
June 30, 2014 Page 1

Final Technical Report:
Lightweight and Statistical Techniques for Petascale PetaScale Debugging

September 2009 to September 2013
SC0002153 (PRJ27NT)

1 TECHNICAL ACCOMPLISHMENTS

This project investigated novel techniques for debugging scientific applications on petascale
architectures. In particular, we developed lightweight tools that narrow the problem space when
bugs are encountered. We also developed techniques that either limit the number of tasks and the
code regions to which a developer must apply a traditional debugger or that apply statistical tech-
niques to provide direct suggestions of the location and type of error. We extend previous work
on the Stack Trace Analysis Tool (STAT), that has already demonstrated scalability to over one
hundred thousand MPI tasks. We also extended statistical techniques developed to isolate pro-
gramming errors in widely used sequential or threaded applications in the Cooperative Bug Isola-
tion (CBI) project to large scale parallel applications. Overall, our research substantially improved
productivity on petascale platforms through a tool set for debugging that complements existing
commercial tools.
Previously, Office Of Science application developers relied either on primitive manual debugging
techniques based on printf or they use tools, such as TotalView, that do not scale beyond a few
thousand processors. However, bugs often arise at scale and substantial effort and computation
cycles are wasted in either reproducing the problem in a smaller run that can be analyzed with the
traditional tools or in repeated runs at scale that use the primitive techniques. New techniques
that work at scale and automate the process of identifying the root cause of errors were needed.
These techniques significantly reduced the time spent debugging petascale applications, thus lead-
ing to a greater overall amount of time for application scientists to pursue the scientific objectives
for which the systems are purchased.
We developed a new paradigm for debugging at scale: techniques that reduced the debugging sce-
nario to a scale suitable for traditional debuggers, e.g., by narrowing the search for the root-cause
analysis to a small set of nodes or by identifying equivalence classes of nodes and sampling our
debug targets from them. We implemented these techniques as lightweight tools that efficiently
work on the full scale of the target machine. We explored four lightweight debugging refinements:
generic classification parameters, such as stack traces, application-specific classification parame-
ters, such as global variables, statistical data acquisition techniques and machine learning based
approaches to perform root cause analysis.
This project was done in collaboration with Lawrence Livermore National Laboratory.

Barton P. Miller

Computer Sciences Department
University of Wisconsin

Madison, WI 53706-1685
bart@cs.wisc.edu

June 30, 2014 Page 2

Work done under this project can be divided into two categories, new algorithms and techniques
for scalable debugging, and foundation infrastructure work on our MRNet multicast-reduction
framework for scalability, and Dyninst binary analysis and instrumentation toolkits. Note that in
the infrastructure area, this project shares common development with several of our other funded
DOE Office of Science Efforts. Therefore, work done in that area (Section 2 of this report) is also
reported in those Progress Reports.

1.1 Bootstrapping for Extreme Scale Systems

In earlier work, we began to address these issues by developing the LaunchMON infrastructure.
With LaunchMON, we aimed to provide an abstraction layer to wrap existing resource manage-
ment services. An application or tool that used LaunchMON can indirectly leverage any of the set
of RM services that LaunchMON supports. LaunchMON's abstractions explicitly targeted HPC
tools and were shaped primarily by existing RM mechanisms. These design decisions meant that
LaunchMON was not always flexible and ideal for more general use cases. For example, Launch-
MON supported the capability to deploy tool processes on the same nodes of already running
MPI applications. The mechanisms to support such capabilities encumbered using LaunchMON
in cases where the capabilities were not needed.
In this work, we focused on identifying the proper set of abstractions and mechanisms for scalable
infrastructure bootstrapping of general software distributed systems. We developed the light-
weight infrastructure-bootstrapping infrastructure (LIBI), a reference implementation of our sys-
tem for launching distributed applications. LIBI is not intended to replace existing RMs; instead it
is an extension to our earlier LaunchMON work intended to provide a more intuitive and flexible
system bootstrapping interface and mechanisms for leveraging RMs in a portable manner.
Indeed, this work culminated in a refactorization of LaunchMON's services. Additionally, LIBI
provided efficient, alternative bootstrapping mechanisms for environments where scalable native
services are unavailable. This research made several contributions:
• a set of abstractions and mechanisms for the bootstrapping of applications, tools and system

software on extreme scale distributed systems;
• an early prototype of these abstractions and mechanisms; and
• a preliminary evaluation of this prototype to demonstrate both the necessity and feasibility of

such infrastructures.

