

2012 Pacific Northwest Loads and Resources Study

October 2012
(Includes 6/6/2013 errata)

THIS PAGE INTENTIONALLY LEFT BLANK

Department of Energy

Bonneville Power Administration
P.O. Box 3621
Portland, Oregon 97208-3621

POWER SERVICES

February 8, 2013

In reply refer to: PGPR-5

Dear Interested Parties:

The Pacific Northwest Loads and Resources Study, commonly called the "White Book", is the Bonneville Power Administration's (BPA) annual snapshot of both the Federal system and the Pacific Northwest (PNW) region loads and resources for the upcoming ten year period. As such, the 2012 White Book provides a picture of both the Federal system and Pacific Northwest (PNW) region loads and resources for Operating Years (OY) 2014 through 2023 as of October 29, 2012.

The White Book serves several purposes: it analyzes BPA's load and resource conditions for sales and purchases; it develops information used by BPA in its Columbia River Treaty (Treaty) studies; and it provides regional information for customers, regional interests, and other planning entities. The White Book is not a guide for day-to-day operations of the Federal Columbia River Power System (FCRPS) nor is it used for determining BPA revenues or rates..

Starting with this 2012 White Book, BPA will only publish the document every other year (even years). This document includes four distinct studies:

- Federal System Analysis – a Federal forecast of firm loads and resources based on expected loads and critical water.

For the 2012 White Book, the annual energy surplus/deficit forecasts under 1937-critical water conditions are relatively unchanged from the 2011 White Book. However, the January 120-hour capacity forecast under 1937-critical water conditions shows larger deficits over the entire study period for the Federal system compared to the 2011 White Book.

Deficits identified in this analysis could be mitigated through actions discussed in the 2013 Resource Program to address the needs identified in the Needs Assessment study.

- Federal System Needs Assessment – a Federal forecast of energy, capacity, and ancillary services under multiple load scenarios (expected, high growth, and low growth, extreme weather event) and varying resource performance.

This assessment is the foundation for defining the power supply obligation needs for the Resource Program which has been published simultaneously with the White Book.

The analysis shows that under a variety of conditions and timeframes, BPA may need to supplement the existing Federal system to meet existing and projected firm power obligations.

BPA's 2013 Resource Program analyzed the results of the Federal System Needs Assessment and describes options of how BPA plans to address these deficits. The Resource Program concluded that the majority of these deficits could be mitigated through the achievement of the Council's Sixth Power Plan conservation targets and market purchases.

- Federal System Resource Adequacy – provides multiple stochastic measures of the Federal system's ability to meet its aggregate energy and capacity demands at any time under many different combinations of conditions. This analysis is used by BPA as it continues to explore and advance its understanding of resource adequacy as it relates to the Federal system.

BPA continues to investigate its draft resource adequacy metrics, as well as alternative metrics appropriate for large hydro-based systems. Additional analyses are required before establishing a metric and standard for the Federal system.

PNW Regional Analysis – a regional forecast of firm loads and resources based on expected loads and critical water. The Regional annual energy surpluses forecasted under 1937-critical water conditions are slightly higher than the 2011 White Book. However, the January 120-hour capacity forecast under 1937-critical water conditions show smaller surpluses through OY 2019 and larger deficits from OY 2020 through the end of the study period, when compared to the 2011 White Book. The White Book assumes all PNW uncommitted IPPs are dedicated to serve PNW regional firm load.

BPA is reviewing this forecast with other regional forecasts produced, particularly PNUCC's Northwest Regional Forecast and the Northwest Power & Planning Council's 6th Power Plan forecast. Deficits identified in this analysis could be mitigated through options discussed in the Council's Sixth Power Plan. Additional mitigation options have been discussed by the Council's Northwest Resource Adequacy Forum.

In addition, BPA is examining the concept of "system flexibility" in this 2012 White Book. BPA is interested in how the concept of flexibility can be further defined and measured and ultimately addressed and will continue to work in various regional forums to advance this topic.

BPA will publish a biennial summary update during the off years that contains only major changes in the Federal System Analysis and PNW Regional Analysis studies from the last White Book publication. All information currently contained in the Technical Appendices will continue to be available electronically.

Additional copies of the 2012 White Book can be obtained from BPA's Public Information Center, 1-800-622-4520. The Technical Appendices present regional loads, grouped by major PNW utility categories and detailed contract and resource information. The Technical Appendices are available only in electronic form. Both the White Book and the Technical Appendices are available on BPA's website at: www.bpa.gov/power/whitebook

Please send questions or additional comments to Tim Misley (503) 230-3942.

Sincerely,

/s/ Stephen R. Oliver

Stephen R. Oliver
Vice President, Generation Asset Management

Enclosure

2012 PACIFIC NORTHWEST LOADS AND RESOURCES STUDY
The White Book

BONNEVILLE POWER ADMINISTRATION
October 2012

Cover Picture:

Source: BPA Photo archive

ACKNOWLEDGMENTS

Preparation of the annual Pacific Northwest loads and resources study is a complex, multidisciplinary effort. BPA wishes to acknowledge the team—BPA staff and others—whose diligence and dedication result in a reliable, high quality document.

Bonneville Power Administration

Generation Asset Management:

Long Term Power Planning Group
Regional Coordination Group
Operational Planning Group

Customer Support Services:

Load Forecasting and Analysis Group

Bulk Marketing and Transmission Services:

Long Term Sales and Purchasing Group

NW Requirements Marketing:

Office of General Counsel

Power Services Business Operations

Pacific Northwest Utilities Conference Committee

Northwest Power & Conservation Council

THIS PAGE INTENTIONALLY LEFT BLANK

Table of Contents

SECTION 1: EXECUTIVE SUMMARY	3
Planning Context.....	3
Sources of Uncertainty	4
Change in White Book Publication	4
Summary of Analyses and Results.....	5
Federal System Analysis	5
Federal System Needs Assessment	6
Federal System Resource Adequacy.....	7
Pacific Northwest Regional Analysis	8
SECTION 2: METHODOLOGY.....	11
Federal System Analysis (Section 3)	11
Federal System Needs Assessment (Section 4)	11
Federal System Resource Adequacy (Section 5).....	11
Pacific Northwest Regional Analysis (Section 6)	12
Load Obligations	12
Hydro Resources Modeling.....	15
Hydro Capacity Modeling	17
Pacific Northwest Hydro Resources	18
Non-Hydro Resources.....	19
Reserves and Losses	19
Independent Power Producers	20
SECTION 3: FEDERAL SYSTEM ANALYSIS.....	21
Federal System Analysis Assumptions.....	21
Federal System Analysis Firm Load Obligations.....	21
Federal System Analysis Resources.....	24
Federal System Analysis Surplus/Deficit Projections	30
Variability of Federal System Analysis Surplus/Deficit Projections.....	32
Federal System Analysis Conclusion.....	33
Comparison to Previous White Books	33
SECTION 4: FEDERAL SYSTEM NEEDS ASSESSMENT.....	39
Federal System Needs Assessment Assumptions.....	39
Federal System Needs Assessment Load Scenarios.....	40
Major Changes from the 2010 Needs Assessment	42
Federal System Needs Assessment Metrics.....	42
Federal System Needs Assessment Results	43
Federal System Needs Assessment Conclusions & Next Steps	50
SECTION 5: FEDERAL SYSTEM RESOURCE ADEQUACY	53
Federal System Resource Adequacy Assumptions	53
Federal System Resource Adequacy Metrics	55
Federal System Resource Adequacy Results.....	57
Sensitivity of Results to Key Assumptions	63
Federal System Resource Adequacy Conclusions & Next Steps.....	64

SECTION 6: PACIFIC NORTHWEST REGIONAL ANALYSIS 65

PNW Regional Analysis Assumptions.....	65
PNW Regional Analysis Firm Energy Load Projections	65
PNW Regional Analysis Firm Resources	67
Potential Variability of PNW Regional Resources	70
PNW Regional Analysis Firm Energy Surplus/Deficit Projections	74
Potential Variability of PNW Regional Energy Surplus/Deficit Projections	76
PNW Regional Analysis Conclusion.....	78
Comparison to Previous White Books.....	79
Comparison to Council's Sixth Power Plan	82

SECTION 7: FEDERAL SYSTEM EXHIBITS 85

Exhibit 7-1: Annual Energy.....	87
Exhibit 7-2: Monthly Energy.....	91
Exhibit 7-3: Annual 120-Hour Capacity	95
Exhibit 7-4: Monthly 120-Hour Capacity.....	99
Exhibit 7-5: 80 Water Year Monthly Energy.....	103

SECTION 8: PACIFIC NORTHWEST REGIONAL EXHIBITS..... 107

Exhibit 8-1: Annual Energy.....	109
Exhibit 8-2: Monthly Energy.....	113
Exhibit 8-3: Annual 120-Hour Capacity	117
Exhibit 8-4: Monthly 120-Hour Capacity.....	121
Exhibit 8-5: 80 Water Year Monthly Energy.....	125

Section 1: Executive Summary

Planning Context

The White Book is a planning analysis produced by BPA that informs BPA of its load and resource conditions for sales and purchases. The White Book provides a 10-year look at the expected obligations and resources in the Federal system and PNW region. The White Book is used as a planning tool for the Columbia River Treaty (Treaty) studies, as an information tool for customers and regional interests, and as a publication of information utilized by other planning entities for their analyses. The White Book is not used to guide day-to-day operations of the Federal Columbia River Power System (FCRPS) or determine BPA revenues or rates.

This 2012 White Book includes forecasted retail loads, power supply obligations, and generating and contract resources for the Federal system and PNW region as of October 19, 2012. The PNW region is represented by BPA's marketing area as defined by section 3(14) of the 1980 Pacific Northwest Electric Power Planning and Conservation Act (Northwest Power Act), P.L. 96-501, and includes Oregon, Washington, Idaho, Montana west of the Continental Divide, and portions of Nevada, Utah, and Wyoming that lie within the U.S. Columbia River drainage basin. The hydro generation estimates incorporate plant characteristics, streamflows, and non-power requirements from the Pacific Northwest Coordination Agreement (PNCA). Non-hydro resource capability estimates were provided by BPA, PNW Federal Agencies, public body, cooperative, and investor-owned utility (IOU) customers through direct submittals to BPA and/or annual Pacific Northwest Utilities Conference Committee (PNUCC) data submittals. This study does not reflect potential future climate change impacts on total retail loads (TRL) and resources.

Traditionally, this long-term power planning document focused on deterministic analysis for the Federal system and PNW region and showed annual and monthly energy and 1-hour and 120-hour capacity results. BPA, like the rest of the electric power industry, is looking at more comprehensive metrics and assessment of the power system. As such, the 2012 White Book has been expanded to incorporate both Federal System Needs Assessment and Federal System Resource Adequacy analyses to investigate these metrics. The Federal System Needs Assessment evaluates the ability of the existing FCRPS resources to meet projected firm load obligations under a specific set of conditions and timeframes (such as extreme weather, and varying economic conditions). The Federal System Resource Adequacy assessment provides a stochastic analysis of the Federal system's probability of meeting firm load under a variety of conditions. Further, in the absence of an industry standard definition and metric, BPA is developing the definitions and metrics needed to plan for the necessary level of system flexibility required to meet the emerging more dynamic load, operational reserve, and real time market needs on a long-term planning basis. As the flexibility provided by existing resources is exhausted and the challenges associated with integrating variable energy resources increase, these metrics will be essential in assuring an adequate and reliable power supply. In this 2012 White Book, BPA proposes the following definition as a standard for system flexibility:

The capability of a power system to deploy its resources to meet aggregate planned and unplanned variability in load and generation occurring at intra-minute, intra-hour, and intra-day time intervals.

BPA continues to improve its understanding of power system flexibility as it relates to the Federal system and PNW region through research and collaboration with other PNW utilities and organizations.

Sources of Uncertainty

The forecasts and studies presented in this document represent the best information currently available under each of the defined metrics. However, major changes in regional resources and power sales products could affect the magnitude, duration and timing of projected surpluses and/or deficits. Some of these uncertainties include:

- Federal system and PNW regional water availability that affects hydroelectric generation;
- Potential increases or decreases in loads due to economic conditions;
- Potential service to new public utilities, Department of Energy (DOE)-Richland vitrification plant operations, and Direct Service Industries (DSI);
- Changes in local, regional, and national economic conditions;
- Failure of existing or contracted generating resources to operate at anticipated times and output levels;
- Changes to Columbia River Treaty (Treaty) obligations;
- Availability of new and existing regional resources that can be purchased to serve firm load;
- Changes to hydro system operations in response to Endangered Species Act or other environmental considerations; and
- Future climate change impacts to loads and resources.

Change in White Book Publication

Beginning this year, BPA plans to produce and publish a complete White Book only every other year beginning in 2012. In addition, starting with this 2012 White Book (and every even year thereafter), BPA will include a Federal System Needs Assessment study and a Federal System Resource Adequacy. During the off years (odd years) BPA will publish a biennial summary update that contains only major changes to Federal system and PNW regional TRLs, power supply obligations, and generating and contract resources from the last White Book publication. All information currently contained in the Technical Appendices will continue to be available electronically on an annual basis, for all publications.

Summary of Analyses and Results

Following is a summary of the studies in this 2012 White Book. The overall methodology is described in Section 2. Please see the specific section for additional details on each study.

Federal System Analysis

The Federal System Analysis is an operating year (OY) analysis that provides a deterministic projection of BPA's firm loads and resources over a 10-year period. Firm load and resource forecasts are made for both energy and 120-hour capacity based on Federal system power sales contract (PSC) obligations, Federal system resources, and Federal system contracts (including power purchased from non-Federal resources). The study period for this analysis is OY 2014 through 2023.

Key Results

Energy: The annual energy surplus/deficit forecasts under 1937-critical water conditions are relatively unchanged from the 2011 White Book. Figure 1-1, below, shows a slight surplus in OY 2014 and deficits beginning in OY 2015 for the Federal system that continues through the end of the study period.

Figure 1-1

**Federal System Surplus/Deficit Projections
For OY 2014 through 2023
Using 1937-Critical Water Conditions
Annual Energy in Average Megawatts**

Energy (aMW)	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
2012 White Book	11.5	-284	-169	-340	-280	-388	-367	-507	-434	-561

120-hour Capacity: The January 120-hour capacity forecast under 1937-critical water conditions, presented in Figure 1-2, page 6, shows larger deficits over the entire study period for the Federal system compared to the 2011 White Book. The primary reason for these larger 120-hour capacity deficits is due to the reshaped Grand Coulee operations in the hydro regulation. Grand Coulee's January through March operation has been reshaped to prevent the project from drafting too deeply for winter fish flow requirements based on input from USBR and the National Oceanic and Atmospheric Administration (NOAA). These are not new operating restrictions but estimates for simulating likely in-season management decisions. By reducing regulated flow in January under 1937-critical water conditions, these revised operations reduced the January 120-hour capacity of the Federal system by approximately 2,000 MW reshaping this flow into other months.

Figure 1-2

Federal System Surplus/Deficit Projections
For OY 2014 through 2023
Using 1937-Critical Water Conditions
January 120-hour Capacity in Megawatts

January 120-Hour Capacity (MW)	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
2012 White Book	-788	-707	-675	-803	-904	-775	-953	-1,011	-1,161	-1,059

Conclusion

This Federal System Analysis illustrates the potential bounds (high and low) of the Federal System. Deficits identified in this analysis could be mitigated through actions discussed in the 2013 Resource Program to address the needs identified in the Needs Assessment study.

Federal System Needs Assessment

While the Federal System Analysis identifies the surplus/deficit under critical water for informational and planning purposes, this Needs Assessment examines five metrics for input into BPA's 2013 Resource Program. The Needs Assessment measures the expected generation capability of the existing Federal system resources to meet projected load obligations under a range of conditions and timeframes. The Needs Assessment does not discuss potential actions that BPA could take to meet any identified needs. Those are evaluated and discussed in BPA's Resource Program. For this 2012 White Book, BPA's Needs Assessment examines the potential needs associated with FY 2016 and 2021.

Key Results

The analysis shows that under a variety of conditions and timeframes, BPA may need to supplement the existing Federal system to meet existing and projected firm power obligations. These conclusions reflect additional limitations on the projected capability of the FCRPS to meet BPA's load obligations since the 2010 Needs Assessment analysis was performed. Specifically, updates to the hydro modeling assumptions have, in general, decreased the expected annual and winter FCRPS forecast generation. The 2012 Needs Assessment projects more significant deficits in the January-February timeframe, some improvement to the second half of August, and increased deficits in September relative to the 2010 Resource Program.

Under the **expected** case, modest annual energy deficits under 1937-critical water conditions are projected. In addition, there are significant deficits (both heavy load hour (HLH) and all hours) in several months at the 10th lowest percentile, notably January and February (winter) and Aug 16 and September (summer). Under the **extreme** weather scenario, BPA is minimal to no longer capacity surplus in winter or summer. Additionally, the Federal system is insufficient to meet the forecasted

99.5 percent level of service for balancing reserve requirements for FY 2016 and 2019. Since forecasts were not available for FY 2021, FY 2019 was used as a proxy in this analysis.

These results are subject to a wide range of uncertainty. Many variables that make up the uncertainties to meet Federal system firm power loads are noted above. Any combination of these factors may contribute to eliminating, reducing, or even increasing deficit projections in this analysis. BPA will continue to evaluate and update this analysis.

Conclusion

BPA's 2013 Resource Program analyzed the results of the Federal System Needs Assessment and describes options of how BPA plans to address these deficits. The Resource Program concluded that the majority of these deficits could be mitigated through the achievement of the Council's Sixth Power Plan conservation targets and market purchases. The Resource Program also discusses other actions BPA plans to take to address these deficits.

Federal System Resource Adequacy

The Federal System Resource Adequacy analysis is a fiscal year (FY) analysis that provides a stochastic simulation to assess the Federal system's probability of meeting firm load obligations under many different combinations of supply and demand. This analysis simulates many combinations of resource generation, due to variable water supply, wind generation, and forced outages against a varying firm load obligation, based on temperature. Given variations in these uncertainties, the analysis examines the planned adequacy of the Federal system in meeting BPA firm load obligations under many possible futures of supply and demand. For this 2012 White Book, BPA examines the Federal system's capability of meeting firm load obligations in FY 2016 and 2017.

Key Results

As shown by Figure 1-3, page 8, the annual loss-of-load probability (LOLP) is 2.4 percent in FY 2016 and 2.7 percent in FY 2017. Both results are within the acceptable range for the standards currently being considered for the Federal system. Droughts, particularly those lasting more than a year, are the primary driver of the worst games with January and February being the months of most concern. However, if long-term purchases to meet Above High Water Mark (AHWM) obligations are not finalized, or accessing the full amount of assumed market depth becomes more difficult, the annual LOLP increases significantly.

Figure 1-3
Federal System Resource Adequacy Projections
For FY 2016 and 2017
Annual Loss-of-Load Probability in Percent

Fiscal Year	2016	2017
2012 White Book	2.4%	2.7%

Conclusion

BPA continues to improve its understanding of resource adequacy as it relates to the Federal system. This analysis suggests that water supply, load obligations, and market depth are primary drivers of Federal Loss of Load Probability results. BPA continues to investigate its draft resource adequacy metrics, as well as alternative metrics appropriate for large hydro-based systems. Additional analyses are required before establishing a metric and standard for the Federal system.

Pacific Northwest Regional Analysis

The PNW Regional Analysis is an operating year analysis that provides a deterministic projection of the PNW region's firm loads and resources over a 10-year period. Firm load and resource forecasts are made for both energy and 120-hour capacity based on regional TRLs, contract obligations, and resources. This White Book analysis assumes that all regional Independent Power Producer (IPP) generation (energy and capacity) is available to meet regional firm load.

Key Results

Energy: Figure 1-4, below, shows the PNW regional annual energy surplus/deficit projections which portray significant surpluses in 2014 that decrease through 2021, and minimal annual energy deficits are forecasted through the rest of the study period under 1937-critical water conditions than the 2011 White Book. This assumes all PNW uncommitted IPPs are dedicated to serve regional firm loads. The PNW uncommitted IPP energy forecast for OY 2014 is 3,285 aMW.

Figure 1-4
PNW Regional Surplus/Deficit Projections
For OY 2014 through 2023
Using 1937-Critical Water Conditions
Annual Energy in Average Megawatts

Energy (aMW)	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
2012 White Book	3,560	2,852	2,559	2,062	2,025	1,505	1,324	324	-240	-690

Figure 1-5, below, shows the significant variability of PNW regional surplus/deficit projections depending on the level of IPP generation available to the region.

