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Goals

e Goal: This project seeks to develop low-cost, high-resolution
gamma scintillators based on new fracture-resistant alloys of
cerium bromide. These alloys will eliminate limitations imposed
by self-activity and fracture of currently available lanthanum-based
scintillators.

 Objectives:
(1) Develop low-cost, high-resolution gamma scintillators based on new
fracture-resistant alloys of CeBrs;.

(2) Further improve crystals by eliminating radioisotope impurities in the
raw materials to enable large, high-sensitivity gamma spectrometers
for radioisotope identification and low count rate assay of SNM.

(3) Demonstrate significant performance advance for applications of
importance to DOE missions.
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 We propose to develop low-cost, high-resolution gamma scintillators based on new fracture-resistant alloys of cerium bromide. These improved alloys will eliminate limitations imposed by self-activity and fracture of currently available lanthanum-based scintillators. The advance is enabled by recent demonstration of substantially increased fracture toughness through addition of parts-per-million levels of ionic dopants with valence different from the host material (aliovalent substitution), and high-resolution spectroscopy has been demonstrated for these strengthened alloys. We propose model-guided optimization of alloy composition, in combination with a program of purification and crystal growth, to produce low-cost scintillators suitable for radioisotope identification and assay of SNM with ultralow gamma activity. This will be accomplished through the collaborative efforts of industry and national laboratories, with materials developed by Sandia National Laboratories (SNL), crystals and detectors produced by Radiation Monitoring Devices (RMD), and sensitivity, energy resolution, and self-activity of prototypes evaluated by the National Nuclear Security Administration’s Remote Sensing Laboratory, Nevada (RSL-N). 
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Overview

e Spectroscopy characterization of the crystal delivered by
Radiation Monitoring Devices (RMD) to the Remote Sensing
Laboratory (RSL).

« Sandia National Laboratories (SNL) mapped out the solid
solubility of Ca(ll) in CeBrs,.

 Pin Yang at SNL determined the material composition by using
mass spectrometry techniques (inductively coupled plasma
mass spectrometry [ICP-MS]). A comparison of SNL'’s
measured compositions of the RMD fragments was made to
assist in characterizing detector performance.

* Pin Yang and Patrick Doty, both of SNL, analyzed the calcium
concentrations.
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We propose a two-year project to address these challenges. Sandia will undertake a two-year program of CeBr3 material science, to address analysis and modeling of material structure and properties, to efficiently optimize composition for mechanical strength through model-guided experiments. Modeling will consist of a systematic density functional theory (DFT) study of point defect complexes introduced through cationic dopants, and will lead to identification of the most effective dopant combinations for crystal stability. To quantify the strengthening effect in these crystals, we will perform relative fracture-toughness studies using microhardness indentation and optical microscopy in our dry room facilities. SNL will also verify fluorescence spectra and lifetimes and scintillation decay characteristics (Bollinger-Thomas) for a large range of compositions.
RMD will take the lead in tasks of raw material purification and crystal growth. The highest-quality crystals grown for these studies will be packaged into prototype spectrometers, and delivered to RSL-N, to benchmark sensitivity, energy resolution, self-activity, and linearity. RSL-N will compare measurements against MCNPX predictions, and will investigate size effect, self-activity, and moving source sensitivity studies for each prototype.
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Background