1.2 Extreme Scale Harnessing of Hybrid GPU/CPU Computation

We investigated techniques for density-based clustering of multi-billion point datasets such as
geospatial data. Specifically we developed a clustering technique that uses a hybrid computing
model combining large-scale multicast/reduction overlay networks operating with nodes
equipped with high-end GPGPUs. This hybrid computation allows for clustering of extremely
large datasets in an efficient manner. We introduced a new clustering algorithm, Mr. Scan, and an
end-to-end implementation of this algorithm that we showed can efficiently scale to billions of
points on a leadership class supercomputer.
Clustering is the act of classifying data points, where data points that are considered similar are
contained in the same cluster and dissimilar points are in different clusters Clustering helps
researchers and data analysts gain insight into their data, e.g., identifying and tracking objects
such as gamma-ray bursts in sky observation data, monitoring the growth and decline of forests in

June 30, 2014 Page 3

the United States and identifying performance bottlenecks in large-scale parallel applications [12].
We focus on a type of clustering algorithm called density-based clustering, which classifies points
into clusters based on the density of the region surrounding the point. Density-based clustering
detects the number of clusters in a dataset without prior knowledge and is able to find clusters
with non-convex shapes.
Datasets such as the Sloan Digital Sky Survey and geolocated tweets from Twitter are useful to
cluster but are too large (i.e., billions of data points) to be practically computed on a small or
medium-sized parallel computer (100's to 1000's of nodes) by any non-trivial clustering algo-
rithm. These large data sizes require the largest-scale parallel systems that are in use today. How-
ever, there are few distributed density-based clustering algorithms designed to run on these large-
scale systems. Existing distributed density based algorithms typically reduce the quality of the out-
put when compared to the single-node version, or they do not scale to the sizes needed for these
datasets.
Mr. Scan is our implementation of the DBSCAN (Density-Based Spatial Clustering of Applica-
tions with Noise) clustering algorithm. DBSCAN is the most widely cited density-based clustering
algorithm and has been shown to be well-suited for data analysis in many fields, e.g., the analysis
of laser ablated material and tracking population movement by use of geotagged photographs.
The benefits DBSCAN has over other clustering algorithms are that it has the ability to nd irregu-
larly shaped clusters, it distinguishes data points that are considered noise (i.e., points in low den-
sity regions) from clusters, and it is able to cluster data where the number of clusters in the dataset
is not known in advance. These features come at a cost, since the computational complexity of
DBSCAN is O(n2) where n is the number of points in the input dataset. This complexity is a result
of the calculation of a n x n matrix containing the distances between all points. This matrix can be
replaced with a spatial tree index which reduces the cost of distance calculations leading to an
average case complexity of O(n log n).
Mr. Scan is the first implementation of DBSCAN that can scale up to 6.5 billion data points and
the first distributed DBSCAN algorithm that incorporates the use of GPGPUs. It uses a program-
ming paradigm that organizes processes into a multi-level tree with an arbitrary topology. In this
multi-level tree paradigm, DBSCAN calculations are done on the GPGPU leaf nodes and these
results are combined on non-leaf nodes. Mr. Scan is also the first clustering algorithm to use this
programming paradigm to our knowledge. Using this multi-level tree design we demonstrate
the capability to cluster 6.5 billion points using 8,192 GPGPU nodes in 17.3 minutes.

