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Detection of Spectrally Sparse Anomalies in Hyperspectral Imagery 

James Theiler 
Space Data Systems Group 

Intelligence and Space Research Division 
Los Alamos National Laboratory 

Los Alamos, NM 87544, USA 
Email: jt@lanl.gov 

Abstract-A variant is presented of the classic problem of 
anomaly detection in hyperspectral imagery. In this variant, 
the anomalous signatures are assumed to be additive and to 
exhibit spectra that are sparse - that is, only a few of the many 
hyperspectral channels are significantly nonzero. 

When the background data are Gaussian, and there is 
no structure in the anomalous signatures, then the optimal 
detector is given by a Mahalanobis distance and exhibits 
contours that are ellipsoids. When the desired signature is 
known, then the solution is given by a matched filter that 
is specifically optimized for that signature; the contours are 
parallel planes whose orientation depends on the covariance 
matrix of the background and the desired signature. We 
address an in-between problem, one for which the detailed 
signature is not known, but a more generic description of the 
structure is available. 

We propose that this solution might have application to the 
detection of gaseous plumes, when the chemistry of the gas is 
unknown. Such plumes have approximately additive effect on 
their backgrounds, and - especially in the thermal infrared 
''fingerprint region" - tend to have very sparse absorption and 
emission spectra. 

Keywords-hyperspectral imagery, signal processing, anomaly 
detection, plume detection, sparse modeling 

1. INTRODUCTION 

Gaseous plumes, particularly in the infrared, exhibit very 
distinctive signatures of absorption! as a function of wave­
length. Hyperspectral imagery enables analysts to exploit 
these distinctive signatures, and to detect specific gaseous 
chamicals even at very low concentrations, usign matched 
filters that are tailored both the the specific structure of the 
chemical signature and to the statistics of the background 
clutter. [1]-[8] 

In general, the better the model of the background clutter, 
the smaller the deviations from that model that can be 
reliably detected. 

All of these algorithms, however, assume that the gas 
signature is known. If the chemical itself is not known, then 
the usual approach is to attack the data with a large library 
of gas spectra. If the distorting effects of the atmosphere are 

I Depending on the temperature of the plume relative to its background, 
the plume may be in absorption or emission; but the spectral shape is the 
same in both cases. 
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Figure I. Infrared gas absorption spectra for six diffrent gases, illustrating 
the sparse structure that is typically inherent in gaseous chemical spectra. 

not accounted for, then these algorithms achieve reduced 
effectiveness. 

An entirely different approach for detecting targets in 
clutter is to treat the targets as completely unknown, but 
as unusual compared to the rest of the background. Again, 
we seek deviations from the background clutter, but in this 
case we do not know the direction of that deviation. This 
is the anomaly detection approach, and most algorithms for 
finding anomalies are variants of the so-called RX algorithm, 
which is based on Mahalanobis distance [9]-[12] . 



It is in the nature of anomaly detection that the anomalies 
are not well-defined, and when they are modeled, then they 
are generally modelled (with few exceptions [13], [14]) with 
a uniform distribution. 

One property exhibited by nearly all gaseous chemicals 
is that the spectrum is composed of a relatively sparse 
forest of narrow lines; several examples - which were 
obtained from the HITRAN high-resolution transmission 
molecular absorption database [15] - are illustrated in Fig. 1. 
We propose here to exploit this property and search for 
anomalies that have this spectrally sparse character. 

In a hypothesis testing framework, we write 

Null H o : x = z 

Alternative HI: x = z + t 
(1) 

(2) 

Here, z is the background and is distributed with some 
distribution B (z) that is in practice learned from the data. 
And t is an additive target. We consider three kinds of 
targets: in the first case t is almost completely known (it 
is known up to a scalar multiplier), in the second case, 
t is completely unknown. Our interest for this paper is a 
third case in which the only thing known about t is that it 
is spectrally sparse; that is, the vector-valued t has mostly 
zero-valued elements. 

We remark that the equation x = z + t has the flavor of a 
low-rank plus sparse decomposition. [16] , [17] In our work 
here, the "low-rank" component is treated as Gaussian.2 

II. DERIVATION OF RX FOR ANOMALY DETECTION 

One way to derive the RX detector is with the Generalized 
Likelihood Ratio Test (GLRT), in which the anomalous 
signal is treated as a nuisance parameter, and then one 
maximizes the likelihood over all possible values of the 
nuisance parameters. The likelihood of observing x when t 
is the anomalous target signal is proportional to 

(27r )-d/2I R I- I/ 2 exp[-(x - t f R- I (x - t )/2] (3) 

where d is the dimension of the data (number of spectral 
channels in the hyperspectral image), R is the covariance, 
and IR I is the determinant of R . When t is known, the 
likelihood ratio 

.c(x) = exp[-(x - t )T R- I(x - t )/2] 
exp[-x T R - I x / 2] 

leads to the matched filter 

which is linear in x. 
When t is not known, we can use a GLRT to write 

.c(x) = maXt exp[-(x - t )T R - I (x - t) / 2] 
exp[-x T R- I x / 2] 

(4) 

(6) 

2For hyperspectral data, the Gaussian model typically includes many 
small eigenvalues, so the low-rank is not entirely out of place, here. 