Based on the recent literature on strengthening mechanisms (M. N. Sinha,

P. S. Nicholson, “Effect of impurities on the strengthening of CaF, single crystals,”

J. Mater. Sci. 12 (1977) 1451-1462), there are compelling requirements to research
and share several ideas, questions, and answers. Sinha and Nicholson’s paper on
aliovalent strengthening of CaF, attempts to determine mechanisms for low and high
temperatures. The authors found that Y(lIl) gave an order of magnitude greater
increase in critical resolve shear stress (CRSS) than Na(l). They conclude the long-
range retarding force on dislocations at high temperature is likely due to the induced
reorientation of Na(l)/F-vacancy or Y(lll)/F-interstitial dipoles in the stress fields of
moving dislocations (Snoek effect). This suggested role of the Snoek effect is in
accord with analysis of the athermal regime in recent papers on Y-stabilized zirconia
and other materials. It then occurs, if the authors are correct, that if anion interstitials
balance the charge for the higher-valence cation, then the difference in strength may
be related to the higher mobility of interstitials. Interstitial fluoride ion in CaF, may be
more plausible than interstitial bromide; however, the CeBr, crystal structure does
have large open channels. The SNL team will examine if the M(IV)/Br-interstitial
seems like a feasible complex in CeBr;. Since the athermal (high-temperature) regime
is probably more important during crystal growth, this work should explore if it makes
sense to emphasize M(IV) cations.
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Based on the recent literature on strengthening mechanisms [M. N. Sinha, P. S. Nicholson, “Effect of impurities on the strengthening of CaF2 single crystals”, J. Mater. Sci. 12 (1977) 1451–1462], there are compelling requirements to research and share several ideas, questions, and answers. This referenced paper on aliovalent strengthening of CaF2 attempts to determine mechanisms for low and high temperatures. The authors found that Y(III) gave an order of magnitude greater increase in critical resolve shear stress (CRSS) than Na(I). They conclude the long-range retarding force on dislocations at high temperature is likely due to the induced reorientation of Na(I)/F-vacancy or Y(III)/F-interstitial dipoles in the stress fields of moving dislocations (Snoek effect). This suggested role of the Snoek effect is in accord with analysis of the athermal regime in recent papers on Y-stabilized zirconia and other materials. It then occurs, if the authors are correct, that anion interstitials balance the charge for the higher valence cation, then the difference in strength may be related to the higher mobility of interstitials. Interstitial fluoride ion in CaF2 may be more plausible than interstitial bromide; however, the CeBr3 crystal structure does have large open channels. The SNL team will examine the crystals if the M(IV)/Br-interstitial seems like a feasible complex in CeBr3. Since the athermal (high-temperature) regime is probably more important during crystal growth, this work should explore if it makes sense to place more emphasis on M(IV) cations. Tetravalent M(IV) cations (M(IV) = Si, Sn, Pb, Ti, Zr, Hf, Re, Mo, Ce, Th, Pa, U, Np, and Pu.
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SNL

« The amount of calcium in these CeBr; samples was determined by
an induction coupled plasma mass spectrometer. These data will be
used to extract the solubility limit.
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SNL subcontract: Solid-state diffusion will be used to determine the solubility limit of calcium bromide in cerium bromide. The experiment will be conducted at 3 to 4 elevated temperatures for various amount of time to allow Ca3+ to diffuse into the cerium bromide lattice. The amount of calcium in these samples will be determined by an induction-coupled plasma mass spectrometer. These data will be used to extract the solubility limit.
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Figure 1. Packaged scintillator of 1.9% Ca?*-doped CeBr,
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Figure 1. Package scintillator of 1.9% Ca2+-doped CeBr3. 
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Figure 2. Emission spectra
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Figure 2. Emission spectrum measured with 6 × 2 mm 0.2 atomic% Ca2+-doped CeBr3 crystal in the permanent canister compared to a similar measurement for a 500 ppm Ca2+-doped CeBr3 crystal.
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Figure 3. Relative light yield proportionality of Ca?*-doped CeBr,
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Figure 3. Relative light yield proportionality of 0.2 atomic % Ca2+-doped CeBr3.

137Cs spectra collected with NaI:Tl and with 1.9% Ca2+-doped CeBr3 crystals coupled to PMT.  The energy resolution of the 662 keV peak for NaI:Tl (at channel 351) is ~6.7% (FWHM) and for CeBr3:Ca (at channel 591) is ~3.2% (FWHM).  The green curves represent Gaussian fits to the CeBr3:Ca2+ photopeak at 662 keV and to the low energy tail for this same peak.  The reported peak resolution of 3.2% (FWHM) was derived from this parametric fit to the data.

CeBr3:Ca pulse heights are lot bigger than those from NaI:Tl (significant accomplishment).
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Figure 4. Relative light yield proportionality of Ca?*-doped CeBr,
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Figure 4. Relative light yield proportionality of 0.2 atomic % nominally Ca2+-doped CeBr3.

Scintillation Light Proportionality: Proportionality of light yield is one area of performance in which Ce-doped and Ce-based lanthanide halides excel. Maintaining proportionality is key to producing a strengthened, high-performance scintillator. Relative light yield proportionality was measured for both doped and undoped samples of CeBr3 to ensure no loss in performance was incurred in aliovalently doping the crystal. The light output and proportionality, however, appear to be similar to CeBr3. There was a reduced yield at low energy. Relative light yield proportionality measurements suggest that dopants do not significantly affect proportionality at higher energies. A plot of light yield proportionality for doped sample is shown.
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Figure 5. Energy resolution of Ca?*-doped CeBr,
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Figure 5. Energy Resolution of 0.2 atomic % Ca2+-doped CeBr3.
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Figure 6. (a) 662 keV spectrum with standard CeBr; with ~4% FWHM,

(b) 662 keV spectrum with CeBr;:Ca?* with ~3.2% FWHM,

(c) improved proportionality for CeBr;:Ca over standard CeBr,
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Figure 6. Left, 662 keV spectrum with standard CeBr3 with ~4% FWHM; middle, 662 keV spectrum with CeBr3:Ca2+ with ~3.2% FWHM; right, plots showing improved proportionality for CeBr3:Ca over standard CeBr3.