The ability to cluster billions of data points with DBSCAN can only be realized if the key obstacles
to scaling DBSCAN are overcome: load balancing, cluster merging, and distributing data advanta-
geously. The running time of DBSCAN increases as a function of spatial density of the input data
points, which causes a load imbalance when compute nodes contain regions of varying density.
We modify DBSCAN to find the most dense regions and infer their membership in a cluster with-
out evaluating the points inside these dense regions. Results from DBSCAN compute nodes must
be merged accurately without requiring the entirety of each cluster. We resolve this by requiring a
small, bounded number of representative points per cluster to perform a merge. Finally, data must
be distributed in a manner that balances DBSCAN's clustering operation and the overhead of
merging clusters. We achieve this with a heuristic that spatially decomposes the data into parti-
tions to balance the merge overhead. Each partition contains roughly equal point counts to aid in
balancing DBSCAN clustering time.

June 30, 2014 Page 4

1.3 Scalably Determining File Properties

This work was done in collaboration with Lawrence Livermore National Labs.
Large-scale system sizes continue to grow exponentially. Systems with ten thousand or more com-
pute cores are common and LLNL’s recently delivered Sequoia system has over a million cores.
This exponential growth in concurrency makes contention within the storage hierarchy common
and efficient file access a challenge.
Avoiding contention requires an understanding of the performance and scalability of the entire
storage hierarchy. Any software running on large-scale systems, including scientific applications,
parallel libraries and tools, must determine dynamically how to adjust their strategies to improve
performance. However, determining the properties of the storage hierarchy and its properties for
all mounted file systems is nontrivial due to the increasing complexity of file system hierarchies.
Further, existing parallel I/O software focuses on the I/O patterns for large data set accesses, and
does not suit other I/O access patterns, such as uncoordinated, simultaneous accesses to small files
— e.g., launching an executable that depends on many shared libraries triggers vast numbers of
simultaneous accesses to the same library files when each process in the application loads the
library dependencies. Further, in parallel environments, a file can reside in one or more local or
remote file systems. Thus, different physical file systems may serve files with an identical file path
to different processes of the same program.
To cope with these complexities, high performance computing (HPC) software requires a richer
set of abstractions and scalable mechanisms by which to retrieve the performance properties of a
file. To close this gap and enable efficient run time access to such information, we propose Fast
Global File Status (FGFS), a scalable mechanism to retrieve file information including the degree
of replication or distribution and consistency across local or remote file systems. FGFS builds on a
simple node-local technique that raises the local namespace of a file to a global namespace using a
memory-resident mount points table. FGFS extracts the global properties of a file path by com-
paring and grouping the global names seen by various processes.
FGFS status queries retrieve global information on both individual files and entire file systems.
FGFS supports synchronous and asynchronous file status queries; File systems status queries serve
as an inverse classifier that selects those mounted file systems that best match a given set of global
properties required by an I/O operation. We design the FGFS Application Programming Interface
(API) and its implementation to support the file access and information needs of a wide range of
HPC programs, libraries and tools.
In this effort, we made the following contributions:
• A novel node-local technique to raise locally-defined file names to a global namespace;
• Scalable parallel algorithms based on string comparisons to compute global file properties;
• APIs and their implementations to provide global file information to existing HPC software at

run time.
Our performance evaluation on a large multi-physics production application showed that most
FGFS file status queries on its executable and its 848 shared libraries completed in 272 millisec-
onds or less at 32,768 MPI processes. Even the most expensive query that checks the global consis-
tency of these files, takes under 7 seconds at this scale. Compared to the traditional technique in
which remote daemons compute and compare checksums, FGFS provides several orders of mag-
nitude improvements.

June 30, 2014 Page 5

Additionally, we applied our techniques to three case studies and showed how FGFS enables a
wide range of HPC software to improve the scalability of its file I/O patterns. The first case study
applied FGFS to the Stack Trace Analysis Tool (STAT) and showed that FGFS aids this light-
weight debugging tool in choosing between direct file I/O and file broadcasting. This capability
resulted in a 52x speedup at 16,384 MPI processes. Second, we demonstrated that an efficient
FGFS file status query is a crucial element for a highly scalable dynamic loading technique called
Scalable Parallel Input Network for Dynamic Loading Environment (SPINDLE). The final study
showed that FGFS file system status queries helped the Scalable Checkpoint/Restart (SCR) library
to eliminate the need for arduous manual configuration efforts in discovering the best file system
on which to store its multilevel checkpoints.

