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Abstract

A common data analysis problem is to find best-fit parameters
through chi-square minimization. Levenberg-Marquardt is an
often used system that depends on gradients and converges
when successive iterations do not change chi-square more than
a specified amount. We point out in cases where the sought-
after parameter weakly affects the fit and cases where the
overall scale factor is a parameter, that a Golden Search
technique can often do better. The Golden Search converges
when the best-fit point is within a specified range and that
range can be made arbitrarily small. It does not depend on the
value of chi-square.
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A typical problem: fit 2 parameters to N data points

observation
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Consider situation where (0(/1, P, f ) is weakly
dependent on p and A is a scale factor. That is

p(A,p, f)=2p (p, ) e

The weak dependency on p means that the 2 might be
a long shallow surface.
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A common method for fitting parameters to data uses

the Levenberg-Marquardt method to find the y?
minimum.

If the L-M method fits to two parameters (i. e., A and
p), it needs the partial derivatives d¢/0A and 0¢p/0p.

The convergence criteria is usually that successive
iterations of ¢ are not changing much and/or that
the reduced y?2 is less than ~ 1.
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Use gradients to find minimum in 2-D
until changes in ¢2 are small
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An alternative method: “Golden search” to
minimize %2 in 1-D by finding the best A
analytically for any value p
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Keep Splitting the 1-D range until the minimum
is bracketed to some accuracy in p (no
dependency on the value of y?2).
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Compare the p found by analysis with the true p
(warning: fake data)
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True parameter vaue

L-M method underestimates p
because converges early near its initial
guess and not at the true minimum
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Because the L-M method determines p poorly, it is
unlikely that A could be found.

Since the Golden Search method can find p well, it is
likely that A can also be found from the data. It is

given by Eq 5.
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