Figure 1-5

**PNW Regional Surplus/Deficit Projections
Utilizing Different Levels of Uncommitted IPP Generation Available to the Region
Using 1937-Critical Water Conditions
Annual Energy in Average Megawatts**

Energy (aMW)	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
100% IPP (3,285 aMW)	3,560	2,852	2,559	2,062	2,025	1,505	1,324	324	-240	-690
50% IPP (1,643 aMW)	1,918	1,209	916	419	382	-137	-319	-1,319	-1,883	-2,332
0% IPP (0 aMW)	275	-433	-726	-1,223	-1,260	-1,780	-1,961	-2,961	-3,525	-3,975

120-hour Capacity: The January 120-hour capacity forecast under 1937-critical water conditions, shown in Figure 1-6, below, shows minimal surpluses through OY 2017 and larger deficits beginning in OY 2018 through the end of the study period than the 2011 White Book. This assumes all PNW uncommitted IPPs are dedicated to serve PNW regional firm load. The PNW uncommitted IPP 120-hour capacity forecast for OY 2014 is 3,600 MW.

Figure 1-6

**PNW Regional Surplus/Deficit Projections
For OY 2014 through 2023
Using 1937-Critical Water Conditions
January 120-hour Capacity in Megawatts**

January 120-Hour Capacity (MW)	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
2012 White Book	1,303	1,312	687	185	-203	-622	-1,008	-2,613	-3,042	-3,323

Conclusion

While not a Regional planning entity, this analysis presents BPA's view of the region. Projected regional deficits identified could be mitigated through options discussed in the Council's Sixth Power Plan. Additional views of mitigation options have been discussed by the Council's Northwest Resource Adequacy Forum.

Section 2: Methodology

Federal System Analysis (Section 3)

Energy: Annual and monthly firm energy surpluses and deficits are reported for the Federal system on an operating year basis (August through July) for OY 2014 through 2023 using a deterministic approach. These metrics reflect forecasted firm power load obligations, generating resources, transmission losses, and power contract sales and purchases. Surpluses and deficits are calculated for 1937-critical water conditions as well as all 80 historical water years of record to show the impacts of variability in hydro generation.

120-hour Capacity: Monthly 120-hour capacity surpluses and deficits are reported for the Federal system on an operating year basis for OY 2014 through 2023 using a deterministic approach. The 120-hour capacity metric reflects the average surpluses and deficits over the 6 highest heavy load hours per day, 5 days a week, for 4 weeks a month ($6 \times 5 \times 4 = 120$ hours). These metrics reflect forecasted firm load obligations, generating resources, transmission losses, operating and balancing reserves, and power contract sales and purchases. Surpluses and deficits are calculated for 1937-critical water conditions as well as all 80 historical water years of record to show the impacts of variability in hydro generation.

Federal System Needs Assessment (Section 4)

The Federal System Needs Assessment analysis provides multiple energy and capacity metrics for the Federal system on a fiscal year basis for FY 2016 and 2021. These metrics include annual energy deficits under 1937-critical water conditions, seasonal/monthly heavy load hour (10th percentile by month), 120-hour capacity (10th percentile by month), 18-hour capacity under extreme weather conditions, and reserves for ancillary services. The seasonal/monthly heavy load hour and 120-hour capacity metrics reflect the 10th lowest percentile of surplus/deficit projections by month.

Federal System Resource Adequacy (Section 5)

The Federal System Resource Adequacy analysis includes three draft metrics for the Federal system on a fiscal year basis (October through September) for FY 2016 and 2017. These stochastic metrics include the annual LOLP, monthly LOLP, and Conditional Value at Risk (CVaR). For this 2012 White Book, BPA has added the monthly LOLP metric to identify conditions that may produce significant monthly problems missed by the annual LOLP metric.

Pacific Northwest Regional Analysis (Section 6)

Energy: Annual and monthly firm energy surpluses and deficits are reported for the PNW region on an operating year basis for OY 2014 through 2023 using the same deterministic approach used in the Federal System Analysis. These metrics reflect forecasted TRLs, generating resources, transmission losses, and contract sales and purchases that leave or enter the PNW region. Surpluses and deficits are calculated for 1937-critical water conditions as well as all 80 historical water years of record to show the impacts of variability in hydro generation.

120-hour Capacity: Monthly 120-hour capacity surpluses and deficits are reported for the PNW region on an operating year basis for OY 2014 through 2023 using the same deterministic approach used in the Federal System Analysis. The 120-hour capacity metric reflects the average surpluses and deficits as previously discussed. These deterministic metrics reflect forecasted TRLs, generating resources, transmission losses, operating and balancing reserves, and contract sales and purchases that leave or enter the PNW region. Surpluses and deficits are calculated for 1937-critical water conditions as well as all 80 historical water years of record to show the impacts of variability in hydro generation.

Load Obligations

Federal system firm load obligations are based on BPA's 2008 Regional Dialogue (RD) Power Sales Contracts (PSCs) with Public Agency and Federal Agency customers. Under the PSCs BPA is obligated to provide power sold from October 1, 2011, through September 30, 2028. Three types of products were offered to customers: Load Following, Slice/Block, and Block. One hundred eighteen customers signed the Load Following service contract, 17 signed the Slice/Block service contract, and no customers signed the Block only service contract. Under these power contracts, customers must make periodic elections pertaining to serving future load growth by customers either 1) adding new non-Federal resources, or 2) buying power from sources other than BPA, and/or 3) requesting BPA to supply power for load. These elections are reflected in the customer load forecasts for the Federal system. BPA includes these customer elections in calculating its firm load forecast produced by the Agency Load Forecasting (ALF) system. This ALF system is based on a combination of historical electricity consumption, data from the expired Subscription PSCs, and new data submittals. ALF uses a statistical approach that is based on time-series-based regressions that reflect a fundamental assumption that historical retail electricity consumption patterns will continue into the future.

The PNW Regional Analysis incorporates TRL forecasts for PNW Public Agencies, USBR, IOUs, and DSIs. The TRL forecasts for some Public Agency customers incorporate data submitted to BPA through their PNUCC submittals or TRL forecasts furnished directly to BPA. TRL forecasts reflect normal weather conditions, unless noted, and do not reflect assumptions on future climate change impacts.

ALF forecasting methods allow load forecasts to be influenced by heating and cooling weather conditions and explicitly model new industrial production sites in a customer's service territory.

Load Following Regional Dialogue Power Sales Contracts: The Load Following product provides firm power to meet the customer's TRL, less the firm power from the customer's non-Federal resource generation and purchases from other suppliers used to serve its TRL, if any. The total RD PSC load obligation for the Load Following product is forecast by totaling the PSC's firm requirement load obligations for all BPA Load Following customers.

Slice/Block Regional Dialogue Power Sales Contracts: The Slice/Block product provides firm power to serve the customer's TRL up to its planned net requirement. The Block portion provides a planned amount of firm requirements power in a fixed monthly shape, while the Slice portion provides planned amounts of firm power in the shape of BPA's generation from the Tier 1 System. The total RD PSC service obligation for the Block portion is forecast by totaling the Block obligations for all customers. The total RD PSC service obligation for the Slice portion is forecast by multiplying the forecast monthly Tier 1 System output by the sum of the individual customers' Slice Percentages as stated in their Slice/Block power contracts.

United States Bureau of Reclamation: BPA is obligated by statute to provide power from the Federal system to several irrigation facilities and districts associated with USBR projects in the PNW. These irrigation districts have been congressionally authorized to receive power from specified FCRPS projects as part of the USBR project authorization. BPA does not contract directly with these irrigation districts; instead, there are several agreements between BPA and USBR that provide details on these power deliveries.

Investor-Owned Utilities: BPA's power supply obligations to the IOUs are based upon the IOUs' "Bridge" New Resource Firm Power Block PSCs (Bridge NR Block contracts) and their Residential Exchange Program Settlement Implementation Agreements (REPSIA). Under the IOUs' Bridge NR Block contracts, the IOUs have a contractual right, but no obligation, to place a requirements load obligation on BPA under section 5b(1) of the Northwest Power Act. To date, no IOU has requested to buy power from BPA to serve its load. As such this study assumes that no Federal system power deliveries will occur through the study horizon. The IOUs also are currently engaging in exchanges with BPA pursuant to section 5(c) of the Northwest Power Act under their REPSIAs. Although the exchange is described as a simultaneous exchange of power, BPA has traditionally implemented it as a financial transaction. This study assumes that the Residential Exchange Program will continue to be implemented as a financial transaction for the period covered by this study.

Direct Service Industries: The TRL forecasts for DSIs within the PNW incorporate current and future estimates of industrial and economic conditions for specific DSIs. BPA is currently making power sales deliveries to Alcoa, Inc. (Alcoa) and Port Townsend Paper Corporation (Port Townsend). Port Townsend's current contract with BPA runs through September 30, 2022, and the 2012 White Book shows service to Port Townsend through that timeframe. Additionally, the White Book also incorporates a new contract with Alcoa for 300 aMW that continues through September 30, 2022. As a result, the White Book shows 312 aMW of Federal system power sales to DSIs through September 30, 2022.

Other Contracts: BPA and other PNW regional generators provide power to customers under a variety of contract arrangements not included in the Public Agencies, USBR, IOU, or DSI forecasts. These contracts include obligations outside the PNW region (exports) and obligations within the PNW region. These contract sales were updated as of October 19, 2012. All existing contract sales not included under BPA's regional net requirements service PSCs follow individual contract terms through expiration and are not assumed to be renewed.

Canadian Entitlement Return: Under the terms of the Treaty, the downstream power benefits provided by the construction of three large storage projects in Canada are shared equally between the United States and Canada. The Canadians' share of benefits is called "Canadian Entitlement". The Determination of Downstream Power Benefits analysis is performed annually and establishes the amount of downstream power benefits for each succeeding sixth year. Under the Treaty, BPA and each of the non-Federal mid-Columbia project owners are obligated to return their share of the downstream power benefits owed to Canada in proportion to the benefit they receive. The non-Federal Canadian Entitlement obligations are delivered to BPA, which, in turn, delivers the Federal and non-Federal participants' obligations to Canada. BPA's delivery of the Canadian Entitlement Return obligation to Canada is a U.S. treaty obligation and is considered a Federal system obligation that is shown as a BPA and PNW regional export.

Conservation: The Federal system firm load obligations forecast includes an embedded projection of programmatic conservation savings established under BPA conservation programs. For the 2012 White Book studies a historic embedded annual conservation savings of approximately 56 aMW is assumed throughout the study period. Additionally, 4 aMW of annual incremental conservation is also embedded in the forecast, as new planned conservation.

Hydro Resources Modeling

The Hydrosystem Simulator (HYDSIM) model estimates the energy production that can be expected from regulated hydroelectric power projects in the PNW Columbia River Basin. For the 80 historical water years of record (1929 through 2008) that are modeled, hydro energy production is maximized by coordinating hydro operations while continuing to meet power and non-power requirements. HYDSIM produces results for 14 periods, which are composed of 10 complete months plus April and August split into two half-months. April and August are each divided in half because natural streamflows often change significantly during these months. Key changes in operating constraints, such as flood control elevations and fish migration streamflows, also occur during the middle of April. Consequently, hydro system capability sometimes differs significantly between the beginning and end of these months. For simplicity, these 14-period results are referred to as “monthly” values in this report.

The HYDSIM studies incorporate the power and non-power operating requirements expected to be in effect, including those described in the National Oceanographic and Atmospheric Administration (NOAA) Fisheries FCRPS Biological Opinion (BiOp) regarding salmon and steelhead, published May 5, 2008; the NOAA Fisheries FCRPS BiOp Amendment, published May 20, 2010; the U.S. Fish and Wildlife Service (USFWS) FCRPS BiOp regarding bull trout and sturgeon, published December 20, 2000; the USFWS Libby BiOp regarding bull trout and sturgeon, published February 18, 2006; relevant operations described in the Northwest Power and Conservation Council's (NPCC) Fish and Wildlife Program; and other fish mitigation measures. Each hydro regulation study specifies particular hydroelectric project operations for fish, such as seasonal flow objectives, minimum flow levels for fish, spill for juvenile fish passage, reservoir target elevations and drawdown limitations, and turbine operation efficiency requirements.

2010 Level Modified Streamflows: The HYDSIM model uses streamflows from historical years as the basis for estimating power production from the hydroelectric system. This study uses the 2010 level of modified historical streamflows which was published in August 2011. These data reflect historical estimates of 1929 through 2008 unregulated streamflows assuming estimated irrigation depletions from 2010. This study also expands the number of hydro conditions modeled in the study. Hydro generation estimates depicted in the 2011 White Book were from a 70 historical water year data set. This update was not just 10 years of new streamflow data added to the previous 70 historical water year data set; rather, it is an entirely new data set that revised the previous 70 water years of streamflows to the same 2010 level of irrigation depletions and added 10 more years of streamflow data. All 80 historical water years of streamflows are modeled to forecast the expected operations of the hydroelectric system under varying hydro conditions.

Pacific Northwest Coordination Agreement Hydro Operating Characteristics: The PNCA coordinates the planning and operation of member power systems in the PNW Columbia River Basin. All PNCA project owners provide physical plant data and all power and non-power constraints in an annual data submittal. BPA

incorporates this project data into HYDSIM to simulate the operation of the PNW hydro system.

Columbia River Treaty Operations: The Treaty between the United States and Canada enhanced the volume of storage in the Columbia River Basin with the construction of three large storage projects in Canada. These projects provide downstream power benefits by increasing the firm power generating capability of U.S. hydro projects. The Treaty calls for an Assured Operating Plan (AOP) to be completed six years prior to each operating year and allows a Detailed Operating Plan (DOP) to be completed, if agreed, the year prior to the operating year. The Canadian project operations simulated in HYDSIM are based on the best available information from the Treaty planning and coordination process. As the DOP is usually completed a few months prior to the operating year, Canadian operations included in this 2012 White Book are based on the official 2014 AOP and 2015 AOP studies with a few modifications to reflect updates expected in the official DOP studies.

Non-Treaty Storage Agreement Operations: The Non-Treaty Storage Agreement (NTSA) allows additional shaping of Columbia River flows for power and fish operations by utilizing non-Treaty storage in Canadian reservoirs. The NTSA allows water to be released from Canadian non-Treaty storage during the spring of dry years. The NTSA also allows water to be stored in the spring during years when the spring flow targets from the 2008 NOAA BiOp are being met with a subsequent release of water in the summer. These operations have been included in this study based on the long-term agreement signed with B.C. Hydro in April 2012.

Balancing Reserves: To ensure sufficient intra-hour balancing reserves, *Incremental* balancing reserves were modeled by reducing the maximum amount of generation at several projects, reserving some of the generation in case generation needs to increase when incremental reserves are called upon. *Decremental* balancing reserves require that the system be able to decrease generation on command, and thus the system must generate above its normal minimum generation level. Therefore, decremental reserves were modeled as an increase to the minimum generation level at the Federal system hydro projects that might carry these reserves. Incremental and decremental balancing reserve amounts of 900 MW and 1,100 MW, respectively, were used to represent the balancing reserves supplied by the Federal system. These amounts are based on the Federal system balancing reserve limits presented in the BP-14 Rate Case Generation Inputs workshop on August 8, 2012.

Other Significant Hydro Modeling Changes: Hydro regulation studies are updated on a regular basis to reflect the best information available. This 2012 White Book includes a significant modeling update to Grand Coulee operations to better reflect expected actual operations. Grand Coulee's January through March operation has been reshaped to prevent the project from drafting too deeply for winter fish flow requirements based on input from USBR and NOAA. These are not new operating restrictions but estimates for simulating likely in-season management decisions. Although not described here, numerous other standard hydro modeling updates are included in the 2012 White Book studies. These minor

updates are consistent with the BP-14 Initial Rate Proposal which describes these modeling updates in detail.

Use of Critical Water for Firm Planning: To ensure sufficient generation to meet load, BPA bases its resource planning on critical water conditions. Critical water conditions are when the PNW hydro system would produce the least amount of power while taking into account the historical streamflow record, power and non-power operating constraints, the planned operation of non-hydro resources, and system load requirements. For operational purposes, BPA considers critical water conditions to be the eight month critical period of September 1936 through April 1937. However, for planning purposes in the White Book the “critical period” is represented by the historical streamflows from August 1936 through July 1937. The hydro generation estimates under 1937-critical water conditions determine the critical period firm energy for the regulated and independent hydro projects.

Hydro Capacity Modeling

BPA uses its Hourly Operating and Scheduling Simulator (HOSS) model to simulate the relationship of hydro energy to hydro peaking capability for Federal resources. The hydro peaking capability assumes monthly heavy load hour hydro generation is maximized and is not an indication of the Federal hydro system’s ability to react to system distress. This relationship was simulated for a variety of hours per month over the sequence of the 80 historical water years. Two separate capacity methodologies are discussed in this 2012 White Book, with the 18-hour capacity included in the Needs Assessment and the 120-hour capacity included in the Federal System Analysis, Federal System Needs Assessment, and PNW Regional Analysis. The 1-hour capacity forecasts are included in the Technical Appendix for informational purposes only.

1-Hour (Instantaneous) Hydro Capacity: Monthly 1-hour capacity forecasts for Columbia River Basin regulated and independent hydro projects are based on individual project full-gate-flow maximum generation at mid-month reservoir elevations over the sequence of 80 historical water years. The 1-hour hydro capacity estimates, however, do not consider the ability of the hydro system to sustain generation levels needed to meet day-to-day and month-to-month hydro operations. This inability to sustain full hydro capacity is because there are more hydro generating units than fuel (water) available to operate all units on a continuous basis. For this reason, other methodologies are used to produce hydro capacity estimates that better reflect the actual ability to generate the hydropower needed to meet expected peak firm load obligations throughout each month given quantities of water available.

18-Hour Capacity: The 18-hour capacity forecasts reflect the Federal system’s hydro generating capability over the 6 highest load hours per day during a three-day weather event. Extreme weather events are modeled in February (cold snap) and the second half of August (heat wave) as these periods tend to be the most limited.

120-Hour Capacity: The 120-hour capacity forecast for the hydro system uses the monthly distribution of reservoir storage and streamflow runoff to maximize energy and capacity production while meeting non-power requirements and firm load obligations throughout the month. The 120-hour capacity forecasts take into account forecasted scheduled hydro maintenance and operating and balancing reserves, which are netted out for reporting purposes. The 120-hour capacity represents the average over the 6 highest heavy load hours per day, 5 days a week, for 4 weeks a month ($6 \times 5 \times 4 = 120$ hours).

Capacity or Energy: Capacity methods shown in these analyses are calculated over specific timeframes (i.e. 120-hour, 18-hour, or 1-hour). These capacity metrics are created by evaluating energy components over a specific period of time. In the case of instantaneous, it is simply a maximum at a moment, while the 120-hour is energy averaged over 120 peak hours (6 hours per day, 5 days per week, for 4 weeks). Similarly, the 18-hour is energy averaged over 18 hours (6 hours per day for 3 consecutive days). Therefore capacity can be expressed as either capacity in megawatts (MW) or as an energy over peak load hours in average megawatts (aMW).

Pacific Northwest Hydro Resources

Hydro resource forecasts in the White Book are produced using three different methods. 1) Regulated hydro generation estimates are provided by the HYDSIM model. 2) Independent hydro forecasts are usually provided by individual project owners for the same 80 historical water conditions. 3) Small hydro projects are provided by individual project owners but do not vary by water condition.

Regulated Hydro Generation: The HYDSIM model is used to estimate the energy production that can be expected from specific hydroelectric power projects in the PNW Columbia River Basin when operating in a coordinated fashion and meeting power and non-power requirements over the sequence of 80 water years. The hydro projects modeled in HYDSIM are called regulated hydro projects. These projects include the 14 largest projects in the Federal system, the mid-Columbia projects, and other major projects in the PNW. The hydro regulation study uses individual project operating characteristics and conditions to determine energy production expected from each specific project. The HYDSIM model provides project-by-project monthly energy generation estimates for the regulated hydro projects that vary by water year.

Independent Hydro: Independent hydro includes smaller hydro projects whose generation output typically varies by water condition. These projects are not modeled or regulated in the HYDSIM model. Independent hydro generation estimates are provided by individual project owners for the sequence of 80 water years. The independent hydro generation forecast can vary by water year and study year.

Small Hydro: Generation estimates for the small hydro projects are provided by individual project owners and are assumed to not vary by water year.

Non-Hydro Resources

Thermal, Cogeneration, and Non-Wind Renewable Resources: These projects include nuclear, coal, gas-fired, cogeneration, and renewable resources such as geothermal, solar, and biomass projects. Generation forecasts are based on the energy and capacity capability information submitted to BPA by individual project owners. Total plant output is reduced to account for scheduled maintenance and operating reserves held for spinning and non-spinning. Columbia Generating Station (CGS), large thermal (nuclear), has a biennial scheduled refueling outage in odd years throughout the study period.

Wind Resources: The annual firm wind methodology uses historical wind generation and a statistical model of PNW wind generation based on historical weather data to estimate historical generation for all PNW wind projects currently operational. The operating year with the lowest total PNW wind generation is selected as the firm wind year. Each project's monthly generation (actual or estimated) during the firm wind year becomes its wind energy forecast. This new methodology only provides the wind generation forecasts included in the Federal system and PNW regional energy analyses. Consistent with previous White Books, the Federal system and PNW regional capacity analyses still assume no capacity contribution from wind generation.