1.4 Scalability Infrastructure for Tools

Tools and middleware face a daunting challenge to operate effectively on the world’s largest dis-
tributed systems containing tens of thousands of hosts and hundreds of thousands of processors.
A large class of problems encountered at this scale result from system designs that force group
operations to use serial interactions with operating systems and file systems. As the target group
size grows, the resulting group operation latency grows linearly or worse.
In previous work, we introduced group file operations, a solution to the problem of applying the
same file operations to a large group of files located across thousands of independent hosts. The
keys to the group file operation idiom are explicit identification of file groups using directories as
the grouping mechanism, and the ability to name a file group as the target for conventional file
system operations such as read and write. Group file operations provide an interface that elimi-
nates forced iteration, thus enabling scalable implementations. To support scalable group file
operations, we developed the TBON-FS distributed file system, which employs a tree-based over-
lay network (TBON) to provide scalable communication of group file operation requests and dis-
tributed aggregation of response data. TBON-FS provides client tools with a single-system image
(SSI) name space containing files from thousands of independent file servers. Single-system image
name spaces enable applications to access and operate on distributed resources as if they were
local, easing the development effort by allowing developers to focus on features rather than dis-
tributed access and communication.
Several classes of tools and middleware can benefit from group file operations, including systems
for distributed system administration and monitoring, parallel application runtimes, and distrib-
uted debuggers. For instance, tools for distributed monitoring and debugging often need to access
the synthetic files for process control or inspection as provided by /proc across a large set of
independent hosts. Using group file operations, these tools can easily control or monitor groups
of processes by defining file groups over the target files and performing group read or write oper-
ations.
Although our initial investigation clearly showed the scalability benefits of group read and write
operations, it also revealed a significant piece was missing, the ability to define file groups in a
scalable fashion. TBON-FS originally used a simple, static composition strategy for constructing
its SSI name space -- each file server’s name space was placed in an independent directory hierar-
chy of the global name space. This inflexible structure results in inefficient group definition for
groups that contain files from many servers. For each new group, the TBON-FS client must create
a directory and populate it with symbolic links to each member file in a non-scalable, iterative

June 30, 2014 Page 6

manner that can take thousands of seconds for groups containing tens of thousands of distributed
files. To avoid this centralized, iterative group definition, we began investigating scalable
approaches for distributed construction of the name space that could be implemented using the
TBON.
After considering a few straightforward techniques for addressing the problem of scalable group
definition, including parallel path matching using regular expressions, it quickly became clear that
no single approach to constructing the TBON-FS name space would meet the group definition
requirements for a wide variety of tools and middleware. For instance, consider a strategy for cre-
ating groups from the synthetic files provided by /proc across a large set of independent hosts. A
parallel debugger or job management system may wish to create a file group representing all the
processes of a specific parallel application, while a distributed system load monitoring program
may want groups consisting of all processes from every host or all processes running the same
executable. We believe each TBON-FS client is best-suited to the task of constructing and orga-
nizing the global name space, and our goal is to develop a method for specifying global name
space composition that is both flexible and scalable. Clients should be able to easily identify the
files or directory hierarchies from each server’s name space to include in the global name space,
and to control how files from independent servers are correlated to achieve a name space tailored
for use with group file operations. A key to achieving the latter property is an efficient and auto-
mated method for creating file groups as directories within the composite name space.
To address prior deficiencies and our name space composition goals for TBON-FS, we developed
a language for describing compositions with three key qualities:
• Scalability - many name spaces can be combined using efficient distributed name space con-

struction, avoiding centralized pair-wise operations.
• Simplicity - name space composition is easily described using a simple tree abstraction for

name spaces and a set of tree composition operators with clear semantics.
• Flexibility - many interesting compositions can be specified by combining declarative tree

operations with prescriptive programming constructs.
The language provides a semantic foundation that guides our approach for efficient large-scale
name space composition within TBON-FS, and can be adopted by previous or future systems
requiring flexible name space composition.
Our language is FINAL, for File Name space Aggregation Language. FINAL treats name space
composition abstractly as operations on rooted trees of names, and provides five tree composition
operations: subtree, prune, extend, graft, and merge. Specifications containing FINAL declara-
tions are translated at runtime to produce a name space accessible via a library interface. We dem-
onstrate FINAL’s expressive power by using it to describe many interestingly diverse
compositions.