The numerator achieves its maximum when t = x , which 
leads to 

1 
.c(x ) - ----­

- exp[-x T R- I x / 2] 
(7) 

and therefore A(x) = xT R- Ix is a measure for anoma­
lousness . 

III . SPECTRALLY SPARSE ANOMALIES 

In the derivation of A(x) in the previous section, t 
was unrestricted, and we found that the likelihood was 
maximized when t = x. 

We suggest two approaches for restricting the target to 
sparse signatures. 

I . Strictly constrain the target to have a fixed number of 
nonzero elements. Let 00 correspond to the set of targets t 
with k or fewer of the components nonzero; that is, 00 = 
{t I li t 110 :::; k} . The likelihood ratio then becomes 

.c (x) = maxtETk exp( - (x - t)T R - I (x - t) / 2) 
exp( -xT R- Ix/ 2) (8) 

or equivalently: 

A(x) = xTR- Ix _ min (x - tfR- I(x-t) (9) 
t ETk 

is the measure for anomalousness. The case k = d, where 
d is the number of spectral channels, leads to the standard 
RX formulation. 

The experiments described in Section IV uses a matching 
pursuit algorithm to greedily add components to t until k 
components have been added. 

2. Penalize the likelihood function to favor sparse signa­
tures. Here, we can employ an Ll instead of an LO metric, 
and consequently achieve a convex optimization. Rather than 
restrict t to a fixed number of nonzero elements, we "nudge" 
it toward sparsity by altering Eq. (6) with a penalty factor: 

.c (x ) = maXt exp [-(x - t )T R- I(x - t) / 2] exp[->- ll t lld 
exp[-x T R - I x / 2] 

(10) 
This leads to 

A (x ) = xT R- Ix - min [(x - t )T R- I(x - t) + >- ll t lh] 
t 

(11) 
as a measure of anomalousness which can be computed as a 
straightforward quadratic programming problem. The limit 
>- -+ 0 leads to the standard RX formulation . 

IV. EXPERIMENT 

For the experiment shown in Fig. 3, Fig. 4, and Fig. 5, we 
used the Indian Pines dataset, but truncated to the first 128 
spectral channels (removing the channels where atmospheric 
absorption was strong). We also removed a 19-pixel wide 
stripe (on the left of the image) to avoid a single-pixel 
anomaly that overpowered the rest of the image. To this 
background image, along a small 2 x 21 pixel slice of the 
image, a gradient of plume was added, weaker on the left 
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Figure 2, In this simple d = 2 dimensional model , we plot the most 
anomalous (top three percent) and least anomalous (below median in 
anomalous ness) points from 104 total points drawn at random from a 
Gaussian distribution . In (a,b) the distribution is Gaussian with covariance 
given by the identity; in (c,d) the Gaussian has a correlation of 0.3 in the off­
diagonal component of the covariance matrix, We take k = 1 in the leftmost 
panels (a,c), and k = 2 in (b,d). We note that k = d corresponds to the 
standard RX algorithm and in that case elliptical contours of anomalousness 
are seen, For k = 1, we see diamond-shaped contours, corresponding to 
matched filters with respect to the axis directions, 

Figure 3, Truncated Indian Pines dataset. 145 x 126 pixels, and 128 
channels, This broadband image is the sum over all the channels, and 
although it includes the simulated plume, that plume is too weak to be 
observed in this projection. 
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Figure 4. Sparse spectral structure of simulated gas used in Fig. 5. 

and stronger on the right. The detection of this plume shows 
up in Fig. 5 as a dark horizontal stripe.3 The more sensitive 
detection observed in Fig. 5(a) is expected since the matched 
filter in Eg. (5) makes explicit use of the spectrum t , By 
contrast, the anomaly-based approaches in Fig. 5(b,c) do 
not use explicit knowledge about the simulated gas spectrum 
shown in Fig. 4. What Fig. 5 further illustrates is that the 
spectrally sparse anomaly detector in Eg. (9) provides a more 
sensitive detection than the traditional RX anomaly detector. 
Thus, we are able to exploit the sparsity of the signal in 
Fig. 4 without knowing the details of that signature. 

V. DISCUSSION 

We have described preliminary efforts to extend standard 
anomaly detection to the case of a sparse additive target, and 
noted that this may have applications in plume detection. 

One limitation of this work is the restriction to Gaussian 
backgrounds, which are not particularly realistic. Natural ex­
tensions are to heavy-tailed backgrounds [18], [19], to more 
arbitrary global representations [20], or to local background 
estimation [21], 
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