Other Resource Contracts: Federal system or regional contract purchases and imports into the PNW region are treated as resources. These contract purchases were updated as of October 19, 2012. All existing Federal system and regional contract purchases follow individual contract terms through expiration and are not assumed to be renewed.

Reserves and Losses

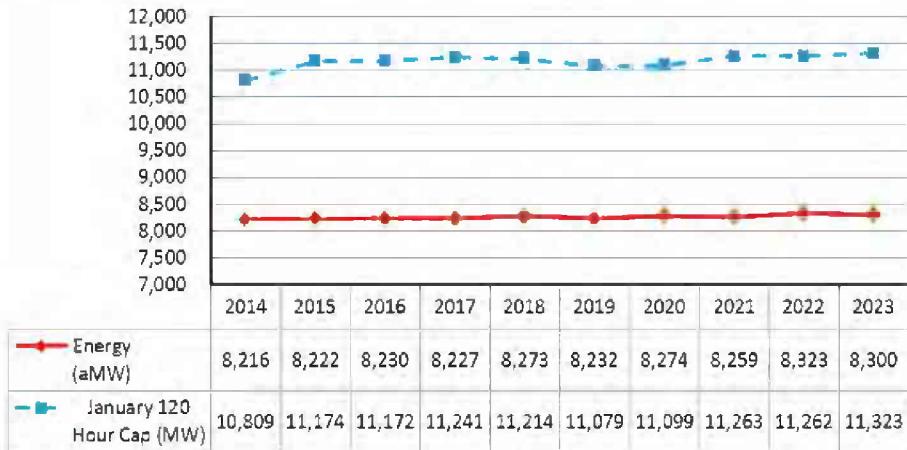
Operating Reserves: The White Book includes hydro capacity reductions for operating reserves that contain contingency reserves and balancing reserves. 1) Contingency reserves (spinning and non-spinning) represent the reserves that respond to the unforeseen loss of a resource. The contingency reserve obligation is calculated by summing 3 percent of forecast load and 3 percent of forecast generation. 2) Balancing reserves (regulating, load following, and generation/energy imbalance) represent the reserves dedicated to maintain within-hour load-resource balance, including reserves for wind integration. Modeling of incremental and decremental balancing reserves, including those for wind integration, is described in Section 2: Methodology, Hydro Resources Modeling, Balancing Reserves on page 15. The reserve forecasts included in this 2012 White Book are consistent, in calculation and assumption with the BP-14 Initial Rate Proposal.

Transmission Losses: Transmission losses involve several components that combine to give the estimate of losses typically associated with system generation. In the White Book, transmission loss estimates are calculated on a monthly basis and vary by water condition. The loss factors for the transmission system are applied to generation, 2.82 percent for energy and 3.35 percent for peak deliveries when averaged over the year. Transmission losses are treated as a resource reduction.

Independent Power Producers

Generation forecasts are based on the energy and capacity capability information submitted to BPA by the project owners or, for wind resources, the annual firm wind methodology. Uncommitted PNW IPP projects that have been built or that are under construction are assumed to be dedicated to meet PNW regional firm loads unless otherwise specified.

Section 3: Federal System Analysis


Federal System Analysis Assumptions

The Federal System Analysis is based on Federal system resources, Federal contracts, including power purchased from non-Federal resources, and Federal PSC's as of October 19, 2012. This analysis is based on the assumptions and methodologies discussed in Section 2: Methodology, starting on page 11. Additionally the Federal System Analysis includes an additional 29.7 aMW of BPA-funded conservation identified in the BP-14 Initial Rate Proposal, over the FY 2014-2015 rate period.

Federal System Analysis Firm Load Obligations

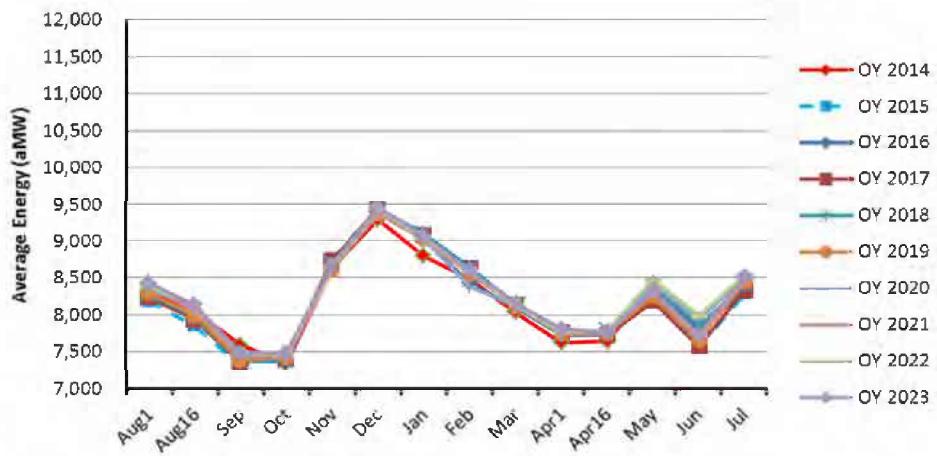
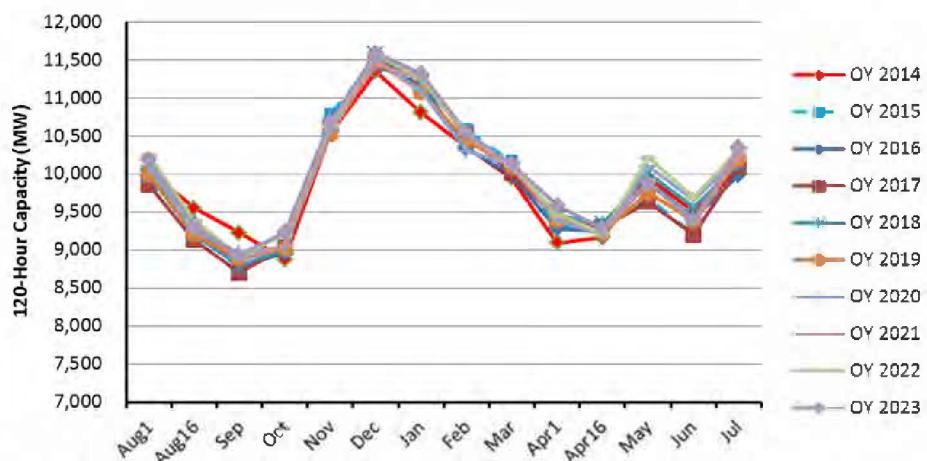

Federal system firm loads continue to change over the study period; these changes are in both annual energy and monthly shape of the firm requirements loads over the year. BPA's RD PSC forecasts project load growth for both Load Following and Slice/Block customers. Federal system firm load obligation forecasts assume that BPA will be serving the same percentage of load growth reflecting customer elections made under their PSCs. This is forecasted at an average annual growth rate of approximately 0.8 percent over the study period. While the PSC firm requirements load continues to increase over the study period, exports and intra-regional transfers show reductions as current contracts and settlement agreements expire in OY 2015 through 2018. These include surplus Federal PSCs with the Cities of Pasadena and Riverside, a wind energy shaping contract with Pacific Gas and Electric(PG&E), and the WNP-3 settlements with Avista Corporation (Avista) and Puget Sound Energy (Puget). When all of these factors are considered, the total Federal system firm load obligations remain relatively flat over the study period. Figure 3-1, page 22, shows the firm annual energy obligation forecast between 8,216 aMW and 8,323 aMW over the study period. The Federal system firm 120-hour capacity load obligation for is between 10,809 MW and 11,323 MW over the same period.

Figure 3-1
Federal System Firm Load Obligations
For OY 2014 through 2023
Annual Energy and January 120-Hour Capacity



While looking at the Federal system firm obligations on an annual basis gives a picture of what is happening annually over the study period, it does not provide a picture into how the total firm load obligation is shaped monthly during the year. Figures 3-2 and 3-3, page 23, illustrate the monthly shape of the forecasted Federal system firm load obligation. Monthly average energy and 120-hour capacity are projected to maintain a similar monthly shape over the study period, with the highest loads being forecasted during the normal winter cold temperatures (November through February) and the lowest loads being forecasted in September, October, April and June with milder temperatures.

Figure 3-2
Federal System Firm Load Obligations
For OY 2014 through 2023
Monthly Energy in Average Megawatts

Figure 3-3
Federal System Firm Load Obligations
For OY 2014 through 2023
Monthly 120-Hour Capacity in Megawatts

Federal System Analysis Resources

The Federal system includes resources with a range of different fuel and generation types. Figure 3-4, below, summarizes the resources and contract purchases available to BPA to meet the Federal system firm load obligations for OY 2014. Federal system firm energy resources are comprised of approximately 82 percent hydro, 12 percent nuclear, 5 percent contract purchases and 1 percent renewables (which is supplied by wind and a small amount of solar).

Figure 3-4

**Federal System Resources[†]
For OY 2014
Under 1937-Critical Water Conditions
Annual Energy and January 120-Hour Capacity**

Project Type	Annual Energy (aMW)	Percent of Firm Energy	January 120-Hour Capacity (MW)	Percent of Capacity
Hydro	6,917	81.7%	11,283	87.1%
Nuclear	1,030	12.2%	1,130	8.7%
Cogen	19	0.2%	12	0.1%
Small Hydro	3	0.0%	3	0.0%
Renewables	60	0.7%	0	0.0%
Contract Purchases	437	5.2%	529	4.1%
Total Federal Resources	8,466	100.0%	12,958	100.0%

[†]Federal resource estimates are before adjustments for reserves and transmission losses.

The resources summarized above are shown in detail on the following pages. The Federally owned hydro resources from which BPA markets firm and non-firm power are detailed in Figure 3-5 on page 25. BPA also markets firm power purchased from non-Federally owned resources and firm power purchase contracts. These non-Federally owned resources are detailed in Figure 3-6 on page 26.

Figure 3-5

Federally Owned Hydro Resources Energy and Capacity for OY 2014					
Project	Initial Year of Service	Number of Units	Nameplate Rating (MW)	Firm Energy [†] (aMW)	120-Hour January Capacity ^{††} (MW)
Regulated Hydro					
Albeni Falls	1955	3	49	24	25
Bonneville **	1938	20	1,195	404	921
Chief Joseph	1955	27	2,614	1,142	2,408
Dworshak	1974	3	465	143	434
Grand Coulee	1941	27	6,735	1,988	5,340
• GCL Pump Generation	1973	6	314		
Hungry Horse	1952	4	428	76	319
Ice Harbor	1961	6	693	157	586
John Day	1968	16	2,480	817	2,295
Libby	1975	5	605	181	483
Little Goose	1970	6	930	178	859
Lower Granite	1975	6	930	174	737
Lower Monumental	1969	6	930	182	810
McNary	1953	14	1,120	486	1,036
The Dalles	1957	24	2,052	486	1,036
Idle Capacity Reduction					-8,376
Total Regulate Hydro Resources		173	21,540	6,439	8,913
Independent Hydro					
Anderson Ranch	1950	2	40	13	4
Big Cliff	1954	1	21	10	3
Black Canyon	1925	2	10	6	3
Boise Diversion	1908	3	3	1	0
Chandler	1956	2	12	6	4
Cougar	1964	2	28	19	6
Detroit	1953	2	115	33	103
Dexter	1955	1	17	9	3
Foster	1968	2	23	12	3
Green Peter	1967	2	92	27	8
Green Springs	1960	1	18	7	7
Hills Creek	1962	2	34	18	4
Lookout Point	1954	3	138	35	8
Lost Creek	1975	2	56	30	44
Minidoka	1909	4	28	11	2
Palisades	1957	4	176	69	9
Roza	1958	1	13	7	2
Total Independent Hydro Resources		36	824	314	213
Total Federally Owned Hydro Resources		209	22,364	6,753	9,126

[†] Firm energy is a 12-month annual average for OY 2014 assuming 1937-critical water conditions.

^{††} This is the 120-hour hydro generation for January 2014 assuming 1937-critical water conditions.

Figure 3-6

Non-Federally Owned BPA Resources and Contracts Energy and Capacity for OY 2014					
Project	Type	Operator	Initial Year of Service	Firm Energy† (aMW)	120-Hour January Capacity ‡‡ (MW)
Hydro					
Cowlitz Falls	Hydro	Lewis County PUD	1994	26.2	10.0
Idaho Falls Bulb Turbines	Hydro	Idaho Falls Power	1982	14.0	22.3
1. Total Non-Federally Owned BPA Hydro Resources				40.2	32.3
Nuclear					
Columbia Generating Station	Nuclear	ENW	1984	1030.0	1130.0
2. Total Non-Federally Owned BPA Nuclear Resources				1030.0	1130.0
Cogen					
Georgia Pacific Paper Wauna	Cogen.	Georgia Pacific	1996	19.2	24.0
3. Total Non-Federally Owned BPA Cogen Resources				19.2	24.0
Small Hydro					
Dworschak/Clearwater Small Hydro	Hydro	State of Idaho DWR	2000	2.6	3.0
Rocky Brook	Hydro	Mason PUD No 1	1999	0.3	1.6
4. Total Non-Federally Owned BPA Small Hydro Resources				2.9	4.6
Renewables - Wind					
Condon Wind Project	Wind	Condon Wind Project, LLC	2002	9.6	0.0
Foote Creek 1	Wind	Foote Creek 1, LLC	1999	4.0	0.0
Foote Creek 2	Wind	Foote Creek 2, LLC	1999	0.5	0.0
Foote Creek 4	Wind	Foote Creek 4, LLC	2000	4.4	0.0
Klondike Phase I	Wind	NW Wind Power	2001	6.8	0.0
Klondike Phase III	Wind	NW Wind Power	2007	14.2	0.0
Stateline Wind Project	Wind	PPM, FLP	2001	20.7	0.0
Renewables - Other					
Fourmile Hill Geothermal †††	Geo.	Calpine	Unknown	0.0	0.0
Ashland Solar Project	Solar	City of Ashland, OR	2000	0.0	0.0
White Bluffs Solar	Solar	Energy Northwest	2002	0.0	0.0
5. Total Non-Federally Owned BPA Renewable Resources				60.3	0.0
Firm Contracts					
Canadian Entitlement for Canada (non-Federal)				136.4	239.0
Canadian Imports				30.6	1.0
Pacific Southwest Imports				22.1	72.2
Inland Southwest Imports				0.0	0.0
Eastern Imports				0.0	0.0
Intra-Regional Transfers In (Pacific Northwest Purchases)				210.9	512.0
Slice Transmission Loss Returns				36.6	50.7
6. Total BPA Firm Contracted Resources				436.6	874.9
7. Transmission Loss Returns				-238.7	-347.3
Total Non-Federally Owned BPA Resources and Contracts (1+2+3+4+5+6+7)				1350.5	1718.4

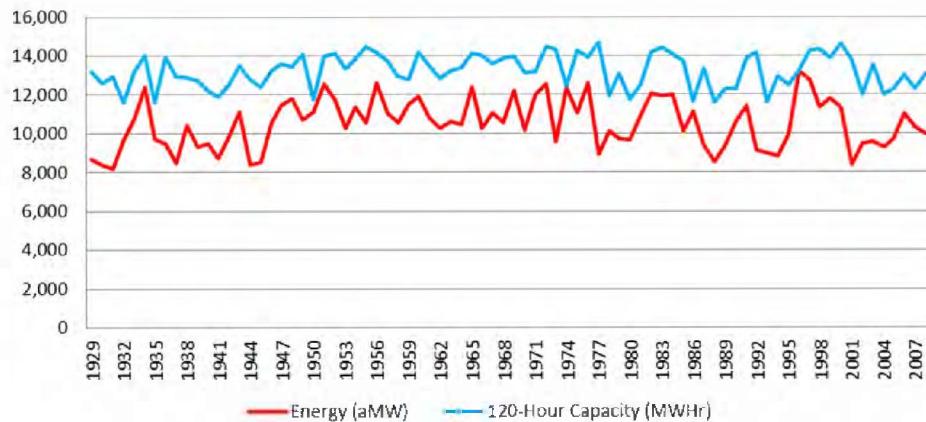
† Firm energy is a 12-month annual average for OY 2014, hydro resources assume 1937-critical water.

‡ This is the 120-hour hydro generation for January 2014, hydro resources assume 1937-critical water.

†† Fourmile Hill is assumed to be not in operation within the study period.

There are modest changes in the Federal system resource stack and generation forecasts over the study period, shown below in Figure 3-7. In general, the Federal system firm energy and 120-hour capacity resource forecasts decline through the study period, based on contract and settlement agreements expiring in the OY 2015 through 2018 timeframe. These include surplus power contracts with the Cities of Pasadena and Riverside, Georgia-Pacific Paper (Wauna), a wind energy shaping contract with PG&E, the WNP-3 settlements with Avista and Puget, and the purchased output from the Idaho Bulb Turbine hydro projects. Along with the expiration of long-term contracts, resource forecasts change on an annual basis driven by issues such as maintenance, refueling, and capital improvements.

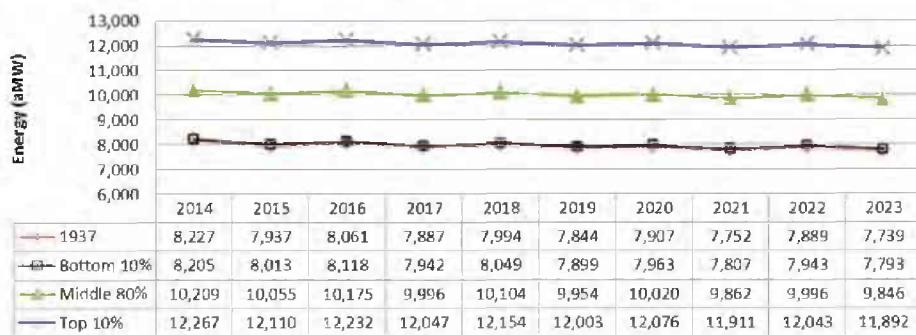
Figure 3-7
Federal System Resources
For OY 2014 through 2023
Under 1937-Critical Water Conditions
Annual Energy and January 120-Hour Capacity



The Federal system resource forecast shown above reflects 1937-critical water conditions. Since the Federal hydro system makes up about 82 percent of BPA's resources, the availability of water is the single largest driver of forecasted Federal system resource generation. Figure 3-8, page 28, shows the variability in Federal hydro resources over the 80 historical water conditions.

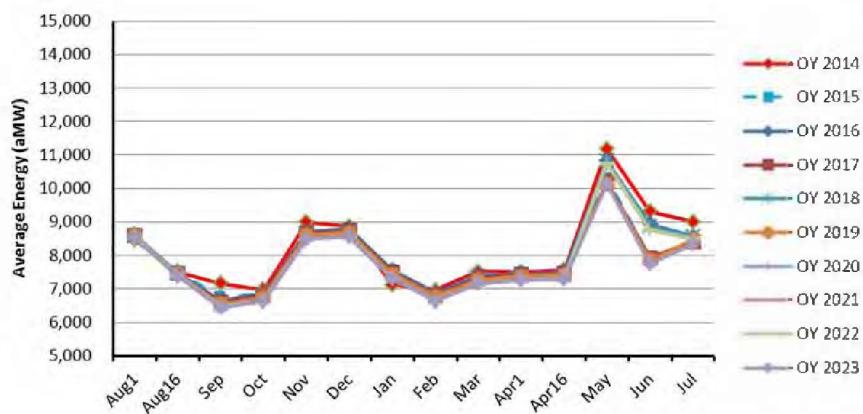
Figure 3-8

**Federal System Hydro Resources
For OY 2014
Under 80 Historical Water Conditions
Annual Energy and January 120-Hour Capacity**

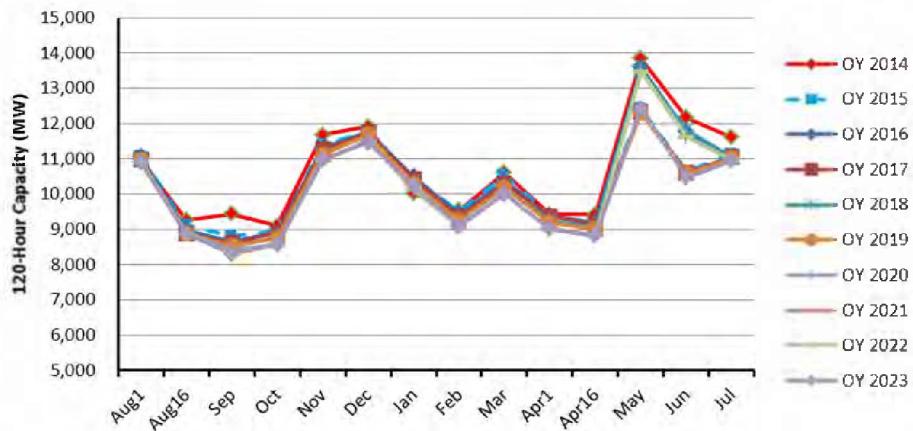

Energy max 13,203 and min 8,206 aMW, 120-Hour Capacity max 12,986 and min of 9,914 MW

The hydro variability described above translates directly into the variability of the Federal system resources. Figure 3-9, below, illustrates the annual average energy variability of Federal system resources for OY 2014 through 2023 under four scenarios: 1) 1937-critical water conditions (the base case of this study); 2) the average of the bottom 10 percent; 3) the average of the middle 80 percent; and 4) the average of the top 10 percent of the 80 historical water conditions (1929 through 2008).

