
LA-UR-
Approved for public release; 
distribution is unlimited. 

~Alamos 
NATIONAL LABORATORY 
- - - EST. 1943 ---

Title: INCORPORATION OF DISLOCAtiON CLIMB IN CRYSTAL 
PLASTICITY MODELS 

Author(s): A. ALAN KAR 
R. LEBENSOHN 
A. CARO 

Intended for: INTERNATIONAL SYMPOSIUM ON PLASTICITY 2012 
SAN JAUN, PR 
JAN 03 - JAN 8, 2012 

Los Alamos National laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC 
for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance 
of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the 
published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National laboratory requests 
that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National 
Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not 
endorse the viewpoint of a publication or guarantee its technical correctness. 

Form 836 (7/06) 



Incorporation of dislocation climb in crystal plasticity models 

Alankar Alankar, Alfredo Caro and Ricardo Lebensohn 

Materials Science and Technology Division, Los Alamos National Laboratory, 

MS G755, Los Alamos, NM 87545, USA 

This work presents an improved plasticity model for single crystals deforming by a combination 
of dislocation glide and climb. A constitutive framework based on dislocation densities has been 
implemented in a viscoplastic self-consistent (VPSC) formulation. Accounting for the explicit 
evolution of edge and screw dislocations densities enables the instantaneous determination of 
the climb tensor, which depends on the average character of the mobile dislocations. Mobilities 
of dislocations accommodating deformation by climb and glide, which depend on their 
interaction with point defects, are determined using kinetic Monte Carlo simulations. 
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Motivation 
• Standard crystal plasticity models do 

not account explicitly for the 
mechanisms involved in metal 
deformation in elevated temperatures 
e.g. phenomena of creep 

• In general, these phenomena are 
modeled via phenomenological 
description and the models thus 
developed are not well informed by 
intrinsic microstructure evolution e.g. 
dislocation climb 

• At high temperatures, the mechanical 
response of a metal is governed by 
coupled microstructure activities e.g. 
creep is accounted by coupled glide 

~ and climb of dislocations 
e LosAlamos 

.Single crystal plastic 
deformation geometry 

(glide only) 
Schmid 

tensor mS [0 cr'IJD sgn(ms :a') 
£=Yo2: W eRSS s 

+ 

Continuum (physically­
based) hardening theory 

1
S = /-lb@ 

dislocation 
density 

p=a!p -kp 

dislocation density 
evolution (production, 

interaction, annihilation) 

+ 

Point defect generation, 
interaction with 

dislocations, grain 
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Different constitutive formulations for creep rate and 
their limitations 

When the grain size is fairly large, pure metals stressed in the 
stress range 10-5 J.l to 10-3 J.l follow the Power law creep as 
shown below. n = 3 - 6. A is temperature dependent. The 
equation gives a good fit as shown in the picture. This model 
assumes that climb occurs to circumvent the obstacles e.g. 
immobile dislocations in pure metals. Bailey 1930, Norton 1929 

C1=A(}~ 

A is resolved into a constant and temperature dependent part. Q 
is the activation energy for steady state creep and is almost 
equal to that of self diffusion. (Dorn 1954). This equation also 
assumes generation of immobile dislocations. 

£ = A(}n exp{-Q/kT) 
Weertman, 1955 

£ = A((}n /kT)exp(-Q/kT) 

If the production is immobile dislocations is not considered, 
Weertman 1957. This is proposed for high stresses. 