ORMA XV; Ann Arbor, MI; June 9-13, 2014

Figure 7. Pulse Shape
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Figure 7. Pulse shape recorded for 0.2 atomic % Ca2+-doped CeBr3. Red lines depict best fits to the data with a decay time of t1 ~ 21 ns for the fast component. 
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Figure 8. Comparison of measurements with the Ca?*-doped CeBr;, crystal in
temporary test can (3.7%) versus the permanent can (4.0%)
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Figure 8. Comparison of measurements with the 0.2 atomic % Ca2+-doped CeBr3 crystal in temporary test can (3.7%) versus the permanent can (4.0%).
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Figure 9. B¥’Cs Spectrum with the Ca?*-doped CeBr, crystal in the
permanent can (4.5%)

104

103

10
. “Hw w i I
A UAHANLA [
0 500 1000 1500 2000 2500 3000 3500 4000
Energy (keV)
Nevada National Security Site 14 Vision — Service — Partnership

evada National
—E- Managed and Operated by National Security Technologies, LLC


Presenter
Presentation Notes
Figure 9. 137Cs Spectrum with the 0.2 atomic % Ca2+-doped CeBr3 crystal in the permanent can (4.5%).
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Figure 10. *1Am, 9°Co, 228Th, and background spectra with the Ca?*-doped
CeBr4 crystal in the permanent can
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Figure 10. 241Am, 60Co, 228Th, and Background Spectra with the 0.2 atomic % Ca2+-doped CeBr3 crystal in the permanent can.
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Table 1. Inductively coupled plasma mass spectrometry
(ICP-MS) chemical analysis. ICP-MS assays for Ca?*-doped
CeBr3; nominal composition 2 wt% CaBr, in CeBr,

Sample | Calcium Concentration | 95% Confidence Limit
#1 0.0238 wt% 0.0014 wt%
#2 0.0212 wt% 0.0015 wt%
#3 0.0192 wt% 0.0015 wt%

Average = 0.0214 +£0.0102 wt.%
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Table 1. ICP-MS assays for Ca2+-doped CeBr3; although nominal composition was 2 wt% CaBr2 in CeBr3.  Actual measurement average = 0.0214 ±0.0102 wt.%.
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Evaluation of Atomic Percentage of Calcium

Atomic % = 40.078x/[(140.116 (1 - x) + 40.078x + 79.904 (3 — x)]
= 0.00228
= 0.228%

Average calcium weight % concentration,
x =0.000214, in our complex of Ce;_,\Ca,Br_,),

Atomic % = 0.228 atomic%
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ICP-MS assays for Ca(II)-doped CeBr3; nominal composition 2 wt% CaBr2 in CeBr3. Average = 0.0214 ±0.0102 wt.%.

This calculates to Atomic % = 0.228% at.%.
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Table 2. Differential scanning calorimetric (DCS) results
for CeBr;—CaBr, mixtures in the range 0-10 mole %

Mole % CaBr, T, (°C) T, (°C)
0 715.3 —
0.2 732.1 —
2.35 721.8 598.3
4.65 715.2 595.4
7.63 706.8 596.2
9.85 697.3 597.0

The mixtures show linear trends, including an
apparent eutectic temperature T, near 597°C
for calcium concentrations 22.35%.
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Table 2. Differential scanning calorimetric (DCS) results for CeBr3–CaBr2 mixtures in the range 0–10 mole %. The mixtures show linear trends, including an apparent eutectic temperature Te near 597ºC for calcium concentrations ≥2.35%.
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Figure 11. Phase diagram for CeBry—CaBr,
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Figure 11. Phase diagram for CeBr3–CaBr2. All results are plotted in the figure, on which approximate solidus, liquidus, and eutectic lines have been constructed. Not plotted are some additional data taken at 20% and 30% that indicate the liquidus continues the near-linear trend. Note that our current experimental upper bound for the solid solubility is the data point at 2.35%, which must lie well within the α+β field, since the eutectic temperature Te was detected. This concentration is considerably less than the intersection of the extrapolated solidus and the eutectic temperature; therefore, the solidus line is clearly nonlinear and probably exhibits retrograde solubility well below the melting point of pure CeBr3, as is commonly observed for sparingly soluble impurities in other systems. This behavior can be characterized as a variation of the segregation coefficient with temperature, as analyzed by Hall (1957). For example, the maximum solid solubility for sparingly soluble impurities in silicon and germanium follow a simple empirical correlation with k0, the limiting equilibrium segregation coefficient, as CL  0: CS,max = k0/10 (Fischler 1962). Based on this relation, the solidus was arbitrarily extrapolated to keff/10 = 1.1% at the eutectic temperature to estimate the minimum extent of the eutectic line towards the CeBr3 side of the phase diagram.
 