Figure 3-9


**Federal System Resources
For OY 2014 through 2023
Under Different Levels of Water Conditions
Annual Energy in Average Megawatts**

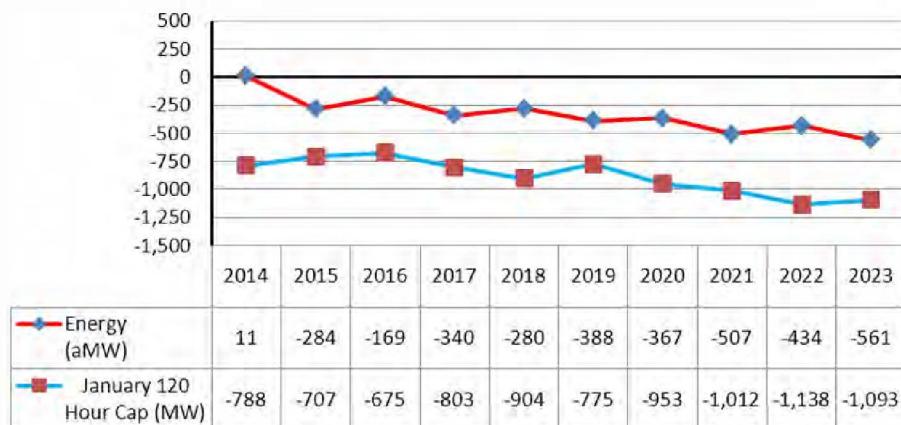
While looking at Federal system resources on an annual basis provides a picture of trends over the study period, it does not show how Federal resources are shaped monthly over the year. Figures 3-10 and 3-11, below, illustrate the monthly shape of the Federal resource forecast under 1937-critical water conditions. Monthly Federal resource forecasts for average energy and 120-hour capacity maintain similar shapes over the study period, with the highest generation forecasts being in late spring/early summer and early winter periods. The lowest generation forecasts occur in the early fall and February timeframes.


Figure 3-10

**Federal System Resources
For OY 2014 through 2023
Under 1937-Critical Water Conditions
Monthly Energy in Average Megawatts**

Figure 3-11

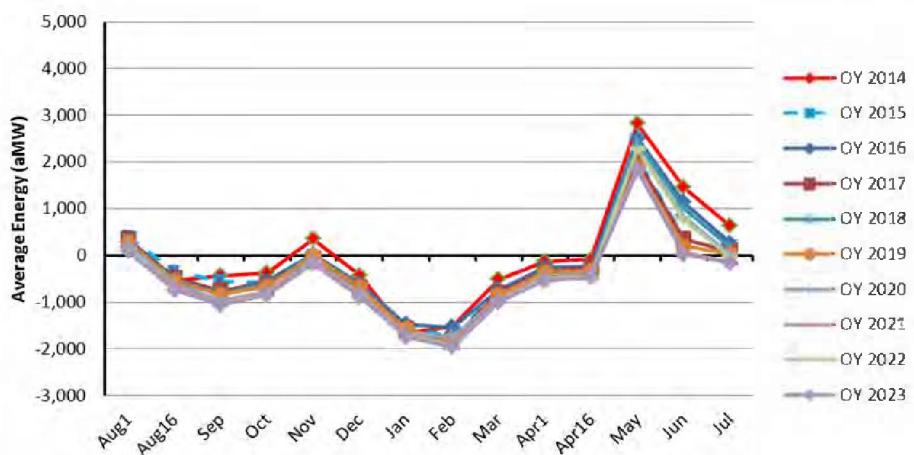
**Federal System Resources
For OY 2014 through 2023
Under 1937-Critical Water Conditions
Monthly 120-Hour Capacity in Megawatts**


The high generation levels in early winter are largely due to drafting reservoirs for power production. Federal hydro resources are generally operated at lower power production levels during January through March and reservoir draft is minimized to assist fish passage as identified in current BiOp flow requirements based on the planning model operation (real-time operation may look different). Power production reaches its highest levels during the Columbia River Basin's peak snowmelt runoff period that occurs from May through July. Finally, power production decreases through the end of the summer and early fall as streamflows recede.

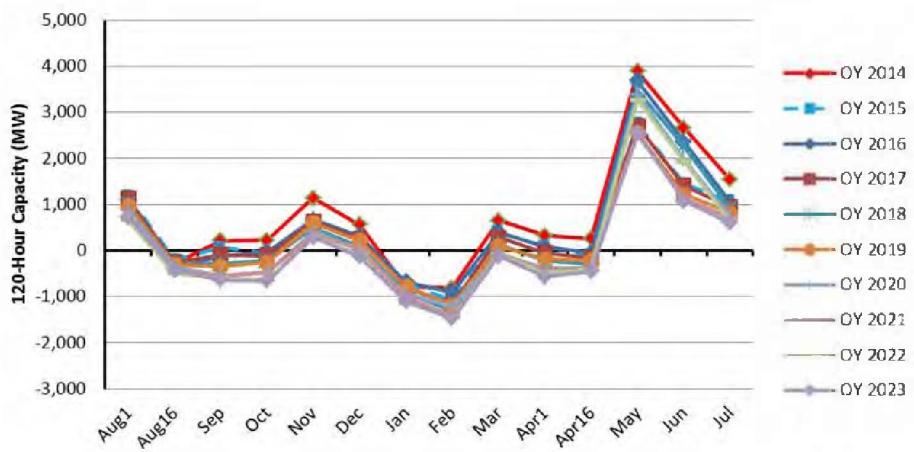
Federal System Analysis Surplus/Deficit Projections

The difference between the firm load obligations and firm resource forecasts described above provides the following firm power surplus/deficit projections for the Federal system. The annual Federal system firm power surplus/deficit projections under 1937-critical water conditions are presented in Figure 3-12, below, for OY 2014 through 2023. Under 1937-critical water conditions, the Federal system is projected to have an annual firm energy surplus of 11 aMW in OY 2014 followed by deficits throughout the rest of the study period, ending with a deficit of -561 aMW in OY 2023. The 120-hour capacity projections show the Federal system is deficit throughout the study period, ranging from -675 MW to -1,138 MW.

Figure 3-12


**Federal System Surplus/Deficit Projections
For OY 2014 through 2023
Under 1937-Critical Water Conditions
Annual Energy and January 120-Hour Capacity**

Figures 3-13 and 3-14, below, illustrate the monthly shaped firm surplus/deficit projections for the study period. On a monthly basis, the Federal system is projected to be surplus during the spring and deficit during the late summer, early fall, and winter.


Figure 3-13

**Federal System Surplus/Deficit Projections
For OY 2014 through 2023
Under 1937-Critical Water Conditions
Monthly Energy in Average Megawatts**

Figure 3-14

**Federal System Surplus/Deficit Projections
For OY 2014 through 2023
Under 1937-Critical Water Conditions
Monthly 120-Hour Capacity in Megawatts**

Variability of Federal System Analysis Surplus/Deficit Projections

As discussed previously, the variability of the Federal hydro resources based on the 80 historical water conditions has a direct and significant effect on Federal system surplus/deficit projections. Figure 3-15, below, illustrates the potential variability in annual average energy surplus by comparing the Federal system surplus/deficit forecasts for OY 2014 through 2023 under the same four resource scenarios: 1) 1937-critical water conditions (the base case of this study); 2) the average of the bottom 10 percent; 3) the average of the middle 80 percent; and 4) the average of the top 10 percent of the 80 historical water conditions (1929 through 2008). This comparison shows that, under these four scenarios, the Federal system surplus/deficit projections vary by approximately 3,000 aMW throughout the study horizon.

Figure 3-15

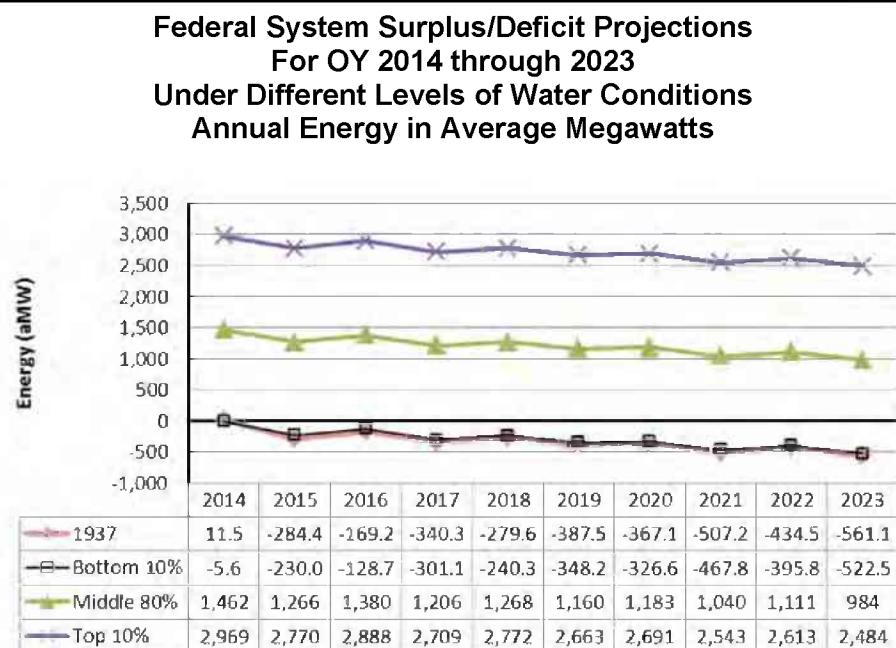
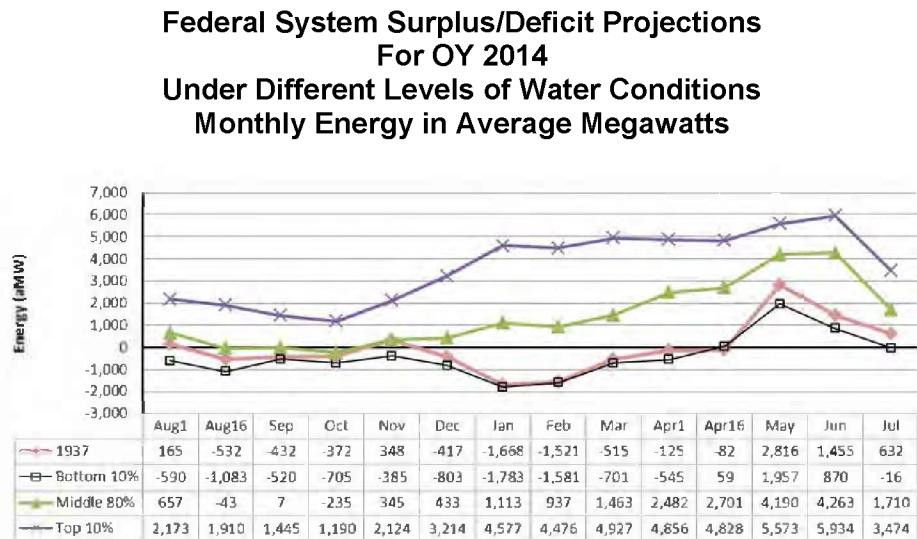
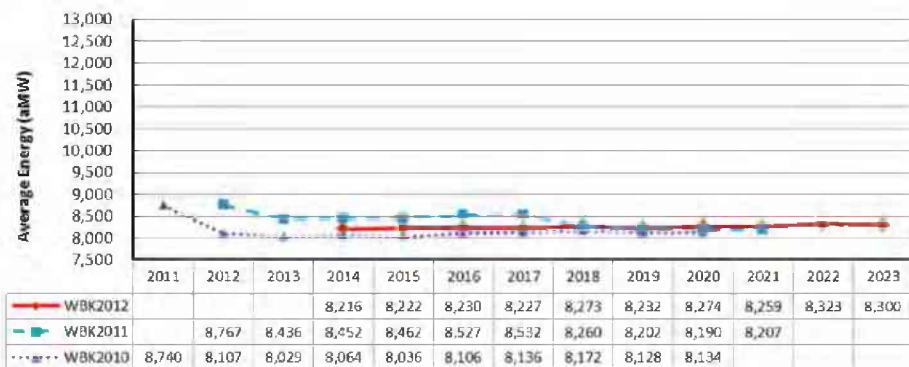
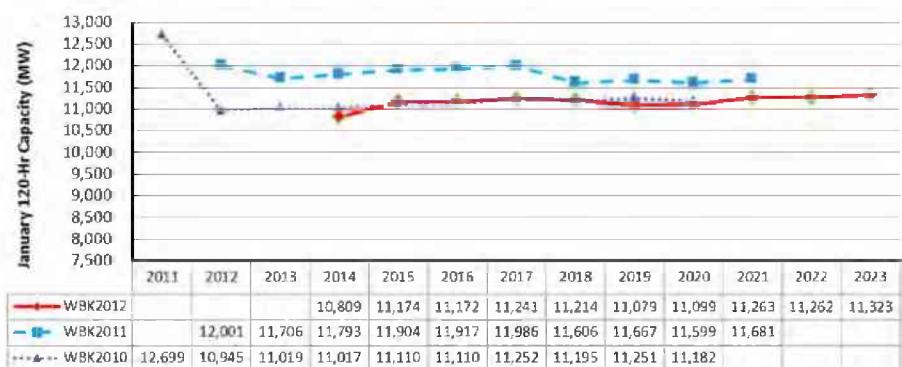



Figure 3-16, below, illustrates the monthly variability under the same four water condition scenarios.

Figure 3-16


Federal System Analysis Conclusion

In conclusion, this Federal System Analysis illustrates the potential bounds (high and low) of the Federal System. Other analyses have been developed to provide key inputs for strategic planning activities. Deficits identified in this analysis could be mitigated through actions discussed in the 2013 Resource Program to address the needs identified in the Needs Assessment study. The 2013 White Book supplement will include updated firm loads, power sales and power purchase contracts, and generating resource forecasts. BPA will provide the next complete analysis of loads and resources for long-term planning in the 2014 White Book.

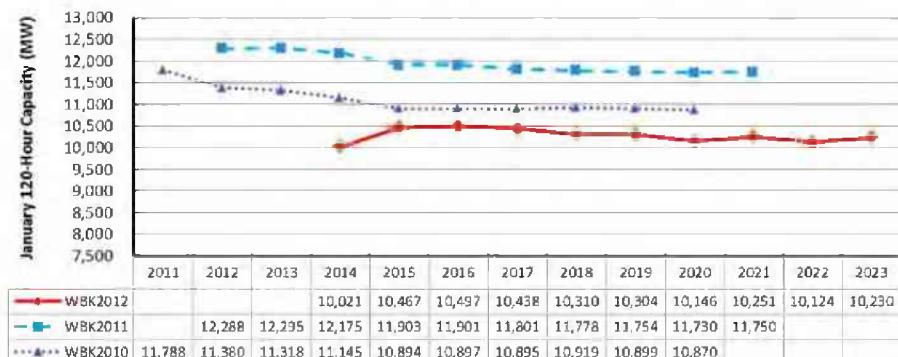

Comparison to Previous White Books

Figures 3-17 and 3-18, page 34, illustrate how the 2012 White Book firm requirement load obligations compare to those published in the 2010 and 2011 White Books. These load forecasts reflect the implementation of the RD contracts. The 2012 White Book load forecast shows a slight change in the annual firm energy load obligation from the previous White Books. However, the 2012 White Book January 120-hour capacity Federal system firm load obligations are substantially lower than the 2011 White Book forecast due to updates in the ALF forecasting methodology and process.

Figure 3-17
Federal System Firm Load Obligations
Comparison to Previous White Book Studies
Annual Energy in Average Megawatts

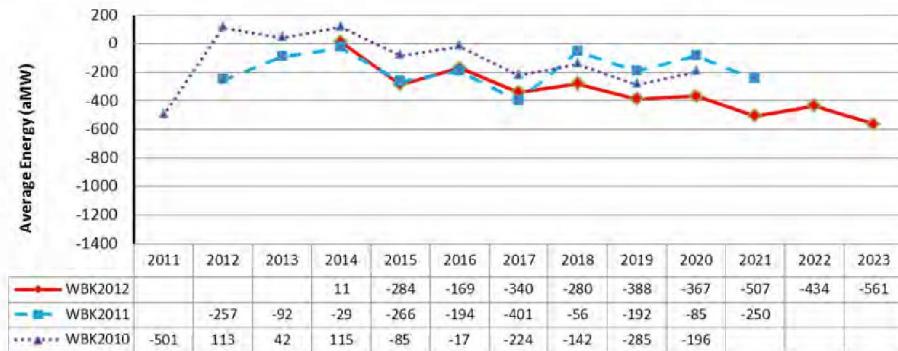
Figure 3-18
Federal System Firm Load Obligations
Comparison to Previous White Book Studies
January 120-Hour Capacity in Megawatts

Figures 3-19 and 3-20, below, illustrate how the 2012 White Book Federal resources compare to those published in the 2010 and 2011 White Books. The current resource forecast shows a slight reduction in annual energy and larger reductions in the January 120-hour capacity. Again, the reduction in January 120-hour capacity is based on the HYDSIM modeling changes described in Section 2: Methodology, Hydro Resources Modeling, on page 15.


Figure 3-19

**Federal System Resources
Comparison to Previous White Book Studies
Under 1937-Critical Water Conditions
Annual Energy in Average Megawatts**

Figure 3-20


**Federal System Resources
Comparison to Previous White Book Studies
Under 1937-Critical Water Conditions
January 120-Hour Capacity in Megawatts**

Figures 3-21 and 3-22, below, compare these 2012 White Book firm surplus/deficit projections, described above, to previous White Book study results. The 2012 White Book Federal system firm surplus/deficit projections continue to follow similar patterns as those in the last two publications. However, the 2012 White Book forecast shows additional changes in the 120-hour capacity projections largely due to the HYDSIM modeling changes, update to Grand Coulee operations to better reflect expected actual operations. Grand Coulee's January through March operation has been reshaped to prevent the project from drafting too deeply for winter fish flow requirements, which is further described in Section 2: Methodology, Hydro Resources Modeling, on page 15.


Figure 3-21

**Federal System Surplus/Deficit Projections
Comparison to Previous White Book Studies
Under 1937-Critical Water Conditions
Annual Energy in Megawatts**

Figure 3-22

**Federal System Surplus/Deficit Projections
Comparison to Previous White Book Studies
Under 1937-Critical Water Conditions
January 120-Hour Capacity in Megawatts**

The differences seen reflect new methods and models used to produce Federal system reports in this 2012 White Book. Over time the White Book's presentation has evolved to better depict the current state of the Federal system. These changes include updates to forecasting tools, hydro models, and incorporating new reporting capabilities which improve the White Book process and corresponding results for long-term planning. Although the processes and specific values change over time, the latest information is the most accurate. As illustrated, the general trend of load growth and generating resource production continues to remain consistent with each White Book study.

Section 4: Federal System Needs Assessment

While the Federal System Analysis identifies the surplus/deficit under critical water for informational and planning purposes, this Needs Assessment examines five metrics for input into BPA's 2013 Resource Program. The Needs Assessment measures the expected generation capability of the existing Federal system resources to meet projected load obligations under a range of conditions and timeframes. The Needs Assessment does not discuss potential actions that BPA could take to meet any identified needs; those are evaluated and discussed in BPA's Resource Program. For the 2012 White Book, BPA examines the potential needs associated with FY 2016 and 2021.

Federal System Needs Assessment Assumptions

BPA's existing resource capability is forecasted using two BPA models: HYDSIM for monthly, seasonal, and annual energy; and HOSS for hourly energy and capacity. The models assess the resource capability to meet loads under expected conditions and extreme temperature events, over a range of possible water conditions.

The HYDSIM study used for this Needs Assessment is the same study used for the rest of the 2012 White Book and the BP-14 Initial Rate Proposal. As part of this assessment (Needs Assessment), BPA has made specific changes to forecasts and certain model assumptions which are detailed below, including using stochastic load variability to simulate load uncertainty, and stochastic unit performance for CGS to simulate unplanned outages. This assessment does not model any internal or regional transmission constraints that may limit the ability to match system generation to load.

Three load obligation scenarios were developed and analyzed for the study years FY 2016 and 2021¹. These scenarios were produced by BPA's ALF system. The underlying load forecast for the expected scenario is also used in the Federal System Analysis. The low and high scenarios were constructed by applying a growth percentage to the aggregate load obligation forecast in the expected case. This is to simulate the potential range of uncertainty of the overall load obligation forecast, but not identify changes to specific categories of load (i.e. DSIs, Tier 2, NLSLs, etc.).