2 SOFTWARE INFRASTRUCTURE DEVELOPMENT

Under this funding, we contributed to the Dyninst and MRNet software distributions. These dis-
tributions are being used widely and continue to have a major impact in academia, research labs,
and industry. We summarize the state of these distributions.

June 30, 2014 Page 7

2.1 Dyninst

Dyninst is a suite of component libraries that provides comprehensive treatment of binary pro-
grams. DyninstAPI's capabilities are divided into three categories: 1) analysis, 2) modifica-
tion/instrumentation, and 3) control.
Dynist provides both detailed control-flow analysis and data-flow analysis of binary code. It pro-
vides program abstractions in a platform-independent representation for such constructs as
instructions, basic blocks, loops, and functions. For data flow, Dyninst supports both program
slices and symbolic evaluation. The effectiveness of Dyninst binary analysis techniques has been
maintained over the years, in spite of the fact that binary code from modern compilers grows sig-
nificantly more complex over time. Aggressive optimizations being quite standard. It is common
to find
• non-contiguous code layout, even within a single functions,
• functions that share code (e.g., from multiple entry points),
• functions without stack frames (i.e., no stack set-up or tear-down code), and
• functions with no return (e.g., from tail-call optimization).
Dyninst handles all these cases properly. Furthermore, Dyninst is opportunistic about the infor-
mation available in an executable file. If symbol are available, Dyninst will use them. Dyninst,
however, also operates sensibly on stripped binaries (e.g. no symbols). In addition, if debugging
information is available, Dyninst will make use of it. If such information is not available, Dyninst
tries to compensate by employing it's arsenal of code analysis techniques.
Dyninst's program modification facilities allow the user to edit a program's control flow graph,
while maintain well-defined behaviors. One extremely important class of modifications is instru-
mentation. The instrumentation features of Dyninst allow inserting code at almost any instruc-
tion boundary. Instrumentation is described in terms of platform independent abstract syntax
trees, build from DyninstAPI classes.
Dyninst can modify programs either statically or dynamically. Static modification is accomplished
by rewriting a binary program or library. Dynamic modification is accomplished by modifying a
program during execution. Dyninst's runtime code generator produces the machine code for the
user's custom modification. Dyninst then dynamically inserts the newly-generated instrumenta-
tion code at runtime.
Dyninst's process control facilities are an important adjunct to Dyninst's other capabilities. Dyn-
inst's process control facilities allow the Dyninst system to both control and monitor processes.
Process control facilities usually take the form of process start, or process attach. In addition,
Dyninst includes a facility for manipulating breakpoints, Dyninst's process monitoring facilities
capture process events such as process and thread creation, process/thread termination, and
exceptions.
All these features are captured in the upcoming Version 4.2 release of Dyninst, available from our
web sites (mentioned in Section 5).
The following subsections contain details on each component tool kit in Dyninst.

June 30, 2014 Page 8

2.1.1 DyninstAPI

This is the parent toolkit from which many of the other components were derived. It is still quite
useful for building analysis, instrumentation, and control tools. Dyninst provides analysis, instru-
mentation, modification, and control of binary programs. The key strength of Dyninst is a collec-
tion of clean platform-independent abstractions to represent a binary program, both its static
(code) characteristics and its dynamic (execution) characteristics.
It works on binaries that are statically or dynamically linked, executables and libraries, and with or
without symbols. Dyninst provides almost identical analysis, instrumentation, and modification
interfaces for statically analyzing, instrumenting, and modifying a binary (binary rewriting) and
dynamically doing the same (dynamic instrumentation). While it was originally a monolith that
contained all the functionality as internal classes and methods, it is now a relatively thin layer built
on top of the below toolkits.

