LA-UR- 2000/ S5

Approved for public release;
distribution is unlimited.

Title: | Frictional Interactions at Sliding Metal Interfaces

Author(s): | James E Hammerberg, XCP-5
Ramon J Ravelo, XCP-5
Timothy C Germann, T-1

Brad L Holian, T-1

Intended for: | |nt. Symposium on Plasticity and Its Current Applications
San Juan, Puerto Rico, Jan. 5-8, 2012

g
B L?s Alamos

NATIONAL LABORATORY
€57.1943

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC
for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance
of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the
published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests
that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National
Laboratory strongly supports academic freedom and a researcher’s right to publish; as an institution, however, the Laboratory does not
endorse the viewpoint of a publication or guarantee its technical correctness.

Form 836 (7/06)



Frictional Interactions at Sliding Metal
Interfaces

James E. Hammerberg, R. Ravelo, T.C. Germann, J.
Milhans and B.L. Holian

Los Alamos National Laboratory
Los Alamos, NM

Plasticity2012
San Juan, Puerto Rico
Jan. 3-8, 2012

yos.
> ch?s Alamos

NATIONAL LABORATORY

Slide 1

1
Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

T YA Joads)]
A =4



Overview

* Experimental background for metal/metal sliding

» Large-scale Non-Equilibrium Molecular Dynamics (NEMD)
simulations to characterize physical mechanisms

* Generic properties of the velocity dependence of the frictional
Force

* Large systems and scaling

 Defective and polycrystalline samples

« Summary
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Experimental Overview — Velocity Dependence

High-speed levitated sphere experiments of Bowden and collaborators demonstrated significant weakening of the
frictional force with increasing velocities to 700 m/s.

Bowden, F.P. and Freitag, E.H., 1958, “The Friction of Solids at Very High Speeds”, Proc

) . Roy. Soc. (Lond.) Ser. A, Vol. 248,
pp.- 350-367.
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/ngden F.P. and Persson P.A., 1961, “Deformatlon Heatmg and Meltmg of Solids in High-Speed Friction”, Proc. Roy.
Soc. (Lond.) Ser. A, Vol. 260 pp. 433-458.
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Experimental Overview — Velocity Dependence

Atlas pulsed power experiments measured similar velocity weakening at a Ta/Al interface

at 15 GPa for sliding velocities between 360 and 700 m/s.

* Hollow, cylindrical “lifesaver” sandwich target
enabled diagnostic access and reduced end effects

* Low Cs material (Ta)

* High Cs material (Al)

* Low Cs material (Ta)

* 2-interfaces/experiment (2/6/um RMS finish)

* Thick liner (7 mm initial, 10 mm at impact)

* Maintained shocked state longer

* Produced greater interface displacement

* Must be transparent to radiography

*1.5-2.5 km/s impact velocity

5.
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Experimental Overview — Velocity Dependence

Atlas pulsed power facility at NTS provided reproducible, tunable drive.

* 26 MJ stored energy, 6 ms rise time
* Symmetric, cylindrically
* 1/3, 213, 313 bank configurations (and others)
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Experimental Overview — Velocity Dependence

Transverse radiography
measured bending of 0.4 mm
Au wires. Lagrangian analysis
determines F/A.

/% Dynamic Radiograph (t = 22.2 ps)
» Los Alamos

NATIONAL LABORATORY
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Experimental Overview — Velocity Dependence

Lagrangian analysis showed velocity weakening.

FR102 1.3 13 3.58 0.60 0.8 0.36
FR103 1.5 15 3.727 0.09 0.9 0.56
FR101 1.7 18 2.408 <0.09 1.0 0.70
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Experimental Overview — Velocity Dependence

* Explosively driven experiments
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[R.E. Winter et al., 2006, “Mechanisms of Shock-Induced Dynamic Friction,” J. Phys. D, Vol. 39, pp. 5043-5053]
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Experimental Overview — Velocity Dependence

* Plate-impact pressure-shear friction experiment

Flyer plate (s
g = t ™ Quas} Static (Bhusham and Gupta, 1991)
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Fig. 1. Schematic of the plate-impact pressure-shedr fviction experiment,

Interfacial Slip Velocity, nvs

[F. Yuan, N.-S. Liou and V. Prakash, 2009, “High-Speed Frictional Slip at Metal-on-Metal Interfaces,” Int. J. Plast., Vol. 25, pp.
612-634.]
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Experimental Overview — Structural Transformation

* Dry sliding induces subgrain nanostructure and highly strained
graded microstructure in ductile metals.