ALF's load obligation forecast methodology automatically includes projections of programmatic conservation savings that continue at the level established under current BPA conservation programs. For the 2012 Needs Assessment scenarios, the historic estimate of embedded conservation savings is approximately 56 aMW throughout the study period. An additional, 4 aMW of annual incremental

¹ 2016 is a non-refueling year for CGS; 2021 is a refueling year for CGS.

conservation is also included in the forecast, as new planned conservation. It does not include the incremental amount of conservation needed to meet the Council's Sixth Power Plan targets¹.

The load forecast methodology projects load growth for both Load Following and Slice/Block customers. In September 2011, customers provided elections on how they would serve load growth for the FY 2015 -2019 period. The resulting percentages from those elections were then used to estimate the potential load obligations in the expected scenario that BPA would be serving in the out years. There is additional uncertainty across all three scenarios to the load obligations from the impact of the different BPA Tier 2 products as well as how customers may change their elections during the FY 2020-2024 timeframe.

Federal System Needs Assessment Load Scenarios

Expected Case: The expected load case, is consistent with the 2012 White Book forecast, with an average annual growth rate of approximately 0.8 percent over the next 25 years.

This scenario includes a data warehouse load forecast based on plants that are highly likely to start production in the next 10 years. The expected Tier 2 load is approximately 128 aMW in FY 2016 and approximately 255 aMW in FY 2021. For the 18-hour capacity study only, the expected case is adjusted to include a three-day extreme weather event in each of February and August.

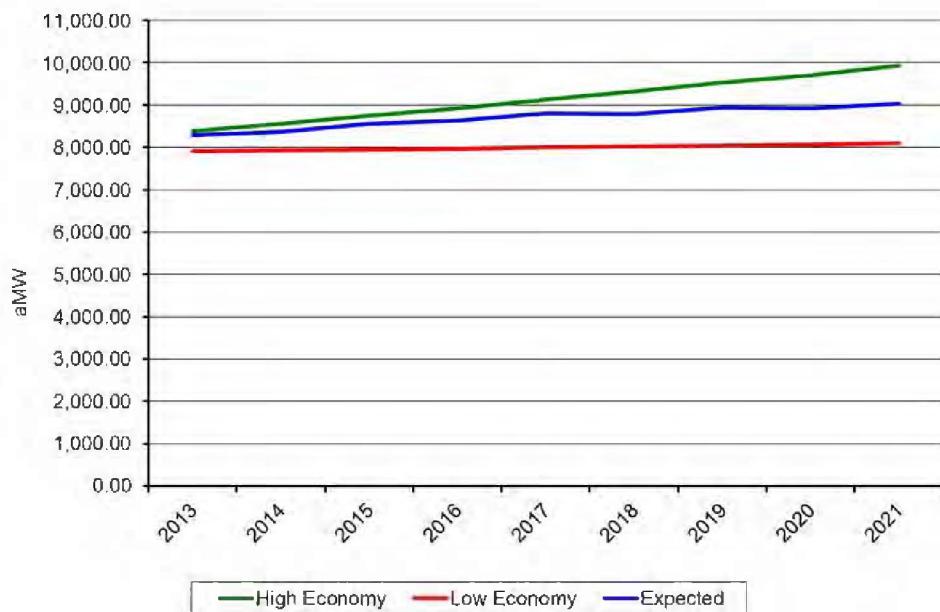
High Economy Scenario: The high economy case forecasts a robust increase in the economy due to increased spending (Federal and consumer). The expected average annual growth rate for 25 years from 2012 is approximately 2.4 percent.

This scenario anticipates higher load growth that could be caused by a number of factors such as additional population in-migration to the region to meet employment needs; additional Federal spending on military facilities and growth at local Naval facilities; clean-up activity at DOE-Richland; and increased aluminum production in the region. The forecast of data warehouses is aggressive, but still possible to occur in the next 10 years. The Tier 2 load obligation could be as high as 550 aMW in FY 2021.²

Low Economy Scenario: The low economy forecasts includes a double-dip recession due to current regional, national and international economic conditions including the potential impacts due to Federal government funding sequestration. This economic condition would be followed by slow employment growth in the region.

¹ How additional incremental conservation needed to meet the Council's Sixth Power Plan targets is used to mitigate or eliminate the deficits identified in this Needs Assessment will be discussed in the Resource Program.

² This maximum amount assumes that all Regional Dialogue customers elect to have BPA serve their Above High Water Mark (AHWM) load in FY 2021.


The expected average annual growth rate for 25 years from 2012 is approximately 0.1 percent.

This scenario anticipates lower load growth that could be caused by a number of factors such as reduced growth at local Naval facilities because of reduced Federal spending on military facilities or postponed funding of clean-up activity at DOE-Richland. It does not anticipate closures of specific industries or out-migration of the region. The data warehouse forecast only includes plants that are in service this year.

Figure 4-1, below, illustrates the expected case, high economy and low economy load scenarios.

Figure 4-1

**Federal System Needs Assessment
Load Scenarios**

Average Annual Growth Rates 2013-21: Low Economy 0.1%, Expected 0.8%, High Economy 2.4%

Major Changes from the 2010 Needs Assessment

Several updates to the key study assumptions were made in preparing the 2012 Needs Assessment. These include the following:

Change in study years: Study years 2016 and 2021 are examined for the 2012 Needs Assessment; study years 2013 and 2019 were examined in the 2010 Needs Assessment.

Hydro modeling updates: The 2012 Needs Assessment models 80 water years (update to 2010 level Modified Streamflows); seventy water years were modeled in the 2010 Needs Assessment;

The 2012 Needs Assessment uses the 2015 AOP while the 2010 Needs Assessment used the 2010 AOP. This plan updates the forecasted amount of monthly discharges from the Canadian reservoirs which results in higher August flows but lower September flows.

Balancing Reserves: For this 2012 Needs Assessment, BPA modeled a FCRPS reserve limit of 900 MW Incremental and 1,100 MW Decremental and used the delta between those and the forecasted requirement to calculate the need. In the 2010 Needs Assessment, BPA modeled reserves based on the forecasted requirement at the 30 minute wind persistence and the 99.5% level of service.

Federal System Needs Assessment Metrics

Similar to the 2010 Needs Assessment, BPA analyzed the following metrics for this 2012 Needs Assessment to assess the possible needs of the Federal system for meeting its obligations:

Annual energy deficit under critical water: Annual average energy under 1937-critical water conditions, analyzed under the expected, high and low load scenarios.

Seasonal/monthly heavy load hour (10th percentile by month): 10th lowest percentile (P10) of surplus/deficit by month (which is roughly comparable to the 5th lowest surplus/deficit percentile (P5) by season) under the expected load scenario. Months are analyzed independently.

120-hour capacity (also known as superpeak): Capacity inventory to meet load peaks day after day throughout the month (6 hours per day times 5 days per week times 4 weeks per month = 120 hours) under the expected load scenario.

18-hour capacity: Capacity inventory to meet the 6 peak load hours for 3 consecutive days under the “expected” load case with three-day extreme weather events assuming median water supply and hydro generation. Loads for the three-day event are increased to reflect additional heating or cooling load and wind generation is assumed to be zero. The maximum take of Canadian Entitlement is also assumed. Cold snap analysis includes 10 percent reduction in streamflow to account for icing effects. Heat wave analysis includes 10 percent reduction in CGS generating capability to account for heat impacts on generation.

Reserves for Ancillary Services: The difference between what the FCRPS can supply and the forecasted need.

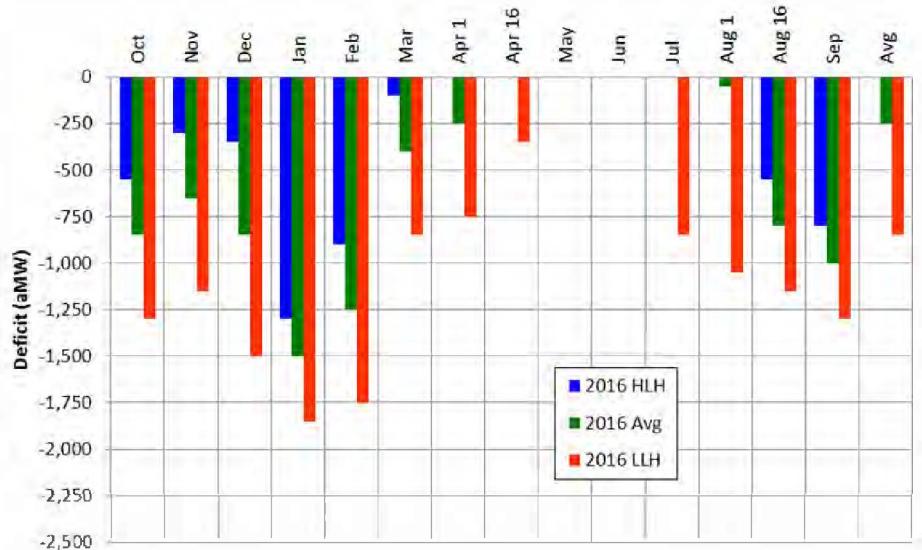
Federal System Needs Assessment Results

As shown in Figure 4-2, below, the 2012 Needs Assessment shows a wide range of potential annual needs, under critical water conditions, depending on which load scenario is studied as well as needs on a monthly and hourly basis at the 10th percentile conditions. Energy and capacity results are rounded to the nearest 50 aMW. In general, the trends are similar to those discussed in the 2010 Needs Assessment; with modest deficits in annual energy and medium to significant energy deficits in certain winter and summer months. One notable change in this analysis is the reduction of the winter 18-hour capacity for both FY 2016 and 2021.

Figure 4-2

Federal System Needs Assessment Summary of Results (positive numbers indicate surplus)

Metric	2016	2021
Annual energy deficit (critical water)	Expected Case: -200 aMW	Expected Case: -500 aMW
	High Economy: -550 aMW	High Economy: -1,450 aMW
	Low Economy: 250 aMW	Low Economy: 50 aMW
Seasonal/monthly (10th percentile by month)	Significant HLH deficits in January, February and September.	Significant HLH deficits in October, January – February, Aug 16 and September.
Superpeak or 120-hour capacity (10th percentile by month)	HLH deficits greater than superpeak deficits except for Aug 16.	HLH deficits greater than superpeak deficits except for Aug 16.
18-hour capacity, positive indicates surplus (extreme weather scenarios)	Winter: 100 MW	Winter: 0 MW
	Summer: 250 MW	Summer: 0 MW
Reserves for Ancillary Services	Inc: -390 MW	Inc: -642 MW
	Dec: -484 MW	Dec: -817 MW


Detailed Fiscal Year 2016 & 2021 Study Results: Looking at the results by month and by season shows a more serious deficit picture compared to the annual view. While the monthly metric is for heavy load hour and superpeak, we also display the average and light load hour deficits for additional information.

The assessment shows BPA typically experiences substantial energy surpluses in May and energy deficits in other months, in years with poor water conditions or other reductions in generation. Water in reservoirs is BPA's form of energy storage, and FCRPS hydro system storage is limited to approximately 35 percent of an average year's runoff. Use of this storage is further constrained by operating requirements, such as flood control and BiOp requirements. As a result, the system has limited ability to store water from season to season, month to month, and even hour to hour.

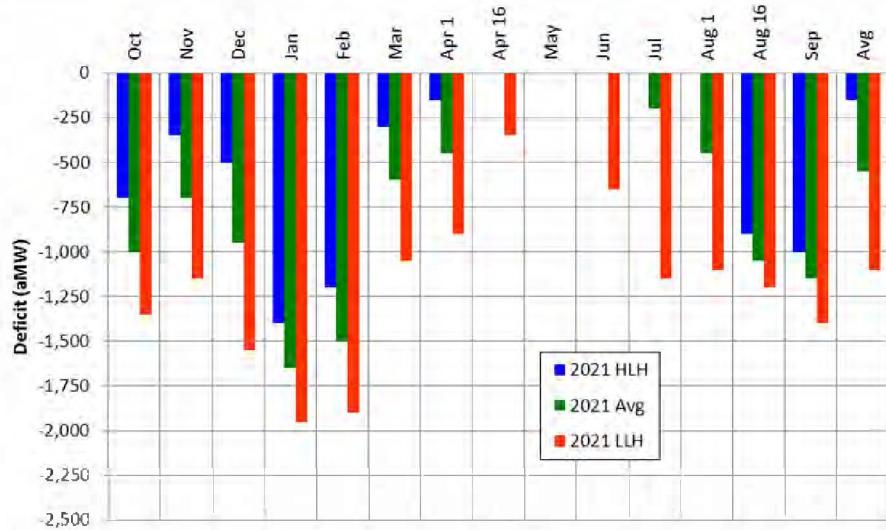

Accordingly, as shown in Figure 4-3, below and Figure 4-4, page 45, BPA faces deficits for heavy load hour energy in FY 2016 during the winter months, Aug 16 and September under the 10th percentile of surplus/deficit scenarios. This trend is seen again in the FY 2021 analysis. This implies that there is a 1 in 10 chance that BPA will need to acquire additional energy during the 16 highest load hours each day (except Sundays) during the winter, and additional energy over the remaining hours. During the summer, demand is not quite as high as in the winter but the water supply is considerably more limited. Furthermore, the light load hour deficits for both FY 2016 and 2021 are significant in the winter and summer months. This suggests that there is not enough water in the system to generate sufficient energy to meet load obligations for the majority of the year.

Figure 4-3

**Federal System Needs Assessment
For FY 2016
10th Percentile Monthly Energy Deficits**

Figure 4-4
Federal System Needs Assessment
For FY 2021
10th Percentile Monthly Energy Deficits

Figures 4-5 and 4-6, below, illustrate the 120-hour superpeak analysis which shows that the deficit for superpeak hours is less than the deficit for heavy load hours for both FY 2016 and 2021 except for Aug 16. This result indicates that there is enough flexibility for the model to shape generation into the superpeak hours, except in the second half of August (Aug 16).

Figure 4-5

**Federal System Needs Assessment
For FY 2016
10th Percentile Monthly Surplus/Deficits**

	Spk	HLH	Avg	LLH
Oct	-400	-550	-850	-1,300
Nov	50	-300	-650	-1,150
Dec	-50	-350	-850	-1,500
Jan	-800	-1,300	-1,500	-1,850
Feb	-700	-900	-1,250	-1,750
Mar	700	-100	-400	-850
Apr 1	250	100	-250	-750
Apr 16	750	750	300	-350
May	3,650	3,150	2,400	1,500
Jun	2,550	1,750	1,100	300
Jul	950	750	100	-850
Aug 1	650	650	-50	-1,050
Aug 16	-900	-550	-800	-1,150
Sep	-750	-800	-1,000	-1,300
Avg	450	150	-250	-850

Figure 4-6

**Federal System Needs Assessment
For FY 2021
10th Percentile Monthly Surplus/Deficits**

	Spk	HLH	Avg	LLH
Oct	-600	-700	-1,000	-1,350
Nov	-50	-350	-700	-1,150
Dec	-250	-500	-950	-1,550
Jan	-1,000	-1,400	-1,650	-1,950
Feb	-950	-1,200	-1,500	-1,900
Mar	450	-300	-600	-1,050
Apr 1	0	-150	-450	-900
Apr 16	650	700	250	-350
May	3,000	2,500	1,850	950
Jun	1,300	700	150	-650
Jul	550	500	-200	-1,150
Aug 1	0	50	-450	-1,100
Aug 16	-1,250	-900	-1,050	-1,200
Sep	-850	-1,000	-1,150	-1,400
Avg	100	-150	-550	-1,100

The energy metrics described previously measure the capability of the Federal system during expected conditions. Under an extreme weather event, the hydro system could flex as much as possible to handle the additional loads from a cold snap or heat wave event but only for a limited amount of time. The water used to meet load demands during the extreme event may be taken out of the rest of the month (or perhaps subsequent months). For example, meeting peak loads in a February cold snap would reduce energy for the rest of February by an estimated 425 aMW (sliced). For an August heat wave, the water needed to meet peak loads for a three-day event reduces the energy available for the rest of the month by an estimated 300 aMW (sliced).

The 18-hour capacity metric shows BPA just adequate to meet daily peak power needs during a three-day extreme cold snap in February or extreme heat wave in August. As seen in the Figures 4-7, 4-8, 4-9 and 4-10, pages 48 and 49, the system has minimal to zero surplus 18-hour capacity during a cold snap or heat wave in either FY 2016 or 2021. The reduction in the winter capacity from the 2010 Needs Assessment is significant¹, and largely results from the differences in the extreme weather load forecast, expiration of winter purchases and changes in winter FCRPS generation forecasts from HYDSIM. A major input into the 2010 Needs Assessment load forecast was calculated incorrectly and its correction is the largest driver of the three drivers mentioned. Due to changes in our load forecasting, database systems, and procedures, we are unable to determine the exact causes for the error in the 2010 Needs Assessment load forecast. From the data available from our last analysis, we can determine it appears that the 2010 Needs Assessment included an incorrect (low) Slice Right to Power forecast which resulted in a higher 18-hour capacity surplus. This 2012 Needs Assessment corrects that error, and combined with the other updates, shows a corrected, more realistic picture of the winter capacity amounts. However, changes to load from either marketing or load uncertainty could result in either higher or lower 18-hour capacity amounts.

¹ In the 2010 Needs Assessment, the winter 18 hour capacity amounts for fiscal years 2013 and 2019 were 1,600 MW and 1,050 MW, respectively.

Figure 4-7

Federal System Needs Assessment
For February 2016
Under Extreme Weather
18-Hour Capacity Surplus/Deficits
(1 in 10 load scenario; 50% hydro scenario)

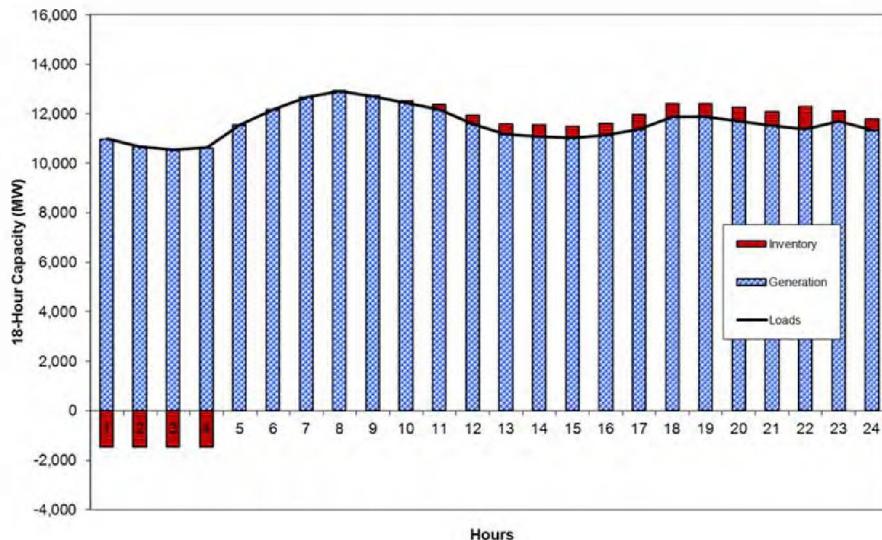
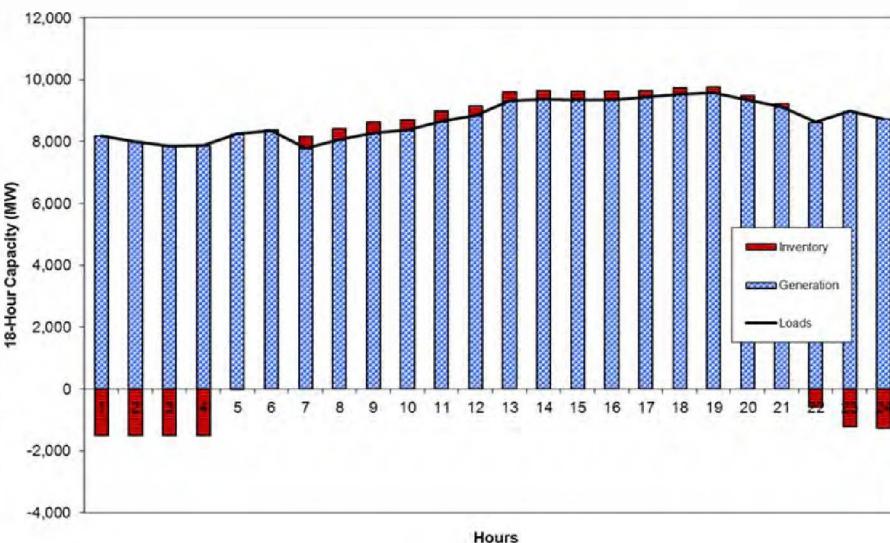
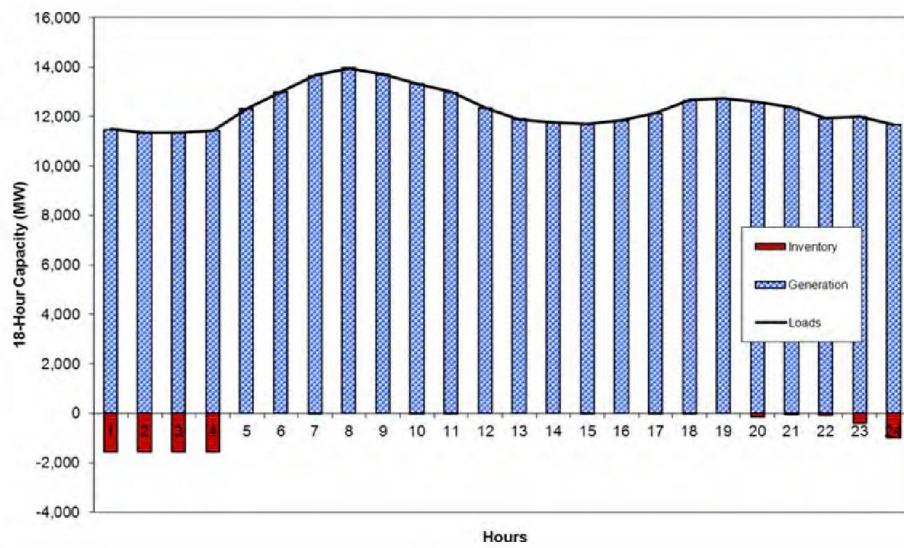