2.1.2 ProcControlAPI

ProcControlAPI provides a portable interface to process start, control, and status monitoring. We
note that this is quite an intricate component as it has to work consistently with several radically
different operating system models for processes, threads, signals and exceptions, and address
space structure). Doing so correctly and efficiently required detailed understanding of the process
control and interfaces on all the supported platforms. From the user's point of view, the ProcCon-
trolAPI provides clean platform independent abstractions for the above models.
Recent additions to the ProcControlAPI include being able to work with large process groups in a
single operations. This addition allows efficient support of process control and monitoring using
the IBM BG/Q CDTI node debug interface.

2.1.3 SymtabAPI

SymtabAPI is a portable interface to both the processing and understanding of the symbol, header
and debugging data of object files and libraries, and for the updating and generation of new bina-
ries (to support binary rewriting). The rapidly evolving (almost frantically evolving) ELF and
DWARF standards provides a challenge to maintain this interface (and increase the value of this
toolkit). Note that the libelf and libdwarf libraries provide insufficient information to be a com-
plete solution. For example, libdwarf provides a low-level interface to DWARF information but
does not interpret it, so SymtabAPI provides a parser that sits on top of libdwarf and constructs
function and variable information

2.1.4 ParseAPI

ParseAPI is a portable library to parse executable code in basic high level control abstractions,
including instructions, basic blocks, functions, and loops. These abstractions are captured in the
produced Control Flow Graphs (CFG's) and Call Graphs.

2.1.5 InstructionAPI

InstructionAPI is a portable interface to decoding instructions providing cross platform abstrac-
tion for the basic instruction operation, operands, and modes, and instruction semantics. It also
provides a string representation of the instruction (for disassembly), and access to processor spe-
cific register and addressing modes.

June 30, 2014 Page 9

2.1.6 StackwalkerAPI

Portable interface to walk run time stacks in a first- and third-party structure. First-party stack
walks are when the library is in the same address space as the application programs, often being
triggered by timers or breakpoints; third-party stack walks are when the library is in a separate
tool (such as is the case for a debugger) and used the ProcControlAPI to access the application
programs. Stackwalker includes the ability to understand stacks that include frames from signal or
exception handlers, instrumentation tools, kernel calls, and optimized call frames. It supports a
variety of analysis modes, including using code parsing results to define stack frame height.

2.1.7 DynC

DynC is a C-based language for defining code instrumentation snippets using the Dyninst toolkit
objects. Using DynC can substantially simplify generating instrumentation code. DynC provides a
clean abstraction of address spaces (adopted from the Cinquecento Programming Language) that
allow variables used in a snippet be in the tool's address space, the applications address space
(with the ability to name and use the program's functions and variables), or tool-local temporary
space.

2.1.8 DataflowAPI

DataflowAPI is a portable interface to produce dataflow information for a binary program or
library. This dataflow information includes forward and backward slices, symbolic evaluate of val-
ues in registers, liveness analysis for locations, and stack height analysis (i.e., how large is the cur-
rent stack frame at any given program counter?).

2.2 MRNet

The desire to solve large-scale science problems in areas of national and global significance,
including climate modeling, computational biology, and particle simulation, has driven the devel-
opment of increasingly large parallel computing resources. Unfortunately, performance, debug-
ging, and system administration tools that work well in small-scale environments often fail to
scale as systems and applications get larger. In response to these deficiencies, we developed a tree-
based overlay network infrastructure, MRNet, for building tools and applications that can scale to
the largest of computing platforms, including current extreme-scale Cray and IBM BlueGene sys-
tems that contain millions of processor cores. MRNet makes operations such as command and
control, and data collection and reduction, efficient at large scale.
Typically, tools are organized using a tree structure, where a single tool front-end interacts with a
large set of tool back-ends (often called tool daemons). This structure is commonly referred to as
a master-slave architecture. Tool back-ends are responsible for data collection and application
control, when applicable. The tool front-end often provides the interface to users, and is responsi-
ble for analysis of data collected at the back-ends. For tools using this structure, the front-end
quickly becomes a bottleneck due to centralized computation and communication with all back-
ends. In addition, many application programs can use the same hierarchical structure to achieve
extreme scale. MRNet provides a scalable solution for these tools and applications by interposing
a tree-based overlay network (TBON) of processes between the tool front-end and back-ends.
The TBON is used to distribute tool activities normally performed by the front-end across the
overlay processes, thus reducing analysis time and keeping the front-end load manageable.