-
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[D.A. Hughes and N. Hansen, 2001, “Graded Nanostructures [D.A. Rigney, 1988, “Sliding Wear of Metals,” Ann. Rev. Mater. Sci., Vol. 18, pp.141-163.]
Induced by Sliding and Exhibiting Universal Behavior,” Phys.
/\ Rev. Lett. Vol. 87, pp. 1355031-1355034.]
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Experimental Overview — Structural Transformation

« Cu pin on disk and Al explosively driven experiments show nanocrystalline
regions and highly strained regions at the sliding interface.

hegpeetecrmgi b byt e e e e T e s o
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[Andrew Emge, S. Karthikeyan, H.J. Kim and D.A. [H.J. Kim, A. Emge, R.E. Winter, P.T.
Rigney, 2007, “The Effect of Sliding Velocity on the Keightley, W.J. Kim, M.L. Falk and
Tribological Behavior of Copper,” Wear, Vol. 263, pp. D.A.Rigney, 2009, “Nanostructures
614-618] Generated by Explosively Driven Friction:

Experiments and Molecular Dynamics

Simulations,” Acta Mater. Doi:10.1016/
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Experimental Overview — Material Mixing

* Nanocrystalline mixing layer (A) at a Cu/SS interface

Fiz 3 TEM ijmage of longimdina] :ection of OFEC copper block a
ter ihiding sgamsr H40°C st2el rinz. Note sharp demarcation betwes
nanocoysiailine mixzed maresial and defonuation substucrare {zubsrain
of base matesial. Same sample and comditions as i Fig. 1

[D.A. Rigney, 2000, “Transfer, Mixing and Associated
Chemical and Mechanical Processes during the Sliding of Ductile Metals,” Wear, Vol. 245, pp. 1-9]
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Summary — Experimental

* Frictional force at metal-metal interfaces exhibits a decrease
with increasing sliding velocity at high velocities (velocity
weakening).

* The near-surface microstructure transforms to smaller length scale
structure that is graded and exhibits very high plastic
strains in regions of tens of microns from the sliding interface.

* There is evidence for a mechanically mixed layer of nanoscale
material at the sliding interface.

» Los Alamos
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Large-Scale NEMD Simulations of the Tangential Force
as a Function of Sliding Velocity and Compression

 Experimental data for the tangential force as a function of velocity and
compression are sparse and difficult to obtain dynamically.

. Integral experiments have been carried out by R. Winter, et al., using
high-explosive drive. Pulsed power radiographic experiments have also
been carried out (G. Kyrala, R. Faehl, C. Rousculp, et al., LANL —
Pegasus, Atlas experiments), which are more nearly direct
measurements of the tangential force.

 Rotating-Barrel gas gun experiments (P. Rightley, P. Crawford and K.
Rainey, LANL) allow measurements of Ft at velocities less than 100 m/s.

 Pressure-shear measurements have been carried out to 450 m/s
(v. Prakash et al.).

« Large-scale Non-Equilibrium Molecular Dynamics (NEMD) allows for
microscopic interrogation of physical mechanisms at relevant sliding
rates (0—1 km/s).

A
> La Alamos

NATIONAL LABORATORY Slide 14
EST.1943

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA . ¥ 'Dog;
I AR~




NEMD Simulations

Y
norm

Typical system sizes: 10 atoms
Typical integration times: 1 ns

[J.E. Hammerberg, B.L. Holian, J. Roeder, A.R. Bishop and S.J. Zhou, 1998, “Nonlinear

/\ Dynamics and the Problem of Slip at Material Interfaces,” Physica D, Vol. 123, pp. 330-340.
' J.E. Hammerberg and B.L. Holian, 2004, “Simulation Methods for Interfacial Friction in
- I-OS Alamos Solids,” in Surface Modification and Mechanisms, G.E. Totten and H. Liang, eds., pp. 723-749.] Side 15
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NEMD Simulations

* Initial Cu/Cu two-dimensional simulations showed all three experimental
features: velocity weakening, structural transformation and mechanical mixing.