Figure 4-8

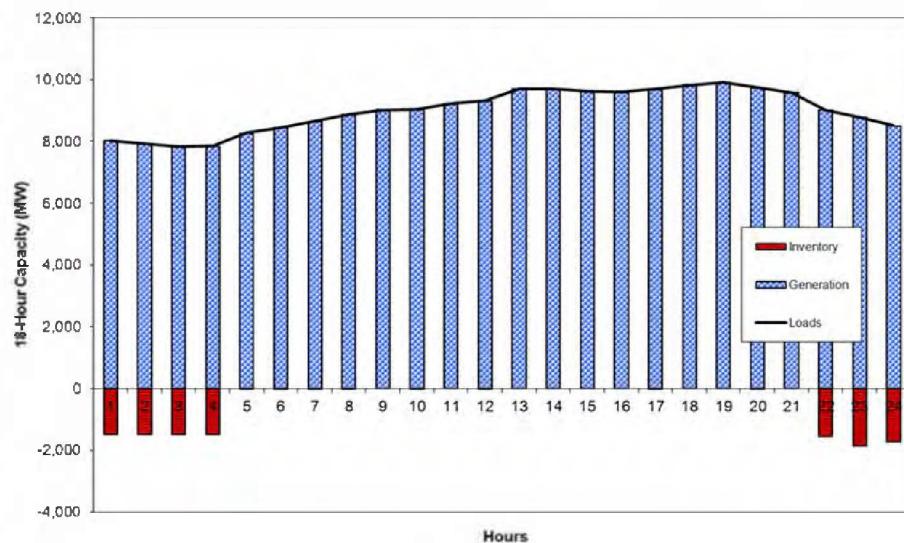

Federal System Needs Assessment
For 2nd Half of August 2016
Under Extreme Weather
18-Hour Capacity Surplus/Deficits
(1 in 10 load scenario; 50% hydro scenario)

Figure 4-9
Federal System Needs Assessment
For February 2021
Under Extreme Weather
18-Hour Capacity Surplus/Deficits
(1 in 10 load scenario; 50% hydro scenario)

Figure 4-10
Federal System Needs Assessment
For 2nd Half of August 2021
Under Extreme Weather
18-Hour Capacity Surplus/Deficits
(1 in 10 load scenario; 50% hydro scenario)

Currently the FCRPS can supply up to 900 MW of incremental and 1,100 MW of decremental balancing reserves. The ancillary reserves analysis compared the forecast of balancing reserves required for the end of FY 2016 and end of FY 2019 (as the proxy for FY 2021), to the FCRPS established limits. The forecast for both study years shows the required balancing reserves exceeding the limit of what the FCRPS can supply.

Federal System Needs Assessment Conclusions & Next Steps

The analysis shows that under a variety of conditions and timeframes, BPA could need to supplement the existing Federal system generation to meet existing and projected obligations in the time period. These conclusions reflect additional limitations on the FCRPS projected capability to meet BPA's load obligations since the 2010 Needs Assessment analysis was performed. Specifically, updates to the hydro modeling assumptions have, in general, decreased the expected annual and winter FCRPS forecasted generation. Hydro modeling updates included incorporating the 2010 Level Modified Streamflows, changing Canadian project operations, and limiting Grand Coulee's draft during winter operations to better reflect likely in-season management decisions. This updated analysis projects more significant deficits in the January-February timeframe, some improvement to Aug 16, and increased deficits in September.

Under the expected case, modest annual energy deficits are projected under critical water. However, in the high economy and low economy load scenarios, there is a wide range of uncertainty in the load obligations forecast, and the deficits could be erased or become significantly higher. There are also significant deficits (both heavy load hour and all hours) in several of the 10th percentile months, notably January and February (winter) and Aug 16 and September (summer). These deficits would be larger if BPA were to lose any current generating capability. For example, the Needs Assessment assumes 2008 BiOp hydro operation requirements, which, based on an average of historical fish migration at the Snake River dams, typically ends juvenile bypass spill by mid-August. If spill were required through the end of August, the additional spill would correspond to a loss of about 400 aMW of generating capability in the second half of August under all water conditions.

Under the extreme weather scenario, BPA is minimal to no longer capacity surplus in either the winter or summer. The winter capacity numbers changed significantly from the 2010 Needs Assessment, largely as a result of the extreme weather load differences, the expiration of winter purchases and changes in FCRPS generation forecasts,. This capacity metric can be similarly impacted by variations in the load and generating capability uncertainties.

The Federal system resources are insufficient to meet the forecasted 99.5 percent level of service for balancing reserve requirements in FY 2016 and 2019 (proxy for FY 2021). These deficits could increase if BPA adopts higher levels of service. There are many efforts underway to address this issue including the recently released BP-14 Initial Rate Proposal.

The 2013 Resource Program describes how BPA plans to address the deficits identified in this analysis and concludes that the majority of these deficits could be mitigated through the achievement of the Council's Sixth Power Plan conservation targets and market purchases. The Resource Program also discusses other actions BPA plans to take to address these deficits. BPA will continue to evaluate and update this analysis as part of the next formal Needs Assessment scheduled to be completed as part of the 2014 White Book process.

Section 5: Federal System Resource Adequacy

Consistent with its statutory purposes under section 2 of the Northwest Power Act¹, BPA continues to explore and advance its understanding of resource adequacy as it relates to the Federal system. The Federal System Resource Adequacy analysis provides a stochastic simulation to assess the Federal system's probability of meeting firm load obligations under many different combinations of supply and demand. Resource adequacy refers to the ability of a power system to meet the aggregate energy and capacity demand at any time.² BPA introduced its initial resource adequacy analysis in the 2011 White Book. For this 2012 White Book, BPA examines the Federal system's capability of meeting firm load obligations in FY 2016 and 2017.

Federal System Resource Adequacy Assumptions

The stochastic analysis in this section of the White Book was performed using a Federal version of the Northwest Power and Conservation Council's (Council) Genesys model. The Council created Genesys to develop a consensus-based resource adequacy framework and to make annual assessments for the PNW. The Council's regional Genesys model tests if the PNW regional power system can meet firm load in a future year under many different combinations of uncertain future conditions. The Federal system version of Genesys was developed to complete a similar analysis for the Federal system. The Federal Genesys model incorporates the following future uncertainties in its analysis:

Water Supply: The large variation in volume runoff impacts the amount of hydroelectric power production in the Federal system. The January to July Columbia River runoff measured at The Dalles from 1929 to 2008 has varied from 53.5 million acre-feet (MAF) in 1977 to 158.2 MAF in 1997;

Load Obligations: Nearly half of the firm load that BPA serves under the 2012 RD PSCs fluctuates with temperature. These load fluctuations can result in approximately 400 aMW of monthly load differences in winter;

Wind: BPA has acquired the output of 248 MW of installed wind capacity to help meet its firm power supply obligations. In addition, Load Following customers taking BPA's Resource Support Services (RSS) have dedicated 10 MW of

¹ To assure the Pacific Northwest of an adequate, efficient, economical, and reliable power supply [*Northwest Power Act*, §2(2), 94 Stat. 2697.]

² Adequacy is a component of system reliability, the other component being security, defined by the North American Electric Reliability Corporation as the ability of the system to withstand sudden disturbances.

installed wind capacity to serve their load. These variable energy resources can produce significantly different output from hour to hour; and

Forced Outages: CGS is a 1,130 MW nuclear power plant subject to forced outages.

Two studies were developed for this analysis: 1) a FY 2016 Federal system study where CGS is in a non-refueling year; 2) a FY 2017 Federal system study where CGS is in a refueling year. The studies incorporate the large uncertainties inherent in the Federal power system, noted above, and include the following inputs that may differ from other Federal system analyses in the White Book:

Water Supply: Historical 2010 Level Modified Streamflows from the 1929 to 2008 record are selected sequentially for the stochastic analysis. Sequential water conditions are used because the operation of the Canadian Treaty projects is fixed to a sequential set of water years. Using sequential water conditions may provide a limited representation of potential future water supply variability as each year is always preceded by the same water year (e.g. 1929 always precedes 1930);

Load Obligations: To represent firm load uncertainty due to temperature variations, hourly loads for Load Following customers were forecast for 58 historical temperature years. For the stochastic analysis, one temperature year is randomly selected for each game to determine the hourly loads for Load Following customers;

Wind: Wind generation is based on BPA's acquired output from 248 MW of installed wind capacity. An additional 10 MW of installed wind capacity, from Load Following customers who subscribe to BPA's RSS, is also included. To represent uncertainty in wind generation, 40 synthetic wind years were derived from a statistical analysis of historical wind generation. For the stochastic analysis, one wind year is randomly selected for each game to determine the hourly wind generation;

CGS: The 1,130 MW nuclear power plant is assumed to have a forced outage rate of 8.85 percent and a mean repair time of 200 hours to represent the likelihood and duration of unplanned outages. These assumptions are based on the last 10 years of performance data and do not provide any indication of future performance. In 2017, CGS has a planned 54-day refueling outage in the months of May, June, and July. Because of modeling limitations, this is represented in the FY 2017 study as a 61-day outage for the full months of May and June;

AHWM Resources: The expected amount of resources (both Federal and non-Federal) that will serve AHWM load in FY 2016 and 2017 are included.

These resources total approximately 170 aMW in FY 2016 and 235 aMW in FY 2017 and are still considered estimates at this point in time; and

Market Depth: The assumed wholesale power market viability to support market purchases, if necessary, is 1,000 MW in the winter and 500 MW in the summer per the 2010 Resource Program.

Federal System Resource Adequacy Metrics

As discussed in the 2011 White Book, there is no national industry standard on resource adequacy. However, most utilities and regional transmission organizations have adopted a standard of acceptable resource adequacy as measured by having a loss of load event occurring no more than 1 day in 10 years. Although this standard is useful for capacity-limited power systems dominated by thermal generation, it is not appropriate for BPA because its large hydro-based system is both energy and capacity limited. For example, in low runoff volume years there is the potential for prolonged periods of energy under production that can exceed the 1 day in 10 year standard. Since BPA would rely upon power purchases to meet its firm load obligations in such conditions, the study results for low water years informs BPA of possible power purchase needs in such conditions.

The metric adopted by the Council (and recommended by the Northwest Resource Adequacy Forum) is the Loss-of-Load Probability (LOLP).¹ The Council uses LOLP to signal when regional resource development is not keeping pace with regional load growth. LOLP is a more appropriate metric for BPA's energy and capacity limited system than other existing metrics developed for capacity-limited systems.

North American Electric Reliability Corporation (NERC) Draft Pilot Metrics:

BPA has a statutory purpose to assure an adequate, efficient, economical, and reliable power supply. BPA has looked at other efforts in the industry to define and assess resource adequacy, including NERC's Pilot Probabilistic Assessment published in draft form in October 2011. The purpose of the assessment was to produce enhanced resource adequacy metrics for NERC's long-term reliability assessments and to move toward a common set of reliability metrics across different assessment areas throughout the nation and parts of Canada. The three metrics chosen by NERC were:

- Loss of Load Hours (LOLH): The average number of hours with unserved energy across all games, expressed in hours per year.
- Expected Unserved Energy (EUE): The average amount of unserved energy across all hours of all games, expressed in megawatt hours per year. EUE is equivalent to expected Energy-Not-Served (ENS).

¹ *A New Resource Adequacy Standard for the Pacific Northwest.* Council Document Number 2011-14.

- Normalized EUE: The EUE divided by the total annual firm load obligation, expressed as a percent.

NERC has not set standards for these metrics. Several regional transmission organizations (e.g. Midwest Independent Transmission System Operator and PJM Interconnection) completed stochastic modeling and reported these metrics in the NERC draft assessment. For the purposes of comparison only, BPA has included these metrics in the resource adequacy studies below.

BPA Draft Metrics: In addition to the three NERC draft pilot metrics included for comparison, BPA also analyzed the annual LOLP and conditional value at risk (CVaR) metrics that were developed for the 2011 White Book. Moreover, BPA has assessed monthly LOLP values to identify games that have significant monthly problems that may be missed by the annual LOLP metric.

The LOLP metrics measure the likelihood that the Federal system is unable to meet firm load with its expected resources:

- Annual LOLP: The number of games with significant ENS divided by the total number of games, expressed as a percent. As in the 2011 White Book, significant ENS is defined as aggregate annual curtailment energy greater than 50 aMW.
- Monthly LOLP: The number of games with significant ENS divided by the total number of games, expressed as a percent. Significant ENS is defined as aggregate monthly curtailment energy greater than 50 aMW. This metric includes all games that have ENS greater than 50 aMW in any month and is more stringent than the annual LOLP metric.

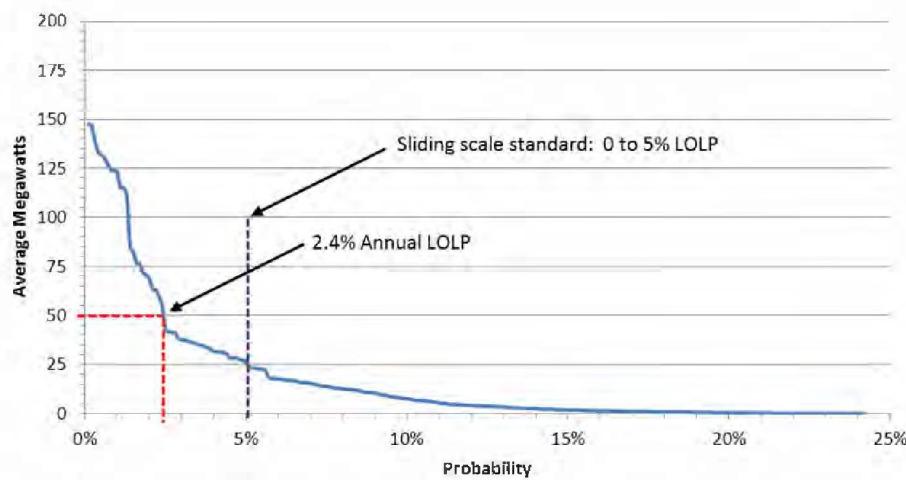
BPA continues to evaluate a possible standard for the annual LOLP metric. Five percent is the standard adopted by the Council (and recommended by the Northwest Resource Adequacy Forum) to signal when regional resource development is not keeping pace with regional load growth. Using 0 percent may be too conservative, as it may not meet the tradeoff between an adequate resource supply and an economic one. No industry standard has been developed for the monthly LOLP metric.

CVaR, the third metric, measures the magnitude by which the Federal system is unable to meet firm load with its expected resources. CVaR evaluates the tail games, which are the games with the greatest amounts of annual ENS. BPA examined the 2.5 percent of games that had the greatest amounts of annual ENS to determine the monthly magnitudes and seasonality of the ENS. For example, with a 1,000 game simulation, the 25 games with the greatest amounts of ENS are examined by month to determine the monthly expected ENS within the 2.5 percent tail.

Federal System Resource Adequacy Results

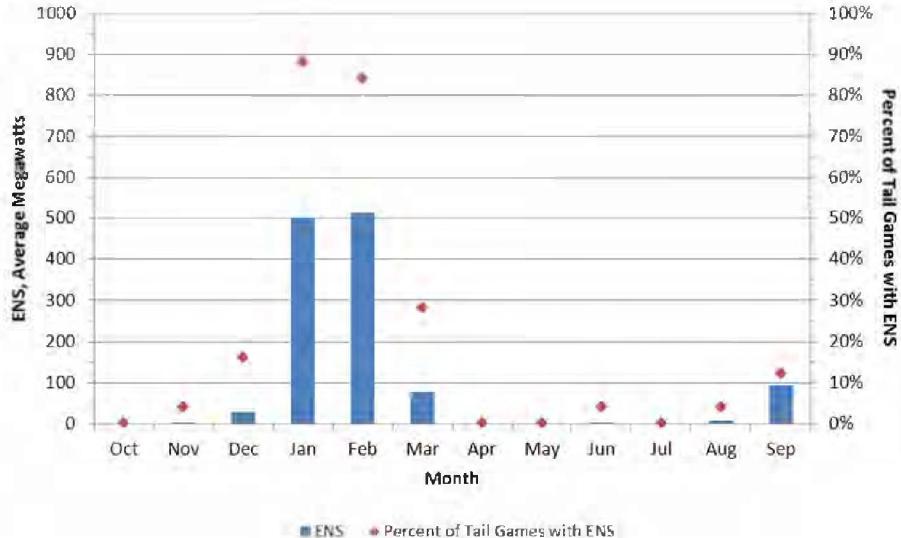
Fiscal Year 2016 Study Results: Figure 5-1, below, summarizes the FY 2016 results for the draft pilot metrics adopted by NERC. NERC has not established standards for these metrics which are shown for purposes of comparison with BPA's draft metrics. Overall, the FY 2016 LOLH, EUE, and normalized EUE values for the Federal system are considerably higher than those reported in the NERC draft assessment. The higher values are primarily a result of BPA's hydro-based system being both energy and capacity limited.

Figure 5-1


Federal System Resource Adequacy For FY 2016 NERC Draft Metrics

Metric	Units	FY 2016 Study
LOLH	Hours/Year	61
EUE	MWh/Year	37,655
Normalized EUE	%	0.0504%

Figure 5-2, below, shows the probability of different levels of annual ENS for FY 2016. Of the 1,000 games simulated, 24 had significant ENS of more than 50 aMW on an annual basis. Therefore, the annual LOLP is 2.4 percent. The monthly LOLP is 11.8 percent, or stated another way, in 11.8 percent of the games there was at least one month where the ENS exceeded 50 aMW.

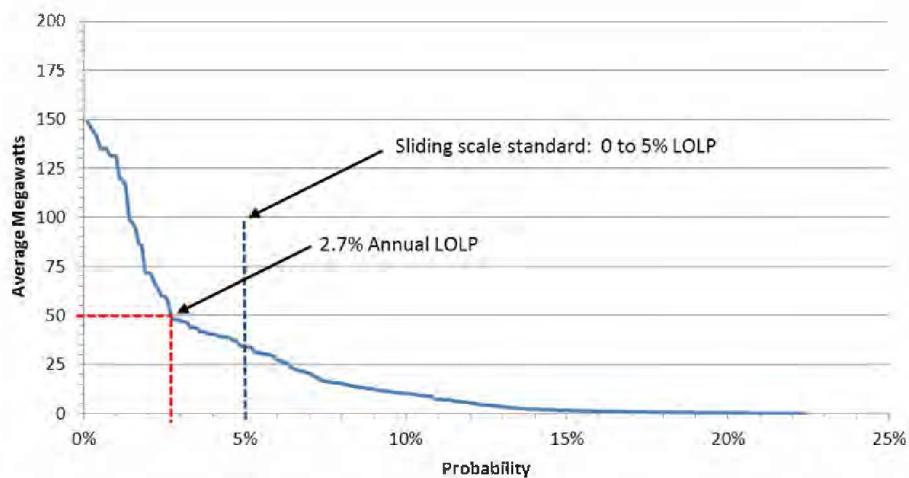

Figure 5-2

**Federal System Resource Adequacy
For FY 2016
Annual ENS and LOLP**

The CVaR metric examines the 25 games that have the greatest annual amounts of ENS. Figure 5-3, below, shows the average amount of ENS and percent of games with ENS on a monthly basis for the 25 tail games. January, for example, has 501 aMW of ENS, occurring across 88 percent of the tail games. For this study, the 25 tail games are centered on the months of January and February. Droughts, particularly those lasting more than a year, are the primary driver of the worst games.