£ = A(}n sinh(B(}n'jkT)exp{-Q/kT)* 
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At higher stress levels than 10-3 J.l the power 
law does not predict the creep rates 
correctly. The experimental observations 
show a steeper trend . J.l is the shear 
modulus 
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Self consistent formulation for viscoplastic deformation 
of polycrystals via glide + climb* 

VPSC (glide only): 

Grain (r): £ == i'oIms 
S 

VPSC (climb and glide): 

Grain (r): 

/ ... -_ .......... -_ ... 
---

" " " 

n 
m S 

: cr'l 

,!S 

° 
xsgn{ )=> 

m S 
: a kd,s : a 

.+ 

.HEM 

.+ 

£ ,...., Mr. cr' + £ or + . 
linearization 

[I 1J
ng (I 1Jnc 

f = Yo ~ 't~,g X sgn( ) + 't~ ,c X sgn( ) => E ,....., Mr : a' + Ear 
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* Lebensohn et ai, Phil Mag (2010) 
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Peach-Koehler (P-K) force 

f = (cr· b )xt 
"Glide" and "climb" components of the P-K force: 

fg = [(a . b )xt]' i = (a· b)· (txi)= Ibl a: (b ®Ii)= Ibl a': (b ®Ii) 

fc = [(a. b )x t]. Ii = (a · b)· (t x Ii) = -Ibl a: (b ® i) 

Weertman's modified expression for the P-K force (*) 

f = ( cr' . b ) x t + l- kB ~ log ( xv! x~,PT l] b x t 
albl 

~~ 

X3~~~~~~~~ ~~~ 

"Glide" and "climb" components of Weertman- modified P-K force 

fg = Ibl a': (b ®Ii) 

X2 
"-

n 

A«'= ) 

v 
~ ~ 9 

~, 

( ~ ..... I -.' 
,/ X1 , 

" 
,;;;,''' 

,; 
,,; tg \f' = P edge o ---

P screw 

fc = l( a' . b )x t + [- k B~ log(xv / X:,PT )]b x t]. Ii = Ibl a' : (b ® i )-Ibl[- k B~ log(xv / X: ,PT )](b ® i) 
albl albl 

~Alamos 
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(*) J. Weertman: "The Peach-Koehler Equation for the Force on a Dislocation, Modified for Hydrostatic 
Pressure". Phil Mag. 114, 1217 (1964). 
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Geometry of climb 

Climb tensor (*): CS 
S bS ij = Xi j In general X L b ~ C:k ;t: 0 

Decomposition (*): C~ = k~ 's + k~ 's +!C 
lj lj lj lj (dev + hyd + antisym) " 

" 
X ",, 

In 'dislocation' 
coordinates (*): [

4 sin \flo 0 

k~'s=~ 0 -2 sin \flo 
IJ 6 

o 0 -,,1"o/J [ 

0 

K' =~ 0 

2 _ cos \flo 

3 """ 

'i"~o/J [

sin \flo 0 
h s 1 . 

k ··' =- 0 sm\flo IJ 3 
o 0 

o cos \flo] 
o 0 
o 0 

"Climb" P-K force: fc = -Ibl a' : (b ® x)-Ibl[- kB~ log(xv / X~, PT )](b ® x) 
albl 

If the local concentration of 
vacancies is instantaneously 
restored into the equilibrium 
concentration : 

Xv = X~,PT, Ibi[-~~ log{xJ X: ,PT )}b <8l i)= 0 

[I 
d 

IJ
nc 

, k ,s :a' 
IT = Yo S xsgn(kd ,s : a') 

ao c , 

Strain-rate (climb-rate): E .. = k~ 's fl's 
lj lj 

Strain-rate: 

Single crystal's strain-rate as a function of stress: 
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kd S ,)nc 
Eij = YoL kt ,s ' s: a xsgn(kd ,s : a') 
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Glide vs. climb in terms of crystal reorientation 

~.Iattice rotates 

- -, '.' 1 ___ ' 

single crystal extension accommodated by glide: 
~ involves lattice reorientation 
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• 

·V caney. 

n 
.Iattice maintains 

: orientation , , , , 

extra 
plane 

single crystal extension accommodated by 
climb of edge dislocations: 

no lattice reorientation 
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Simulations - glide vs. glide + climb 
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• VPSC7c activity 

• VPSC7c mode 
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Climb velocity, creep rate and stress exponent - inputs 
from Kinetic Monte Carlo Simulations 
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a==aph!p: Vc =kh/Ny 

A =Pdbvc ~e=AG'nexp(-Q/k8T) 

The values of n given by the above equation for the appropriate 
stress range is - 3 like many other creep models and is lower 
than as found in the literature, by Cadek and Milicka, Acta 
Metall., 1969 and Davies et aI., Mat. Sci., 1969 . 