051 L 1 1 1
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Cu(2D) P=30GPa, v- 0.12c,, Mechanical Mixing

p——m——
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/\ Times: 100, 200, 300, 400, 500 t,
= Cu(2D) Grain Structure
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Material Pairs Investigated with NEMD

Material Pairs Investigated

Cu/Cu 2 0.30 30
L 2 0.35* 10.0*
Cu/Ag 3 0.12 5
TalAl 3 0.30 15
Al/Al 3 0.30 15

*For the Lennard-Jones system, velocities and pressures are given in Lennard-Jones units.
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Velocity Dependence: Generic Properties of High-
Velocity Sliding

There is a variety of experimental evidence that at high velocities the frictional
force decreases with increasing velocity. [ cf. J.E. Hammerberg and B.L. Holian,
“Simulation Methods for Interfacial Friction in Solids” in Surface Modification and
Mechanisms, 2004 (G.E. Totten and H. Liang, eds.) pp. 723-749]. The figure below
shows simulation results for an Al(111)/A1(001) interface.

Scaled Frictional force, f/f._vs. Scaled Velocity, v/v,

l -
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Velocity Dependence:
Lennard-Jones (2D), Cu/Ag (3D), Ta/Al (3D) and Al/A (3D) Interfaces
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Velocity Dependence: Four Regimes of Characteristic
Dissipation

There are four regions in velocity that correspond to different
dominant modes of dissipation.

1.0-0.5v_.: anharmonic phonon dissipation
2. 0.5-1.0 v.: plastic deformation

3.1.0-2.0 v.: structural transformation
4.v>20v,. fluidization

» Los Alamos
NATIONAL LABORATORY Slide 20
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Velocity Dependence: Anharmonic Phonon

A
° L/ojs Alamos

NATIONAL LABORATORY
EST.1943

L.ow velocity regime

In this regime (vey ), exact results are possible and the dissi-

pation is due to anharmonic phonons:
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and ImGl“‘(I;. ~Ji + 0)')(;7)) is the density-density response

function written as the imaginary part of the Green’s
function.

For an incommensurate interface thes expressions lead to a
lincar velocity dependence at low velocities proportional to
inverse phonoen liletimes Irom evaluation of the imaginary
part of the retarded phonon Green’s function.

Dissipation
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Velocity Dependence: Plastic Deformation

Intermediate Regime (0.5 vc < v < vc): Plasticity
Al/Al stacking fault formation at vrel = 150 m/s, Tres = 696 K

t=0.265 ns t=0.269 ns t=0.277 ns
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Velocity Dependence: Structural Transformation

Cu (2D) P = 30 Gpa. V- 0.12¢,) Mechanical Mixing

p Cu (2D) Grain Structure Cu/Ag
» Los Alamos ' P =5.1GPav = 470 m/s
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Velocity Dependence: Structural Transformation —-
Fluidization

A/(111)/Al(001) interface at very high velocities exhibits confined
non-laminar Couette fluid flow behavior.

Tangential Velocity Field (vx(x,y))
Vrel = 2 km/s, Tres+696, 464, 232 K°

/—-\7 T=696 °K T =464 °K T=232°K
+ Los Alamos
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Velocity Dependence: Structural Transformation —
Fluidization

Al(111)/Al(001) interface at very high velocities and particle positions:

Couette region size depends on boundary temperature.
V.o = 2.0 km/s, Tres = 696, 464, 232 K°

rel

e M ¥ b ki
ML o . L 2

T =696 °K T =464°K T=232°K
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NEMD Simulations - Summary

 NEMD simulations have shown velocity weakening at high
velocities for a variety of metal/metal interfaces.

* There are four regimes of deformation as velocity increases:
anharmonic phonon dominated, dislocation and defect
dominated, structural transformation, and fluidization.

» Material mixing occurs at the higher velocities.