Figure 5-3
Federal System Resource Adequacy
For FY 2016
Average ENS and Percentage of Games with ENS in the 25 Tail Games

Fiscal Year 2017 Study Results: Figure 5-4, below, summarizes the FY 2017 results for the draft pilot metrics adopted by NERC. Again, NERC has not established standards for these metrics and they are shown for purposes of comparison only. Consistent with the FY 2016 results, the FY 2017 LOLH, EUE, and normalized EUE values for the Federal system are considerably higher than those reported in the NERC draft assessment. The higher values are primarily a result of BPA's hydro-based system being both energy and capacity limited.


Figure 5-4

**Federal System Resource Adequacy
For FY 2017
NERC Draft Metrics**

Metric	Units	FY 2017 Study
LOLH	Hours/Year	71
EUE	MWh/Year	43,513
Normalized EUE	%	0.0582%

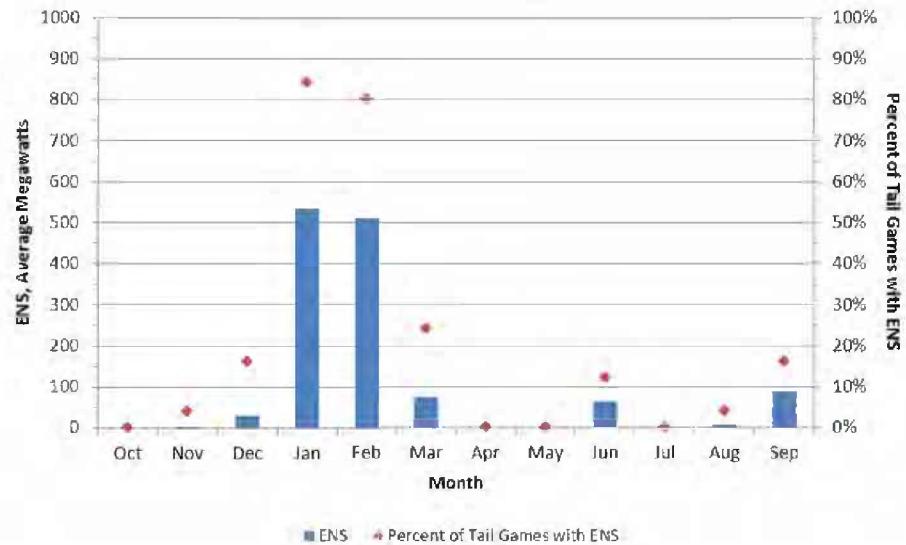

Figure 5-5, below, shows the probability of different levels of annual ENS for FY 2017. Of the 1,000 games simulated, 27 had significant ENS of more than 50 aMW on an annual basis. Therefore, the annual LOLP is 2.7 percent. The monthly LOLP is 12.4 percent, or stated another way, in 12.4 percent of the games there was at least one month where the ENS exceeded 50 aMW.

Figure 5-5
Federal System Resource Adequacy
For FY 2017
Annual ENS and LOLP

The CVaR metric, shown below in Figure 5-6, indicates the 25 tail games are centered on January and February. In both months, the magnitude of ENS exceeds 500 aMW, occurring across at least 80 percent of the tail games. Consistent with the FY 2016 study, droughts, particularly those lasting more than a year, are the primary driver of the worst games.

Figure 5-6
Federal System Resource Adequacy
For FY 2017
Average ENS and Percentage of Games with ENS in the 25 Tail Games

Sensitivity of Results to Key Assumptions

The resource adequacy studies presented above for FY 2016 and 2017 reflect the most appropriate value for each assumption on a long-term planning basis. However, changes in several key assumptions can produce significantly different results. Figure 5-7, below, illustrates the sensitivity of the FY 2016 annual LOLP results to two key assumptions: 1) the significant ENS threshold, and 2) market depth.

The center cell in Figure 5-7 represents the base case annual LOLP for FY 2016 of 2.4 percent, which was illustrated in Figure 5-2, page 58. Moving from left to right across the table reduces the significant ENS threshold while moving down the table increases the market depth. As indicated by the range of annual LOLP values, the study results are very sensitive to these key assumptions. This shows variability in annual LOLP results for FY 2016, an equivalent analysis for FY 2017 would yield similar sensitivities.

Figure 5-7

Federal System Resource Adequacy For FY 2016 Sensitivity of Annual LOLP Results

		Significant ENS Threshold (aMW)		
		100	50	0
Market Depth (MW)	None [†]	30.6%	42.7%	81.1%
	Base Case ^{††}	1.3%	2.4%	17.9%
	High ^{†††}	0.0%	1.3%	3.5%

[†] Assumes 0 MW for all months

^{††} Assumes 1,000 MW October-April and 500 MW May-September

^{†††} Assumes 1,300 MW September-February and 1,600 MW March-August

Federal System Resource Adequacy Conclusions & Next Steps

The FY 2016 and 2017 annual LOLP results of 2.4 percent and 2.7 percent are within the “acceptable” range of the annual LOLP standards that BPA is presently considering. However, the monthly LOLP results of 11.8 percent and 12.4 percent show that a considerably higher percentage of games have significant ENS, indicating that some months are significantly worse than the annual average. Together with the CVaR metric, these results suggest that January and February present the highest likelihood of the Federal system being unable to meet firm load without the need to augment the system. Finally, the higher FY 2017 annual and monthly LOLP values are mainly caused by the CGS refueling outage in 2017.

Overall, the conclusions from the 2012 White Book resource adequacy analysis are consistent with the resource adequacy results published in the 2011 White Book. However, the new studies suggest that some months may be of more concern than indicated in the 2011 White Book while others may be of less concern. In particular, the 2012 White Book analysis shows that January has become one of the months of most concern. These changes in monthly results are driven by the hydro modeling updates included in this 2012 White Book, which are described in Section 2: Methodology, Hydro Resources Modeling, page 15.

The study results include the expected amount of resources (both Federal and non-Federal) that will be needed to serve AHWM load in FY 2016 and 2017. If neither BPA nor customers acquire adequate resources to serve the expected AHWM load for FY 2016 and 2017, the annual LOLP increases to 4.4 percent and 6.7 percent, respectively.

The studies presented above also include a market depth of 1,000 MW in the winter and 500 MW in the summer that is available in all hours. Accessing this full amount may become more difficult, which would increase the LOLP.

Over the past year, BPA has improved its understanding of resource adequacy as it relates to the Federal system. BPA analyses suggest that water supply variability, the accuracy of our expected load obligations, and market depth are primary drivers of Federal LOLP results. BPA continues to assess the most appropriate value for each assumption on a long-term planning basis. Further, BPA continues to investigate the draft resource adequacy metrics presented above as well as alternative metrics appropriate for large hydro-based systems. Additional analyses are required before establishing a metric and standard for the Federal system.

In 2012, the Northwest Resource Adequacy Forum produced a regional LOLP assessment for 2017. This assessment, published by the Council, provides a regional perspective on the resource adequacy situation.¹

¹ For details, see Council document 2012-12 available at: <http://www.nwcouncil.org/library>

Section 6: Pacific Northwest Regional Analysis

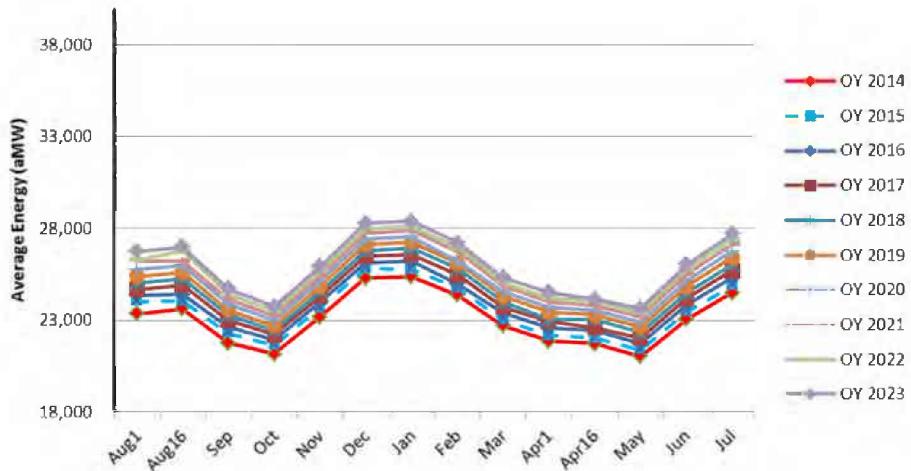
PNW Regional Analysis Assumptions

This PNW Regional Analysis is based on regional firm loads, resources, and contracts that were finalized as of October 19, 2012. The regional analysis includes uncommitted PNW IPP generation in the regional resource stack and assumes it is available to meet regional load unless otherwise specified.

PNW Regional Analysis Firm Energy Load Projections

Annual regional firm load projections are comprised of two components: TRL consumption and regional exports. The TRL is based on each individual entity's TRL forecast as discussed in Section 2: Methodology, Load Obligations, page 11, and comprises about 95 percent of regional load projections. Reported long-term and multi-year regional export contracts are contract obligations that regional entities have outside the PNW region. Exports make up the remaining 5 percent of the regional load estimates. Overall, regional total retail firm load obligations for energy and capacity have a forecasted annual growth rate of about 1.1 percent over the study period as illustrated by Figure 6-1, below.

Figure 6-1


PNW Regional Firm Load Obligations For OY 2014 through 2023 Annual Energy and January 120-Hour Capacity

While looking at regional firm load projections on an annual basis shows the overall trend in loads over the study period, it does not illustrate how those loads are shaped monthly over the year. Figures 6-2 and 6-3, below, illustrate the monthly shape and anticipated load growth of the projected regional firm loads. Monthly average energy and 120-hour capacity maintain very similar shapes over the study period, with the highest loads being forecasted during the winter (December through February), and during the summer (July and August) and the lowest loads being forecasted in the early fall (September and October) and spring (April and May).

Figure 6-2

**PNW Regional Firm Load Obligations
For OY 2014 through 2023
Monthly Energy in Average Megawatts**

Figure 6-3

**PNW Regional Firm Load Obligations
For OY 2014 through 2023
Monthly 120-Hour Capacity in Megawatts**

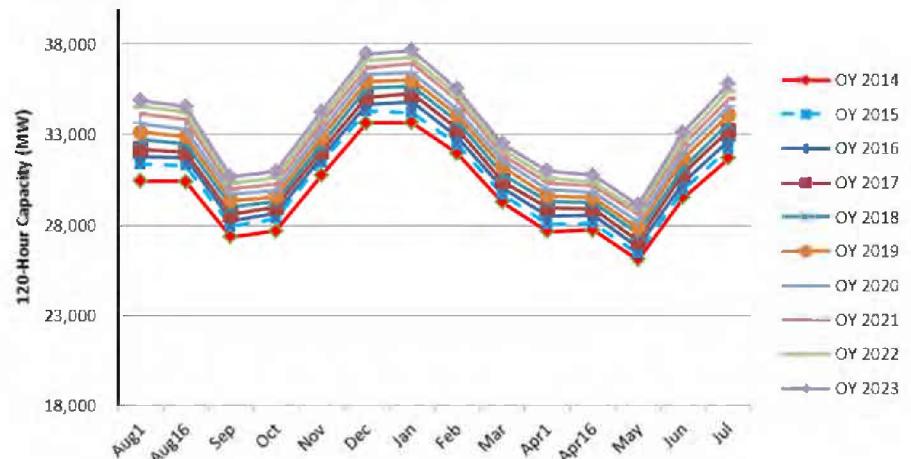


Figure 6-4, below, compares the relative size of regional firm obligations (TRL plus exports) by customer class for OY 2014. IOUs represent over half of the PNW regional firm energy and 120-hour capacity retail load obligations with Public Utility Districts and Municipalities representing most of the remainder.

Figure 6-4

**PNW Regional Firm Load
For OY 2014
By Customer Class
Annual Energy and January 120-Hour Capacity**

Customer Class	Firm Energy (aMW)	Percent of Firm Energy	January 120-Hour Capacity (MW)	Percent of Capacity
Federal Agency	133	1%	221	1%
USBR	176	1%	15	0%
Cooperative	1,885	9%	3,119	9%
Municipality	2,741	13%	4,591	14%
Public Utility District	4,449	21%	7,336	22%
Investor-Owned Utility	11,401	53%	16,995	51%
Marketer	386	2%	443	1%
Direct-Service Industry	442	2%	463	1%
Total Regional Firm Load	21,614	100%	33,182	100%

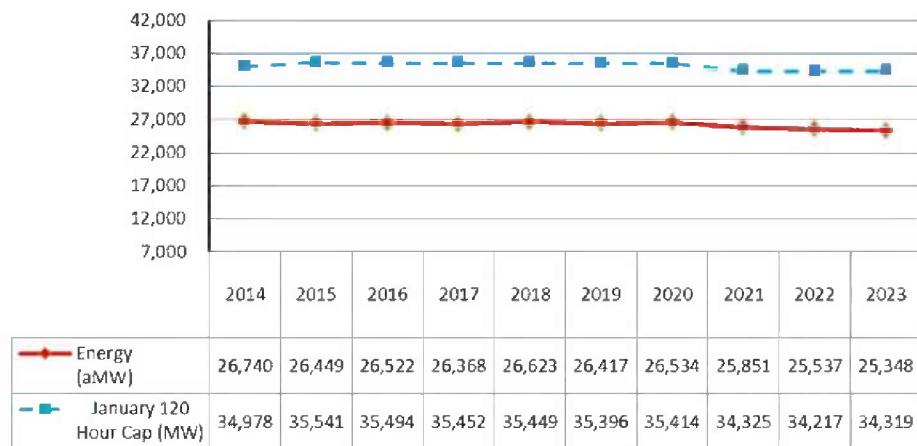
PNW Regional Analysis Firm Resources

Hydro resources represent a smaller share of the PNW regional resource stack than that of the Federal system because the majority of non-hydro resources in the region are owned by non-Federal entities. These non-hydro resources are primarily comprised of coal, gas, nuclear, oil-fired, and natural gas projects and are included in the large thermal and combustion turbine categories below. Forecasts are included for new generating projects when they have been placed into operation or are in the actual construction process.

Figure 6-5, below, summarizes the regional firm resource's energy and 120-hour capacity by generation type for OY 2014 assuming 1937-critical water conditions. Regional firm energy resources are comprised of approximately 43 percent hydro, 23 percent large thermal (including nuclear), 10 percent cogeneration, 12 percent combustion turbines, 1 percent small hydro, 7 percent renewables (of which 1,840 aMW of the 1,954 aMW is from wind), and 3 percent imports.

Figure 6-5

**PNW Regional Resources[†]
For OY 2014
Under 1937-Critical Water Conditions
Annual Energy and January 120-Hour Capacity**

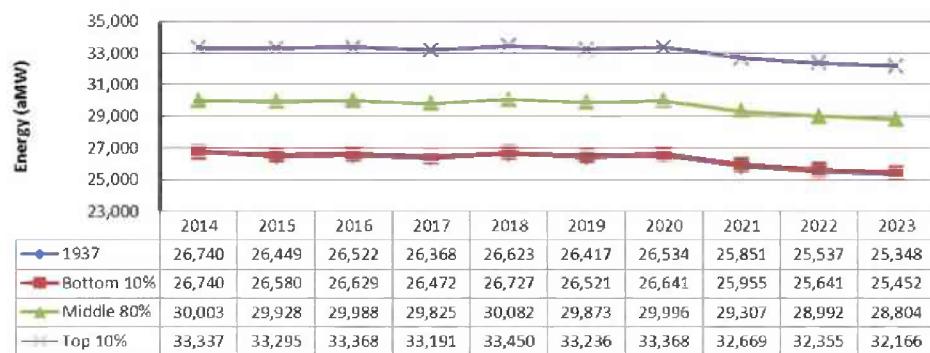

Project Type	Annual Energy (aMW)	Percent of Firm Energy	January 120-Hour Capacity (MW)	Percent of Capacity
Hydro	11,953	43.4%	20,631	52.9%
Large Thermal	6,358	23.1%	7,244	18.6%
Cogen	2,633	9.6%	3,080	7.9%
Combustion Turbines	3,390	12.3%	5,949	15.3%
Small Hydro	253	0.9%	166	0.4%
Renewables	1,954	7.1%	126	0.3%
Small Thermal & Misc	38	0.1%	85	0.2%
Imports	938	3.4%	1,689	4.3%
Total Federal Resources	27,516	100.0%	38,969	100.0%

[†]Regional firm resource estimates before adjustments for reserves and transmission losses.

Figure 6-6, below, shows that the aggregated generation estimates incorporated in the regional firm resource forecast do not substantially vary over the study horizon. For OY 2014 through 2020, the forecast shows small annual changes in the resource projections driven by yearly maintenance, refueling, and capital improvements. The regional firm energy and 120-hour capacity forecasts decline slightly over the last three study years, largely driven by the retirement of the Centralia Unit 1 and Boardman coal plants in December 2020.

Figure 6-6

**PNW Regional Resources
For OY 2014 through 2023
Under 1937-Critical Water Conditions
Annual Energy and January 120-Hour Capacity**



Potential Variability of PNW Regional Resources

Variability Due to Water Conditions: As discussed and illustrated in Section 3: Federal System Analysis, starting on page 21, variability in the 80 water year hydro generation forecast also significantly affects the PNW regional resource forecast, although to a lesser degree, based on hydro resources only making up 43 percent of the regions resource stack. Figure 6-7, below, illustrates the variability of regional resources for OY 2014 through 2023 using the same four scenarios presented in the Federal System Analysis: 1) 1937-critical water conditions (the base case of this study); 2) the averages of the bottom 10 percent; 3) the averages of the middle 80 percent; and 4) the averages of the top 10 percent of the 80 historical water conditions (1929 through 2008).

Figure 6-7

PNW Regional Resources For OY 2014 through 2023 Under Different Levels of Water Conditions Annual Energy in Average Megawatts

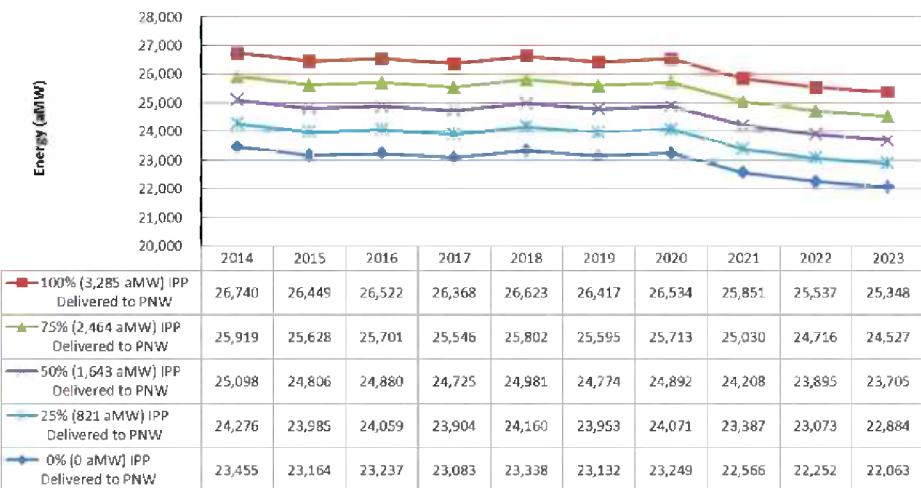
Variability Due to IPP Generation Amounts Delivered to the PNW Region:

The PNW regional study includes uncommitted PNW IPP generation as regional resources. These resources represent approximately 3,600 MW of peak capacity with an associated energy capability of 3,285 aMW. Generation forecasts for these uncommitted regional resources were updated; however, these IPP resources may or may not be available to the PNW when needed to serve regional firm loads. While this assumption is reasonable from a long-term planning standpoint, the resulting regional forecasts may overstate the availability of IPP generation for real-time use within the PNW. The PNW region may have to compete with other western markets to secure uncommitted IPP generation to meet electricity demand. Figure 6-8, below, details the peak capacity and annual energy capabilities of the regional uncommitted IPP projects as well as their fuel type. As uncommitted IPP projects are purchased by load serving entities—whether regional or extra-regional—the generation from projects will be appropriately accounted for in future studies.

