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Detection of Spectrally Sparse Anomalies in Hyperspectral Imagery

James Theiler
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Los Alamos National Laboratory
Los Alamos, NM 87544, USA
Email: jt@lanl.gov

Abstract—A variant is presented of the classic problem of
anomaly detection in hyperspectral imagery. In this variant,
the anomalous signatures are assumed to be additive and to
exhibit spectra that are sparse — that is, only a few of the many
hyperspectral channels are significantly nonzero.

When the background data are Gaussian, and there is
no structure in the anomalous signatures, then the optimal
detector is given by a Mahalanobis distance and exhibits
contours that are ellipsoids. When the desired signature is
known, then the solution is given by a matched filter that
is specifically optimized for that signature; the contours are
parallel planes whose orientation depends on the covariance
matrix of the background and the desired signature. We
address an in-between problem, one for which the detailed
signature is not known, but a more generic description of the
structure is available.

We propose that this solution might have application to the
detection of gaseous plumes, when the chemistry of the gas is
unknown. Such plumes have approximately additive effect on
their backgrounds, and - especially in the thermal infrared
“fingerprint region” — tend to have very sparse absorption and
emission spectra.

Keywords-hyperspectral imagery, signal processing, anomaly
detection, plume detection, sparse modeling

[. INTRODUCTION

Gaseous plumes, particularly in the infrared, exhibit very
distinctive signatures of absorption' as a function of wave-
length. Hyperspectral imagery enables analysts to exploit
these distinctive signatures, and to detect specific gaseous
chamicals even at very low concentrations, usign matched
filters that are tailored both the the specific structure of the
chemical signature and to the statistics of the background
clutter. [1]-[8]

In general, the better the model of the background clutter,
the smaller the deviations from that model that can be
reliably detected.

All of these algorithms, however, assume that the gas
signature is known. If the chemical itself is not known, then
the usual approach is to attack the data with a large library
of gas spectra. If the distorting effects of the atmosphere are

'Depending on the temperature of the plume relative to its background,
the plume may be in absorption or emission; but the spectral shape is the
same in both cases.
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Figure 1. Infrared gas absorption spectra for six diffrent gases. illustrating
the sparse structure that is typically inherent in gaseous chemical spectra.

not accounted for, then these algorithms achieve reduced
effectiveness.

An entirely different approach for detecting targets in
clutter is to treat the targets as completely unknown, but
as unusual compared to the rest of the background. Again,
we seek deviations from the background clutter, but in this
case we do not know the direction of that deviation. This
is the anomaly detection approach, and most algorithms for
finding anomalies are variants of the so-called RX algorithm,
which is based on Mahalanobis distance [9]-[12].



It is in the nature of anomaly detection that the anomaties
are not well-defined, and when they are modeled, then they
are generally modelled (with few exceptions [13], [14]) with
a uniform distribution.

One property exhibited by nearly all gaseous chemicals
is that the spectrum is composed of a relatively sparse
forest of narrow lines; several examples — which were
obtained from the HITRAN high-resolution transmission
molecular absorption database [15] — are illustrated in Fig. 1.
We propose here to exploit this property and search for
anomalies that have this spectrally sparse character.

In a hypothesis testing framework, we write

Null H,: x=1z (D
Alternative H| : x=2z+t 2)

Here, z is the background and is distributed with some
distribution B(z) that is in practice learned from the data.
And t is an additive target. We consider three kinds of
targets: in the first case t is almost completely known (it
is known up to a scalar multiplier), in the second case,
t is completely unknown. Our interest for this paper is a
third case in which the only thing known about t is that it
is spectrally sparse; that is, the vector-valued t has mostly
zero-valued elements.

We remark that the equation x = z+t has the flavor of a
low-rank plus sparse decomposition. [16], [17] In our work
here, the “low-rank” component is treated as Gaussian.?

II. DERIVATION OF RX FOR ANOMALY DETECTION

One way to derive the RX detector is with the Generalized
Likelihood Ratio Test (GLRT), in which the anomalous
signal is treated as a nuisance parameter, and then one
maximizes the likelihood over all possible values of the
nuisance parameters. The likelihood of observing x when t
is the anomalous target signal is proportional to

2m) 2 RI" 2 exp[-(x — t) TR} x —t)/2] (3)

where d is the dimension of the data (number of spectral

channels in the hyperspectral image), R is the covariance,

and |R| is the determinant of R. When t is known, the

likelihood ratio

exp[—(x — t)T R (x - t)/2]
exp[-xTR~1x/2)

leads to the matched filter

M(x)= (TR t)/2 +logL(z) =tTR 'x  (5)

Lix) =

4)

which is linear in x.
When t is not known, we can use a GLRT to write
maxg exp|—(x — t)T R 1(x — t)/2]

£ = exp[—xTR~1x/2]

(6)

2For hyperspectral data, the Gaussian model typically includes many
small eigenvalues, so the low-rank is not entirely out of place, here.