* The above are qualitatively similar to the experimental picture
described above.

* The velocity dependence at high velocities is well represented
by a power law velocity dependence for the frictional force.

..
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Generic Properties of the Velocity Dependence of the
Frictional Force and Analysis

Al(111)/A1(001) results have shown scaling behavior:
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The Simulation Results Are Well Represented by a
Scaled Function for the Tangential Force Per Unit Area.

K \Y °
— fc _
A \Y

= T is a critical temperature at v_ and «is an average thermal
conductivity. T =T __ and T, is the boundary temperature.

_ 1 ]_
K= x(T)dT
) (T —TO) 3

» Los Alamos
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Scaling of the Frictional Force — Al/Al (cont.)

The temperature dependence of v, is very nearly linear with

respect to reservoir temperature.

500 1 T ] 1 1
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Structural Transformation for v_ <v<v_,

* For velocities v, < v <, a transformation front coincident with the
sliding surface forms, transforming (111) material into (001) material.

a0d mfs
600 m/'s

004]

)
=
P
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- 200 - 100 0 100 200
pa v(A)
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For Velocities above v_, a Couette Flow Pattern Forms
Characterized by a Critical Strain Rate.

L T ‘ 1 L ] L4 L4 1 i & X .
0.5+ 3.0 kmis
010k 2.0 kmis

r 15 km /s

: 1 2 kmiec
0.05 [

1 kmis

V(c.u.) 0200t

-0.05F —r— ]
-0.10 ¢ 1
-0 15 L - : - Jl :
=200 200
> Los Alamos
NATIONAL LABORATORY Slide 31

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA DQ&‘

" YA
I N A =4



The Critical Strain Rate Depends on the Boundary Temperature,
and the Temperature Profile Is Parabolic in the Fluid Region.

Velocity and Temperature Profiles: v, =2 km/s, T =232, 464, 696 °K
(1 c.u. T=11605 °K, 1 c.u. V = 9.823 km/s)
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The Velocity Dependence of the Interface Temperature in the High-Velocity
Regime May Be Analyzed in Terms of Fluid and Mechanical Quantities.

: 1/« -1 ’
T( 0) § :".i ;l."" Y
’ —_— ‘l "l'. Cy ."' —1 -2
TO) =T+
8 pr
T(0)=T_+ 1 ,. f — |
VKB
1/ l( - a3
T()=T(H)—5{=} &)
2'\m/

where ¢, is the critical strain rate in the Couette regime, k is the thermal
conductivity, n is the fluid viscosity, c, is the specific heat and Pr is the
Prandt’l number, and the brackets denote thermal averages between T(0)
/)7 and T,, and between T(0) and T(y) in the last equation.
s LosAIamos
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These Relations and the Scaled Form for F Imply
Relationships for T(0) and the Critical Strain Rate.

1 f‘p d+a —1
T(0)=T, +8[ Ty ]\ (a=1-B)

where the second expression assumes the result from the NEMD simulations which
show the values for T(0) independent of v_ in the Couette regime.

There is also a relationship between v_ and v_,:

(Tw)ée V™7
\;clz(n fl:r(tgc) B

p
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Summary

* The tangential force between ductile metals exhibits a generic velocity
dependence.

« There is a critical velocity, v, beyond which the tangential force decreases
and the dominant dissipative mechanism changes from plastic deformation to
structural transformation and fluidization at the highest velocities.

 There is a second critical velocity, v 4> v, beyond which the fluid interface
exhibits Couette flow. In this regime the tangential force is determined by a
critical strain rate, the fluid viscosity and thermal conductivity.

 The tangential force for v > v exhibits scaling behavior with a power law
exponent, B = 3/4, and f ~(v/v,)®.

* For v >v_,, the flow is non-laminar and mixing.
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Summary

« Ultimately, one would like to have a constitutive model for the
tangential force to be used in macroscopic engineering simulation
computer models:

F,
X f(P, T;ep, Vrel)

where A is surface area, P pressure, T temperature, g, plastic strain,
and v, the relative velocity. The above expressions are the basis for

such a model.
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Al Perfect Crystal Scaling

« To investigate length scaling we have taken a large (7.5 M) atom
sample with a normal dimension of 154 nm.