It should be noted that the eutectic composition extrapolated from the points plotted is near 37% calcium; however, the nominal 20% and 30% data indicate it could be near 50%. More experiments are needed to accurately determine both the eutectic composition and the β phase, which could reasonably be expected to be a ternary such as CaCeBr5 or Ca2CeBr7 . 
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Table 3. Measured total light yield data;

calculated and estimated total light yield

CeBr,

CeBr, + 0.2% CaBr,
CeBr; + 500 ppm CaBr,
BGO

CeBr; + 500 ppm SrBr,
CeBr; + 500 ppm CdBr,
CeBr; + 500 ppm ZrBr,
CeBr; + 1000 ppm HfBr,
LaBr, + 5% CeBr,

Nal:Tl
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Table 3. Measured total light yield data; calculated and estimated total light yield.  Still achieved 62,000 ph/MeV.
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Technical Issues

 Need to determine concentration of calcium. If it
cracks at saturation, may not determine accurate
concentration.

 Need to benchmark below solubility limit.

 Need to examine other dopants, such as Ba, Sr, and
Cd (SDRD project convincingly eliminated Pb).
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Analyze the concentration of calcium in the crystals
Perform hardness measurements to see if the aliovalent approach hardened the crystal as expected
Consider future work to pursue this promising approach
– Perform growth with lower concentrations of calcium
– Perform similar growth runs using strontium
SNL may wish to patent (Nevada already declined)
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Future Direction

« Complete analysis of spectroscopy benchmarking

« Calculate with a less dilute doping (i.e., something less than 2%) of Ca
In CeBr;. This will help with the assessment what doping concentration
will lead to changes in optical and mechanical properties.

« Perform hardness measurements to see if the aliovalent approach
hardened the crystal as expected

« Other reasonable research areas include:
» Calculate density functional theory (DFT) model
with less-dilute doping
» Perform growth with lower concentrations of calcium
» Perform similar growth runs using strontium

peme Nevada National Security Site
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Complete analysis of spectroscopy benchmarking
Calculate with a less dilute doping (i.e., something less than 2%) of Ca in CeBr3. This will help assess what doping concentration will lead to changes in optical and mechanical properties.
Perform hardness measurements to see if the aliovalent approach hardened the crystal as expected.
Other reasonable research areas include:
 Calculate DFT model with less dilute doping.
 Perform growth with lower concentrations of calcium.
 Perform similar growth runs using strontium. 
SNL may wish to patent (Nevada already declined)
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Summary

 New DFT simulations demonstrate a capabillity for predicting
properties of doped CeBr; materials that is unavailable elsewhere
but is critically needed to study the property-limiting valence
phenomena in ionic compounds

« Assessed concentrations and the solubility limit
« RSL benchmarked the Ca?*-doped CeBr, crystal

« The Ca’*-doped CeBr; crystal has improved energy resolution
(i.e., 3.2%)

« The Ca’*-doped CeBr;crystal has improved linearity over
the pure CeBr; crystal
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Summary
New DFT simulations demonstrate a capability for predicting properties of doped CeBr3 materials that is unavailable elsewhere but is critically needed to study the property-limiting valence phenomena in ionic compounds. 
Assessed concentrations and the solubility limit. 
RSL benchmarked the Ca2+-doped CeBr3 crystal. 
The Ca2+-doped CeBr3 crystal has improved energy resolution (i.e., 3.2%).
The Ca2+-doped CeBr3 crystal has improved linearity over the pure CeBr3 crystal.


@ORMA XV; Ann Arbor, MI; June 9-13, 2014

Acknowledgments

Bryan Wong (SNL) performed the DFT calculations.

Patrick Doty (SNL) provided advice and guidance.

RMD prepared the crystal and performed some of the characterization.
Marlene Bencomo (UNM) assisted with IC-PMS analysis.

The author also thanks Thomas Stampahar, Michael Lukens,
John O’Donoghue, Michael Mohar, and Sanjoy Mukhopadhyay of
NSTec for their contributions to this work.

—E" Managed and Operated by National Security Technologies, LLC


Presenter
Presentation Notes
The key accomplishments of the project was the acquisition of γ-ray detector from RMD that achieved 3.2%. Development of this detector was guided by the SNL DFT predictive model.
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