion

- 3 levels of defects to detect with NDA Instruments – Key concept
 - *Gross defect*
 - *Partial defect*
 - *Bias defect*
- Examples in GCEPS:
 - *Gross defect*
 - No U present
 - *Partial defect*
 - Lower ^{235}U content
 - Part of U missing
 - *Bias defect*
 - Lower ^{235}U content bias

Iran Status and Timescales for Detecting Diversion/Misuse

- Detection of HEU ($\geq 20\%$ ^{235}U) Production
 - Detect 25 kg ^{235}U in U in one month
- Detection of Diversion of DNLEU ($< 20\%$ U-235)
 - Detect 75 kg ^{235}U in U in one year

Verify Design Information via LFUA

- Low Frequency Unannounced Access (LFUA) Inspections

- Access is on a random, unannounced basis
- Access must be provided within 2 hours of request
- Performed 4 -12 times per year (facilities <1000MTSWU/yr)
- Protection of proprietary information by negotiated procedures

U.S. DEPARTMENT OF
ENERGY

Nuclear Nonproliferation,
Safeguards, and Security
in the 21st Century

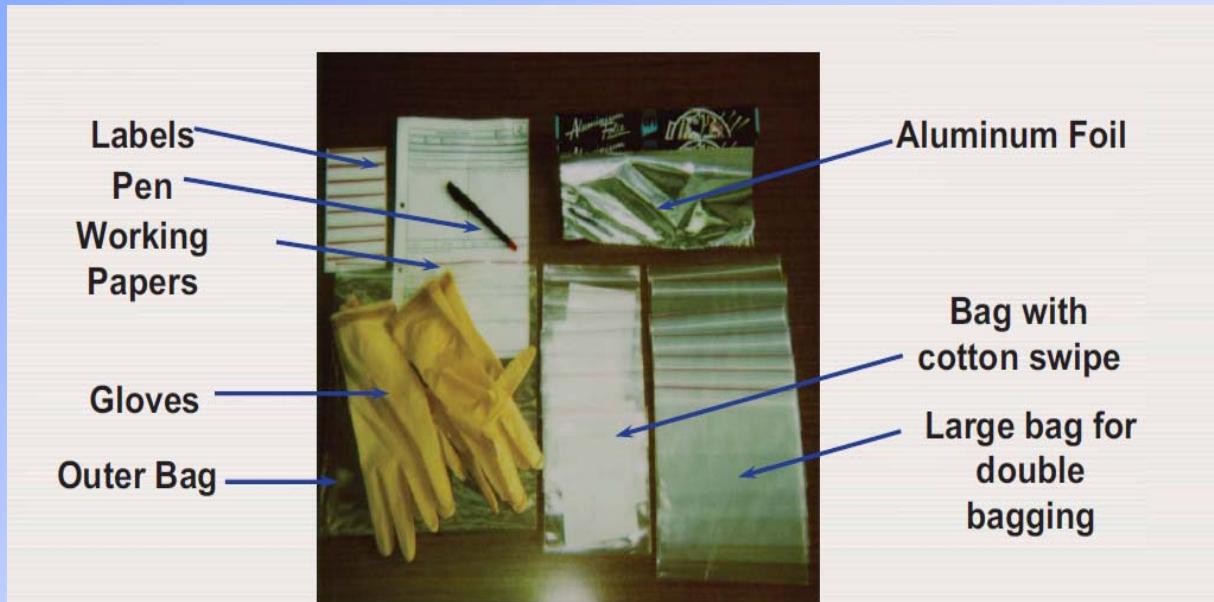
IAEA Measures to Detect Diversion of Uranium

- Inspection regime includes:
 - Annual PIT/PIV
 - 11 monthly interim inspections for flow verification (scale of facility)
 - Iran how many times? Scale of operations? 1x, 4x, 12x???
 - IAEA verifies feed, product, and tails cylinders - receipts and shipments
 - OPERATOR holds feed before feeding to process
 - OPERATOR holds tails and product before shipment off-site
- Auditing of records and reports (ICR, PIL, MBR)
- Verification of nuclear material quantities (flows and inventories)
- Material balance evaluation
- Application of containment/surveillance to facility
- Environmental Swipe Samples – powerful tool to detect HEU
 - For declared facilities and looking for undeclared activities and facilities

Verification of UF₆ Feed – Product - Tails

- Weights of UF₆ Cylinders
 - Verify weight of full cylinder by:
 - IAEA load-cell system (LCBS)
 - Authenticate operator scales
 - ❖ Use IAEA check weight
 - Can weigh cylinders to about 1-5 kg
 - Empty cylinder weights usually not verified

- UF₆ Enrichment Measurements
 - NDA - enrichment at gross- and partial-defects level
 - 5% to 25% uncertainty
 - DA – determine enrichment at bias-defect level
 - >1% uncertainty (0.1% to 0.5% uncertainty range)



U.S. DEPARTMENT OF
ENERGY

Environmental Swipe Samples

- Environmental Sample Swipe Kit
 - Powerful tool for undeclared activities
 - Detect HEU where not declared
 - Where to swipe?
 - Avoid Contamination / Understand site legacy

Summary of Iran GCEPs

- GCEPS safeguards (Desire to close gaps on undeclared feed)
 - Timely detection of the misuse of the facility to produce HEU
 - Timely detection of the diversion of declared UF6
 - Timely detection of the misuse of the facility to produce undeclared LEU
 - Operator “no one would ever divert undeclared LEU product”
 - Breakout vs. Clandestine Ops (CSA and AP safeguards options)
- Tightened coverage of GCEPs – declared operations (SNRI,C/S)
- Unattended monitoring system – in development for GCEPs
 - Load Cells – Monitoring cylinders / weight
 - On-Line Enrichment Monitoring
 - Cylinder Verification Station – NDA, Weight,...
 - UF6 Cylinder Tracking - UID
- Sensitive technology! Khan network and undeclared facilities

Centrifuges
From Libya

U.S. DEPARTMENT OF
ENERGY

Nuclear Nonproliferation,
Safeguards, and Security
in the 21st Century