« The sample consisted of two (110) faces rotated 90 degrees to
form an incommensurate interface.

 This represents L 3L

« Reservoir temperature: 300 °K
* Pressure 15 Gpa

 Sliding direction along <100>

« System size 7.4844 M atoms with sample dimensions
(27.092,153.773, 27.092) nm
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System size scaling

KT T
The critical velocity is given by V
) f L T
v -
TN S * -
L :
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Blue curve: (111)/(001) single crystal sliding
P Green curve: same data scaled to 3xL assuming no change in f,
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Size Scaling -Tangential Force
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Size Scaling -Tangential Force
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Scale Independence of Interface Temperature in
the Couette Regime
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Normal Interface Motion Al (110)/(110):(110)/(001}
Centro-Symmetry Parameter

V =50 m/s V=80 m/s V=100 m/s V=120 m/s
,m—440 oK T, =654 °K T, =875 °K T, =1015 °K
P AI Vfront Vfront 3mls Vfront 5.6 m/s Vfront 9.6 m/s
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Normal Interface Motion Al (110)/(110): {110} /{001)
Interface velocity and temperature
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Summary

*We have studied the sliding behavior fora 7.5 M

Al(110)/Al(110) perfect crystal at 15 GPa as a function of
relative sliding velocity.

*The general features are qualitatively similar to smaller scale
(1.4 M) atom simulations for Al(111)/AlI(110) single
crystal sliding.

*The critical velocity, v, agrees with the size scaled v..

For velocities below v, the tangential force

for this orientation (110)/(110) exceeds that

for the scaled (111)/(001) orientation.
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Summary (cont.)

*The range for a transformation front normal to the
interface extends from 80 m/s — 800 m/s .

*The interfacial temperature in the moving interface regime
for the (110)/(110) orientation is ~550 K at the lowest
velocities, rising to 1100 K at v, (T, =1127 K at 15 GPa).

‘Moving interface velocities are < 12 m/s.

*The upper critical velocity, v 4, is scale independent
and depends only on confined fluid properties.
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Al Defective Crystal

The parameters in the previous expressions, f, K and T" depend on
defect structure.

To investigate this we have taken a large (19 M) atom sample with a
large density of pre-existing defects to compare with the single crystal
results.

The defective sample consisted of two (110) faces rotated 90
degrees to form an incommensurate interface.

The defective crystal contained a large density of dislocations and
stacking faults.
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Al Defective Crystal

Defective isotropic crystal was
generated by

e quasi-isentropic compressing a
defect-free Al crystal along the
(110) direction to a pressure of
about 20 GPa.

* followed by an isothermal
expansion to a near isotropic
stress state of 15 GPa.

Defect density = 2-6x1012 cm-2.
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Al Defective Crystal Sliding (110)/(110)

» Sliding direction along <100>

« System size 19.152 M atoms with sample dimensions
(433.12,1482.44, 433.12)

« Previous single crystal (111)/(001) simulations were for 1.4 M atoms
with system sizes of (224.03,504.51, 189.28)

* Pressure: 15 GPa in both
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Al Defective Crystal Sliding (110)/(110)

« We present results for sliding velocities of 100, 200, 300,
and 400 m/s for the defective crystal.

+ We have also considered velocities of 100 and 600 m/s
for a perfect crystal with the same normal dimension.

* The table summarizes the results for the defective crystal.
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Al Defective Crystal Sliding (110)/(110) Results

Sliding Fiang/A | Interface Nres In-plane
Velocity GPa Temp length
(m/s) °K Angstrom
20 0.16 385 548170 433.12
50 0.186 392 548170 433.12
100 0.29 414 548170 433.12
120 | - 445 548170 433.12
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Temperature Profiles: Defective Al

680 T T T T T T
“stress2.128800"

_., " . ./Frict-upS8a/stress3.185688"