June 30, 2014 Page 10

MRNet takes advantage of the logarithmic performance properties of trees to provide scalable
multicast communication and data aggregation. Tools and applications built using MRNet send
and receive data between front-end and back-ends on logical data flows called streams. Data flow-
ing on streams is encapsulated as packets, which are synchronized and aggregated using built-in
or user-defined filters. MRNet’s general-purpose abstractions allow tools to completely control
how communication and computation is performed. Furthermore, MRNet lets tools and applica-
tions define the TBON topology and the placement of processes on distributed hosts. MRNet sup-
ports any tree topology, and provides a utility for easily generating common topology structures
such as balanced and k-nomial trees

3 PUBLICATIONS

[1] Benjamin Welton and Barton Miller, “The Anatomy of Mr. Scan: A Dissection of Performance
of an Extreme Scale GPU-Based Clustering Algorithm”, Computer Sciences Technical Report,
submitted for publication, January 2014.

[2] Barton P. Miller, Dorian C. Arnold, Michael J. Brim, Philip C. Roth, Evan Samanas, Benjamin
Welton and Bill Williams, “Building on Lessons Learned From Over a Decade of MRNet
Research and Development”, Extreme Scale Programming Tools Workshop, Denver,
November 2013.

[3] Benjamin Welton, Evan Samanas, and Barton P. Miller, “Mr. Scan: Extreme Scale Density-
Based Clustering Using a Tree-Based Network of GPGPU Nodes”, Supercomputing 2013
(SC2013), Denver, November 2013.

[4] Dong H. Ahn, Michael J. Brim, Bronis R. de Supinski, Todd Gamblin, Gregory L. Lee,
Matthew P. LeGendre, Barton P. Miller, Adam Moody, Martin Schulz, “Efficient and Scalable
Retrieval Techniques for Global File Properties”, 27th IEEE International Parallel &
Distributed Processing Symposium, Boston, MA, May 2013.

[5] Joshua D. Goehner, Dorian C. Arnold, Dong H. Ahn, Gregory L. Lee, Bronis R. de Supinski,
Matthew P. Legendre, Barton P. Miller, Martin Schulz, “LIBI: A Framework for Bootstrapping
Extreme Scale Software Systems”, Journal of Parallel Computing 29, 3, March 2013, pp. 167-
176.

[6] Joshua Goehner, Dorian C. Arnold, Dong Ahn, Greg Lee, Matthew Legendre, Martin Schulz
and B.P. Miller, “A Framework for Bootstrapping Extreme Scale Software Systems”, First
International Workshop on High-performance Infrastructure for Scalable Tools (WHIST),
Tucson, June 2011.

[7] Michael J. Brim, Barton P. Miller, and Vic Zandy. “FINAL: Flexible and Scalable Composition
of File System Name Spaces”, International Workshop on Runtime and Operating Systems for
Supercomputers (ROSS), Tucson, AZ, May 2011

[8] Emily R. Jacobson, Michael J. Brim, and Barton P. Miller, “A Lightweight Library for Building
Scalable Tools”, Para 2010: State of the Art in Scientific and Parallel Computing, Reykjavik,
Iceland, June 2010.

[9] Michael J. Brim, Luiz DeRose, Barton P. Miller, Ramya Olichandran, and Philip C. Roth,
“MRNet: A Scalable Infrastructure for the Development of Parallel Tools and Applications”,
Cray User Group 2010, Edinburgh, Scotland, May 2010.

June 30, 2014 Page 11

4 STUDENTS SUPPORTED AND STUDENT PROGRESS

No post doctoral nor undergraduate students were supported during this period.