The numerator achieves its maximum when t = x, which

lead
eads to 1

L) = exp[-xTR~1x/2]

and therefore A(x) = x? R™!x is a measure for anoma-
lousness.

@)

III. SPECTRALLY SPARSE ANOMALIES

In the derivation of A(x) in the previous section, t
was unrestricted, and we found that the likelihood was
maximized when t = x.

We suggest two approaches for restricting the target to
sparse signatures.

1. Strictly constrain the target to have a fixed number of
nonzero elements. Let 7; correspond to the set of targets t
with k or fewer of the components nonzero; that is, 7; =
{t | ||tllo < k}. The likelihood ratio then becomes

maxge, exp(—(x — t)T R (x — t)/2)

£(x) = exp(—xTR~1x/2)

®)

or equivalently:

Ax)=xTR 'x —min(x—t)TR ' (x—t) (9
tETk
is the measure for anomalousness. The case k = d, where
d is the number of spectral channels, leads to the standard
RX formulation.

The experiments described in Section IV uses a matching
pursuit algorithm to greedily add components to t until k
components have been added.

2. Penalize the likelihood function to favor sparse signa-
tures. Here, we can employ an L1 instead of an L0 metric,
and consequently achieve a convex optimization. Rather than
restrict t to a fixed number of nonzero elements, we “nudge”
it toward sparsity by altering Eq. (6) with a penalty factor:

maxg exp|—(x — t)T R~ (x — t)/2] exp[=A||t|]1]

£ = exp|-xTR~1x/2]

(10)
This leads to
Ax) =xTR 'x — rr{m (x - ) TR (x —t) + Altl]1]
(D
as a measure of anomalousness which can be computed as a

straightforward quadratic programming problem. The limit
A — 0 leads to the standard RX formulation.

IV. EXPERIMENT

For the experiment shown in Fig. 3, Fig. 4, and Fig. 5, we
used the Indian Pines dataset, but truncated to the first 128
spectral channels (removing the channels where atmospheric
absorption was strong). We also removed a 19-pixel wide
stripe (on the left of the image) to avoid a single-pixel
anomaly that overpowered the rest of the image. To this
background image, along a small 2 x 21 pixel slice of the
image, a gradient of plume was added, weaker on the left
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Figure 2. In this simple d = 2 dimensional model, we plot the most

anomalous (top three percent) and least anomalous (below median in
anomalousness) points from 10% total points drawn at random from a
Gaussian distribution. In (a.b) the distribution is Gaussian with covariance
given by the identity; in (c,d) the Gaussian has a correlation of 0.3 in the off-
diagonal component of the covariance matrix. We take k& = 1 in the leftmost
panels (a.c), and k£ = 2 in (b,d). We note that k = d corresponds to the
standard RX algorithm and in that case elliptical contours of anomalousness
are seen. For k = 1, we see diamond-shaped contours, corresponding to
matched filters with respect to the axis directions.

Figure 3.  Truncated Indian Pines dataset. 145x126 pixels. and 128
channels. This broadband image is the sum over all the channels, and
although it includes the simulated plume. that plume is too weak to be
observed in this projection.
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Figure 4. Sparse spectral structure of simulated gas used in Fig. 5.

and stronger on the right. The detection of this plume shows
up in Fig. 5 as a dark horizontal stripe.* The more sensitive
detection observed in Fig. 5(a) is expected since the matched
filter in Eq. (5) makes explicit use of the spectrum t. By
contrast, the anomaly-based approaches in Fig. 5(b,c) do
not use explicit knowledge about the simulated gas spectrum
shown in Fig. 4. What Fig. 5 further illustrates is that the
spectrally sparse anomaly detector in Eq. (9) provides a more
sensitive detection than the traditional RX anomaly detector.
Thus, we are able to exploit the sparsity of the signal in
Fig. 4 without knowing the details of that signature.

V. DISCUSSION

We have described preliminary efforts to extend standard
anomaly detection to the case of a sparse additive target, and
noted that this may have applications in plume detection.

One limitation of this work is the restriction to Gaussian
backgrounds, which are not particularly realistic. Natural ex-
tensions are to heavy-tailed backgrounds [18], [19], to more
arbitrary global representations [20], or to local background
estimation [21].
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