V _=400m/s e ﬁlFrlct-uplSB/stress2 .1600888"
J

rel

ccece
]
ve ve o 40

(=== =]

ct-up288/stre332 89600
550

,,.r% |

300m7“’ N _
: \a;_m

G,

e W L
o
Vv 200m/1§m % ; :

rel™

568

3
F
,p

1' 450 |-

OK 1x’<yv%%
( ) 408 ¥ )%'@“&q. Fh“% - _
2‘“"& "“-DL
ﬁa oy,
’xe
as V,=100m/s e -
300 [ .
250 ' L i : : ‘ :
-808 -600 -480 -200 8 280 480 600 806
N Y (A)
> Los Alamos
NATIONAL LABORATORY Slide 51

EST.1943

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA ‘vt\m;




Normal Interface Motion Defective Al
Centro-Symmetry Parameter

V=100 m/s V=200 m/s V=300 m/s Vil
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Al Defective Crystal Centro-symmetry parameter
V=300 m/s , enlarged view
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Results for (110)/(110) sliding
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Blue curve: (111)/(001) single crystal sliding
Green curve: same data scaled to 3xL assuming no change in f,
Red points: Perfect Crystal (110)/(110) sliding

% Black points: Defective Crystal (110)/(110) sliding
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Preliminary results for (110)/(110) sliding

Formation of a f|UId Iayer for V= 420 and1200 m/s
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‘Summary

« We have studied the sliding behavior for a 19 M Al(110)/

Al(110) defective crystal at 15 GPa as a function of
relative sliding velocity.

* The general features are qualitatively similar to smaller
scale (1.4 M) atom simulations for Al(111)/Al(110) non-
defective single crystal sliding.

- The critical velocity, v, is larger for the defective crystal
than the size scaled v..

* The lower velocity tangential force is depressed relative
to the perfect crystal.
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Summary (cont.)

* The critical temperature, T, is depressed relative to the
perfect crystal.

* These conclusions are consistent with a lower value for f,
for the defective crystal.

 The detailed features of structural transformation and the
high velocity regime remain to be mapped.
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Al-Al Defective crystal u =70 m/s
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Interface velocity
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Lower velocity dependence of the frictional force

for defective and defect free Al-Al interfaces
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Polycrystalline Aluminum

Polycrystalline Aluminum samples were created via a process of Voronoi
construction followed by annealing.

The resulting sample with grain size 12.5 nm had dimensions
(385.0, 770.0, 385.0) nm. !9 nm grain sizes have also been considered.

The upper workpiece was formed by translating the lower workpiece and
Rotating it by 90 degrees about the y-axis.

The nominal pressure was 15 Gpa and for these simulations the volume
was fixed. The boundary reservoir temperature was 300K.
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Polycrystalline Aluminum

Interface temperature vs. relative velocity
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A The critical velocity determined from the temperature profile is v, =180—-200 m/s
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Polycrystalline Aluminum

Tangential force per unit area vs. scaled relative velocity
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A The critical force per unit area determined from the power law: ~ 10 kbar
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Polycrystalline Aluminum: averaged grain size = 12.5 nm

The initial grain structure at the sliding interface coarsens, resulting
in highly elongated grains at velocities < v_ = 200 m/s

38.5 nm

77 nm
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Polycrystalline Aluminum: averaged grain size = 12.5 nm

v_=180 m/s
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Polycrystalline Aluminum

The initial grain structure at the sliding interface coarsens, resulting in highly
elongated grains at velocities < v, = 200 m/s

V=60 m/s V=140 m/s V=180 m/s V=420 m/s V=800 m/s
A t=1ns
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Polycrystalline Aluminum

For v > v_, a Couette flow patttern develops

257) u

velocity (m/s) velocity im:s;

A V=800 m/s V,.=2000 m/s
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Conclusions

» The results of NEMD simulations for Al interfaces have shown
the applicability of a scaling interpretation for high velocity sliding.

 For velocities greater than an upper critical velocity a Couette fluid
layer develops with a power law behavior in the velocity dependence
of the tangential force.

 For velocities near and above a lower critical velocity structural
transformation occurs with interface temperatures near the melting
temperature.

* Recent results for polycrystalline Al samples with grain sizes of
12.5 nm and 19 nm indicate, for velocities below the lower critical
velocity, very large plasticity and deformation induced grain
coarsening with enhanced frictional force relative to single crystal
results.
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