5 PROJECT WEB SITES

http://www.paradyn.org
http://www.dyninst.org

6 OUTREACH AND TRANSITIONS

We continue to work with many key groups in government labs, research organizations, aca-
demia, and industry. Some of these interactions include:
• Paraver, Barcelona Supercomputer Center, Prof. Jesus Labarta: Paraver is a performance visu-

alization and analysis tool based on traces. It can provide extremely detailed visualizations of
performance behaviors on a wide variety of computational platforms.
Paraver uses MRNet for finding equivalence classes of traces among large numbers of pro-
cesses, Paraver's Extrae binary program instrumenter is based on the DyninstAPI.

• TAU, University of Oregon, Prof. Alan Malony: TAU (Tuning and Analysis Utilities) gathers
performance data through instrumentation of functions, methods, basic blocks, and state-
ments. It also provides selection of profiling groups for organizing and controlling instrumen-
tation. The instrumentation can be inserted in the source code using an automatic
instrumenter tool based on the Program Database Toolkit (PDT), or dynamically using Dyn-
instAPI. TAU's profile visualization tool provides graphical displays of the performance anal-
ysis results, in aggregate and single node/context/thread forms.

• Scalasca, Juelich Supercomputer Center, Dr. Bernd Mohr: Scalasca is also a trace, analysis, and
visualization tool for large-scale parallel systems. It combines runtime summaries to provide a
performance overview with a description of detailed behavior described by event tracing. The
traces are analyzed to identify wait states that occur such as for unevenly distributed work-
loads. Scalasca uses parallel trace-analysis to analyze results for large scale systems.
Scalasca's COnfigurable Binary Instrumenter (COBI) is based on the DyninstAPI, Scalasca
uses MRNet to help scalably process its trace data (such as for identifier unification).

• ATP, Cray Inc., Dr. Luiz Derose: ATP (Abnormal Termination Processing) is Cray's post-mor-
tem product for collecting information about programs that crash. It provides detailed state
information about the crashed program, including stack traces.
MRNet is used in ATP to scalably collect and reduce the traces. In addition, StackwalkerAPI is
used to collect stack traces on the crashed processes. MRNet is used in ATP to scalably collect
and reduce the traces. In addition, StackwalkerAPI is used to collect stack traces on the
crashed processes. MRNet is distributed as a separate tool by Cray as a support partner prod-
uct.

• SystemTap, Red Hat Inc., Joshua Stone: SystemTap is Red Hat's diagnostic monitoring tool for

Graduate Students Supported:

Michael Brim
Tristan Ravitch

Benjamin Welton

June 30, 2014 Page 12

the kernel, services and application programs.
Red Hat has adopted the DyninstAPI as their instrumentation mechanism for non-kernel
monitoring in Red Hat Enterprise Linux (their flagship supported product). In addition, Red
Hat is distributing Dyninst in its own right in RHEL.

• VampirTrace, Technische Universitaet Dresden, Dr. Andreas Knuepfer: VampirTrace is an
open source library that allows detailed tracing of parallel applications that use message pass-
ing (MPI) and threads (OpenMP, Pthreads). VampirTrace is capable of tracing GPU acceler-
ated applications and generates exact time stamps for all GPU related events.
Vampir can instrument executables using the DyninstAPI with Vampir's -vt:dyninst
option.

• Open|Speedshop, Krell Labs, James Galorowicz: Open|Speedshop is a project supported by the
DOE NNSA Tri-Labs, to provide an open source, portable, and extensible performance moni-
toring and visualization tool for leadership class systems.
Open|Speedshop uses Dyninst for both static and dynamic instrumentation of programs and
MRNet for its scalability infrastructure.

• MATE Autonomous University of Barcelona Prof. Ania Morajko: MATE (Monitoring, Auto-
matic and Tuning Environment) is an autotuning environment that monitors program behav-
iors and dynamically modifies the program or is runtime in response to those behaviors.
MATE can adjust such characteristics as the number of threads, socket protocols,
MATE uses Dyninst for its instrumentation and MRNet for control of its daemon processes
and scalable collection of performance data.

In addition to the above list of projects, Dyninst has become a frequently used tool kit for cyber
security research projects. It is being used for code analysis in cyber forensics and for modifying
code to make it more difficult to attach (so called hardening of a binary program).