Kabir et al. (2010) were able to achieve n value close to what is 
determined from experiments but for a 1 e4 - 1 e5 times higher 
dislocation density. 

The primary reason is that all the models so far consider 
only climb as the creep governing process. However, it has 
been suggested that in creep, both glide and climb of 
dislocations take place. 

"almost all of the creep strain is produced by glide motion 
of dislocations". J. Weertman, ASM Transactions Quarterly, 
61(1968), p. 681 

Only climb can take place when glide is disabled to some 
constraints e.g. geometric constrains. In pure iron, this is not the 
case. 

Edelin and Poirier, Phil. Mag., 28 (1973) p.1203 

Hafiz et aI., Met. Mat. Tran. S., 4(1973) p. 1275 
Los Alamos 
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Our calculations of creep rate and stress exponent 
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T 1/ -----
18 

.... ~lcq~o.dat'usr.gl:3:S 

16 16 

,. 
,. 

.,. ,. ... '" .,., lO 40 60 .... .,., '" .. ~ -<to -20 '" .. '" 
Stress is applied normal to this plane -2 GPa -1 GPa OGPa 

" .... ~<bt'Ulhgl~3! !I ~~1~id.<bt'ushg l ; 3 : 9 - 'v~dtl!J'kld~' UIIt'lI] l : 3 : 9 -

" " ,. 
,. 

" 
10 

. L' __ --'---' .L' __ -'-_ 
.oM --to .~ ,. ... '" ~ 4 ~ ,., .. .. -60 -to -20 20 -40 60 ... . ", :lC ... '" 

2 GPa ~ 1GPa 

h~~~I~m~ UNCLASSIFIED 
---- EST. 194] 

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA 

3GPa 4GPa 

Slide 10 

_ • . w~Q.ltl 
• Va.' /ti:JIP1tJ. 

" 
10 

" 
16 

,. 

" 
10 



a , 
~ 

Our calculations of creep rate and stress exponent 
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Glide accounts for total strain and climb for creep rate 
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Summary 

• Connection established between P-K force (glide component) and Schmid law 

• Climb component of P-K force used to define "climb" tensor (v.g. Schmid tensor) 

• Single-crystal plasticity extended to consider climb-and-glide geometry 

• Rate-sensitivity constitutive equation for glide extended to climb 

• C+G single-crystal constitutive equation implemented in VPSC for the prediction of polycrystal deformation in the 
C+G regime 

• C+G VPSC model can explain differences in texture evolution in AI deformed at high T and different strain-rates. 

• Initial version of the single-crystal C+G model (thermal creep only) assumed vacancy concentration instantaneously 
restored into the equilibrium concentration (at P and T). 

• Single-crystal C+G model (thermal creep) extended beyond the instantaneous restoration of equilibrium 
concentration of vacancies ----+ requires an adjustable phenomenological parameter, a "chemical" stress due to local 
non-equilibrium concentration of vacancies.\ 

• Improved single-crystal C+G model for thermal creep extended to irradiation creep ----+ due to super-saturation of 
vacancies and interstitials, dislocations can only absorb point-defects to climb ----+ model can consider different sink 
strengths for vacancies and interstitials and swelling ----+ polarity, analogous to twinning. 

• strain = strain(glide), strain rate = climb rate 

• Important: glide of dislocations is affected by formation of jogs and that is affecting by vacancy supersaturation 

• Also, note that activation energy for vacancy diffusion in iron is different for paramagnetic and ferromagnetic 
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