Figure 6-8

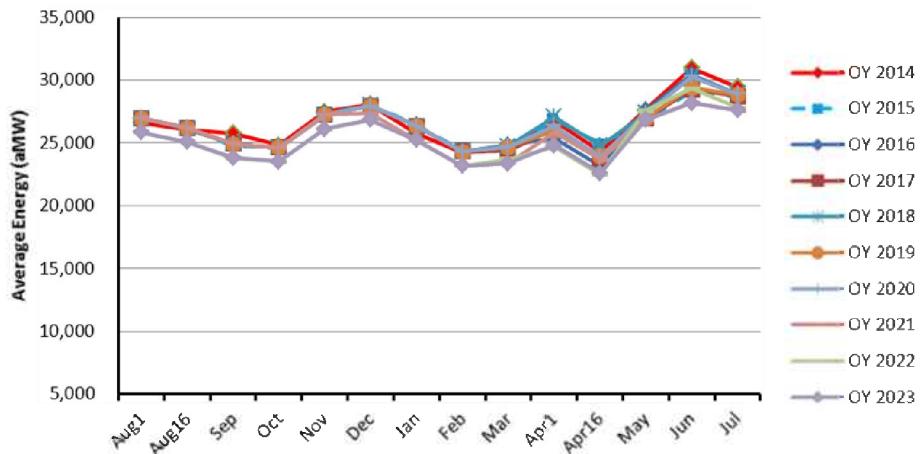
Expected PNW Regional Uncommitted IPP Projects For OY 2014 Peak Capacity and Annual Energy

Operating Year 2014	Peak	Energy	Fuel Type
Big Hanaford	248	223	Natural Gas
Centralia #1 [†]	670	577	Coal
Centralia #2 ^{††}	670	626	Coal
Hermiston Power Project	630	567	Natural Gas
Juniper Canyon Wind	0	40	Wind
Kittitas Valley Wind	0	27	Wind
Klamath Generation Facility	484	435	Natural Gas
Klamath Generation Peaking	100	14	Natural Gas
Leaning Juniper 2a	0	24	Wind
Leaning Juniper 2b	0	27	Wind
Satsop Combustion Turbine Project	650	584	Natural Gas
SP Newsprint Cogen	104	104	Natural Gas
Stateline Wind (4.6% for OY 2014)	0	3	Wind
Weyerhaeuser Longview	44	35	Wood Waste
Total Uncommitted IPP Generation	3600	3285	

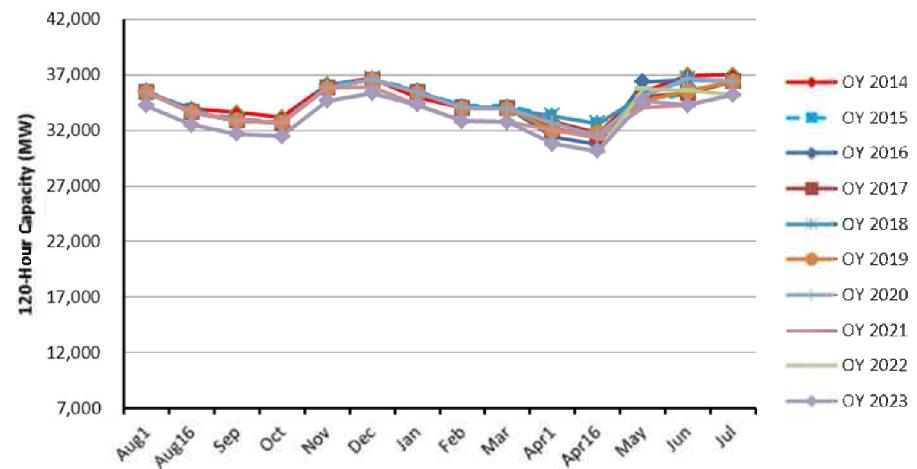

[†] Centralia #1 (670 MW) is scheduled for retirement on Dec 1, 2020.

^{††} Centralia #2 (670 MW) is scheduled for retirement on Dec 1, 2025. Puget purchased an increasing amount of this project beginning Dec 1, 2014 and ending Nov 30, 2025.

Figure 6-9, below, illustrates the potential variability of regional resources for OY 2014 depending on the level of uncommitted IPP generation assumed to be delivered in the region: 100 percent (3,285 aMW), 75 percent (2,464 aMW), 50 percent (1,643 aMW), and 25 percent (821 aMW). The level of uncommitted IPP generation assumed to be delivered in the region has a significant impact on PNW regional resource capabilities.


Figure 6-9

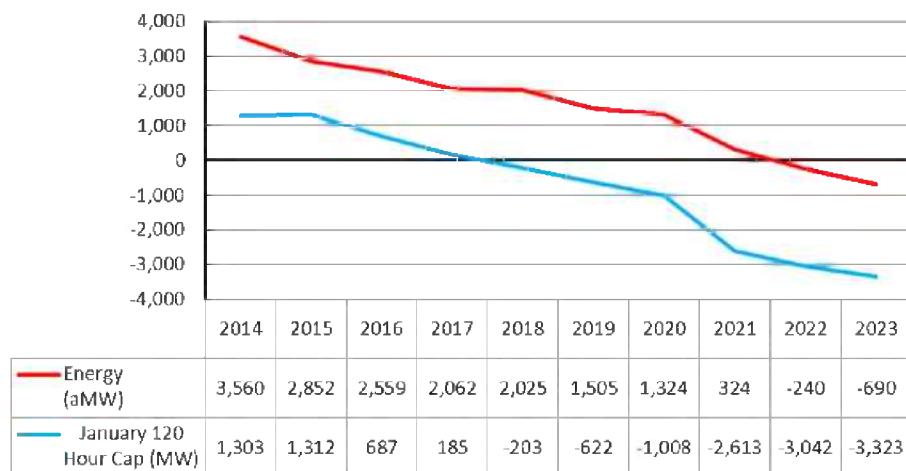
**PNW Regional Resources
For OY 2014 through 2023**
Utilizing Different Levels of Uncommitted IPP Generation Available to the Region
Under 1937-Critical Water Conditions
Annual Energy in Average Megawatts



While looking at PNW regional resources on an annual basis shows the overall trend in resources over the study period, it does not show how those resources are shaped monthly over the year. Figures 6-10 and 6-11, page 73, illustrate the monthly shape of the regional firm resource forecast under 1937-critical water conditions. The monthly regional resource forecasts for energy and 120-hour capacity maintain similar shapes over the study period, with the highest generation forecasts being in late spring/early summer and early winter periods. The lowest generation forecasts occur in the late summer/early fall and late winter/early spring timeframes.

Figure 6-10
PNW Regional Resources
For OY 2014 through 2023
Under 1937-Critical Water Conditions
Monthly Energy in Average Megawatts

Figure 6-11
PNW Regional Resources
For OY 2014 through 2023
Under 1937-Critical Water Conditions
Monthly 120-Hour Capacity in Megawatts


PNW Regional Analysis Firm Energy Surplus/Deficit Projections

The annual PNW regional surplus/deficit projections for OY 2014 through 2023, assuming 1937-critical water conditions and 100 percent of the uncommitted IPP resources are consumed within the PNW region, are presented below in Figure 6-12. The regional firm energy and January 120-hour capacity surplus significantly declines over the 10-year study period. By the end of the period, the study shows an energy deficit of -690 aMW and a January 120-hour capacity deficit of -3,323 MW. The declines in both energy and 120-hour capacity surplus/deficit projections are primarily driven by steady regional load growth as the regional resource forecast remains fairly constant over the study period (with the exception 2021 which incorporates the retirement of Centralia Unit 1 and Boardman coal plants in December 2020) .

Figure 6-12

PNW Regional Surplus/Deficit Projections For OY 2014 through 2023 Under 1937-Critical Water Conditions Annual Energy and January 120-Hour Capacity

Figures 6-13 and 6-14, below, illustrate the monthly PNW regional firm surplus/deficit projections for the study period. On a monthly basis, the region is projected to have its highest surplus in late spring/early summer while its largest deficits occur in late summer and winter.

Figure 6-13

**PNW Regional Surplus/Deficit Projections
For OY 2014 through 2023
Under 1937-Critical Water Conditions
Monthly Energy in Average Megawatts**

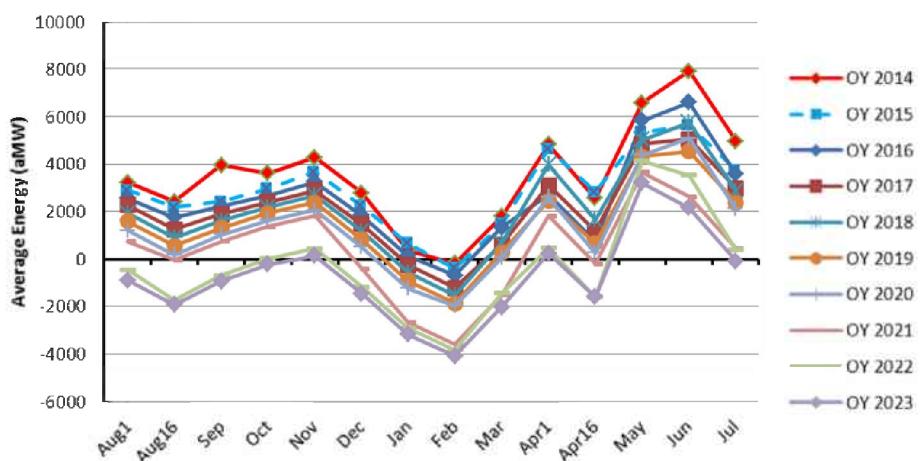
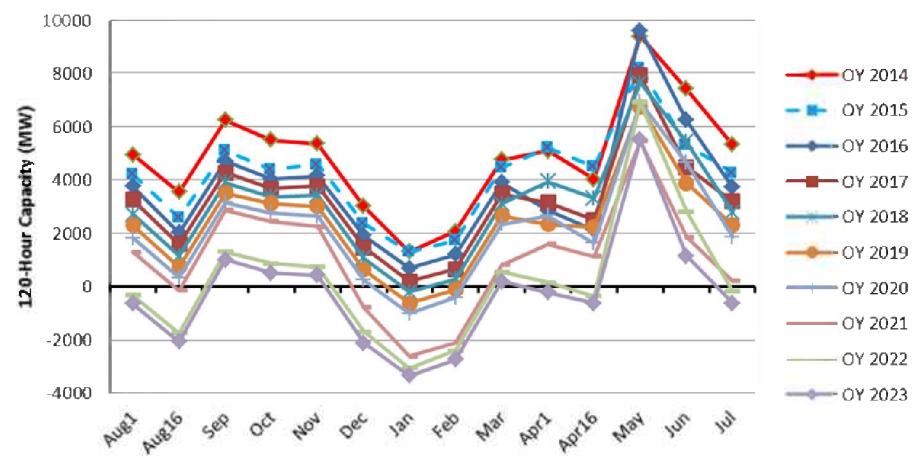



Figure 6-14

**PNW Regional Surplus/Deficit Projections
For OY 2014 through 2023
Under 1937-Critical Water Conditions
Monthly 120-Hour Capacity in Megawatts**

Potential Variability of PNW Regional Energy Surplus/Deficit Projections

Variability Due to Water Conditions: As discussed above, the variability of the PNW region's hydro resources based on the 80 historical water conditions has a direct and significant effect on regional surplus/deficit projections. Figure 6-15, below, illustrates the variability in annual surplus by comparing the regional surplus/deficit forecasts for OY 2014 through 2023 under the same four resource scenarios: 1) 1937-critical water conditions (the base case of this study); 2) the averages of the bottom 10 percent; 3) the averages of the middle 80 percent; and 4) the averages of the top 10 percent of the 80 historical water conditions (1929 through 2008). Since regional surplus/deficit projections for 1937-critical water conditions and the bottom 10 percent are similar, they are essentially the same line. The regional surplus forecast varies significantly depending on the water condition assumed.

Figure 6-15

PNW Regional Surplus/Deficit Projections For OY 2014 through 2023 Under Different Levels of Water Conditions Annual Energy in Average Megawatts

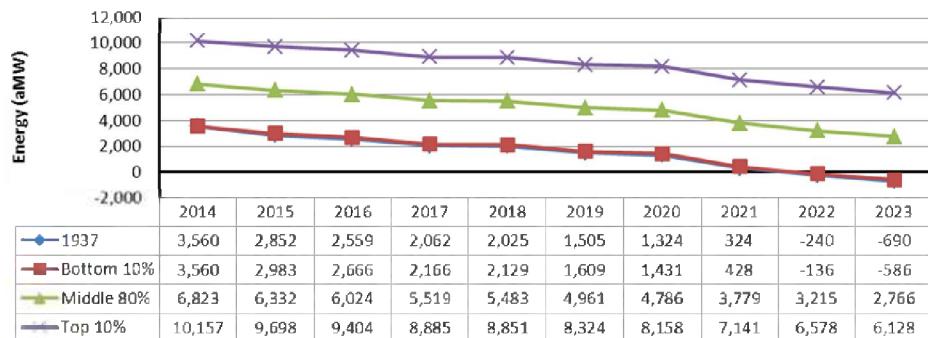
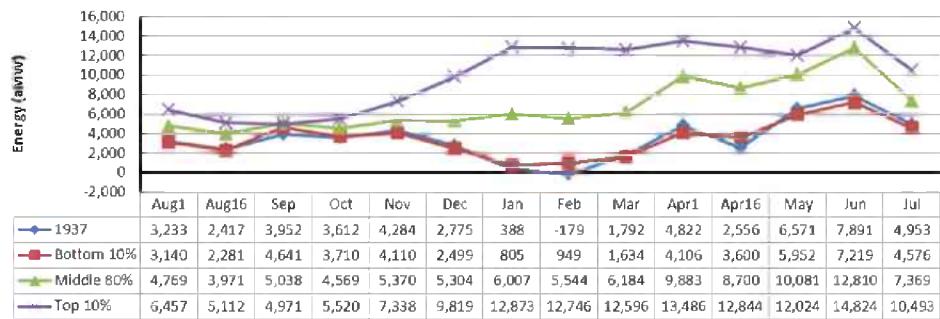



Figure 6-16, below, illustrates the monthly variability under the four water condition scenarios described and shown on an annual basis above. Similar to the annual results, the monthly regional surplus forecast varies significantly depending on the water condition assumed. While better water conditions increase energy surpluses throughout the year, surpluses increase the most during the winter.

Figure 6-16

**PNW Regional Surplus/Deficit Projections
For OY 2014
Under Different Levels of Water Conditions
Monthly Energy in Average Megawatts**

Variability Due to IPP Generation Amounts Delivered to the PNW Region:

As discussed above, the potential variability of uncommitted IPP generation delivered to the region has a significant effect on regional surplus/deficit projections. Figure 6-17, below, illustrates the potential variability in annual energy surplus/deficit projections for OY 2014 through 2023 under different assumptions for uncommitted IPP generation.

Figure 6-17

PNW Regional Surplus/Deficit Projections For OY 2014 through 2023 Utilizing Different Levels of Uncommitted IPP Generation Available to the Region Under 1937-Critical Water Conditions Annual Energy in Average Megawatts

PNW Regional Analysis Conclusion

Assuming modest load growth and the availability of energy from all uncommitted IPP resources to serve regional load, the PNW region is projected to be surplus through OY 2021 and have minimal energy deficits through the rest of the study period. However, if firm loads grow faster or the IPP resources are unavailable, either from out of region competition or for other reasons, the region could be deficit as soon as OY 2015. While BPA is not responsible for Regional planning, this analysis offers BPA's view of the region. Projected regional deficits identified in this and/or other analysis could be mitigated through options discussed in the Council's Sixth Power Plan. Additional views of mitigation options have been discussed by the Council's Northwest Resource Adequacy Forum. BPA will provide its next complete analysis of regional loads and resources for long-term planning in the 2014 White Book.

Comparison to Previous White Books

Figures 6-18 and 6-19, below, compare the 2012 White Book PNW regional firm load obligation forecast to those published in the 2010 and 2011 White Books. In terms of average energy, the 2012 White Book regional load forecast is virtually the same as the previous White Books.

Figure 6-18

PNW Regional Firm Load Obligations Comparison to Previous White Book Studies Annual Energy in Average Megawatts

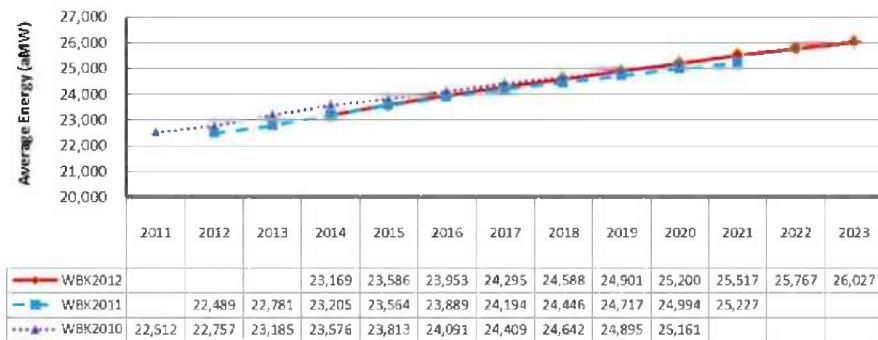
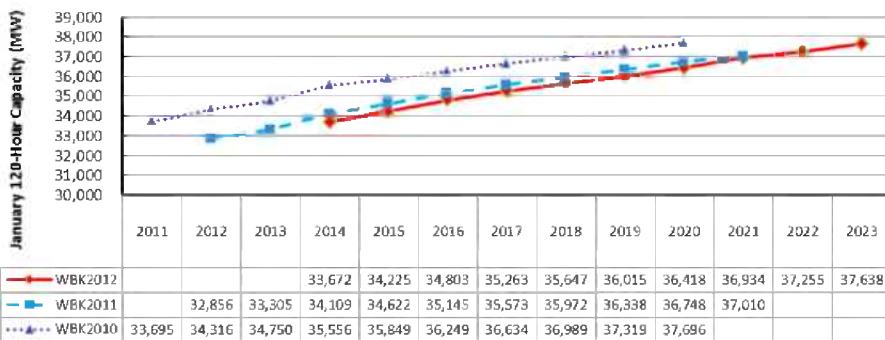
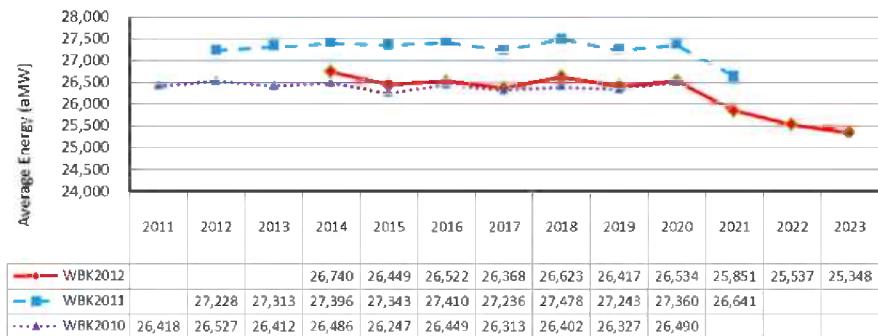
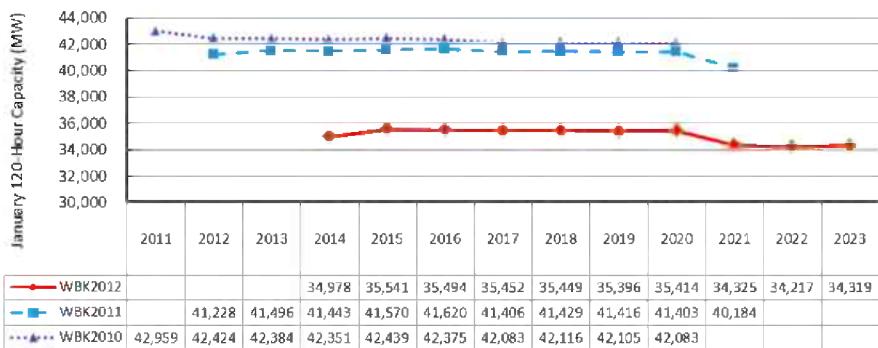



Figure 6-19


PNW Regional Firm Load Obligations Comparison to Previous White Book Studies January 120-Hour Capacity in Megawatts

Figures 6-20 and 6-21, below, compare the 2012 White Book PNW regional resource forecast to those published in the 2010 and 2011 White Books. The current resource forecast shows a minor reduction in annual energy and a substantial reduction in January 120-hour capacity when compared to the 2011 White Book. Again, the reduction in January 120-hour capacity is mostly a result of the HYDSIM modeling changes described in Hydro Resource Modeling in Section 2: Overall Methodology, on page 15. The significant dip in OY 2021 is the retirement of the Centralia 1 and Boardman coal projects December 2020.


Figure 6-20

PNW Regional Resources
Comparison to Previous White Book Studies
Under 1937-Critical Water Conditions
Annual Energy in Average Megawatts

Figure 6-21

PNW Regional Resources
Comparison to Previous White Book Studies
Under 1937-Critical Water Conditions
January 120-Hour Capacity in Megawatts

Figures 6-22 and 6-23, below, compare the 2012 White Book surplus/deficit projections described above to the surplus/deficit forecasts published in the 2010 and 2011 White Books. The 2012 White Book regional surplus/deficit projections continue to follow similar patterns as those in the last two White Book publications. Overall, the 2012 White Book forecasts slightly lower surplus/deficits in energy and January 120-hour capacity than the 2011 White Book.

Figure 6-22

**PNW Regional Surplus/Deficit Projections
Comparison to Previous White Book Studies
Under 1937-Critical Water Conditions
Annual Energy in Average Megawatts**

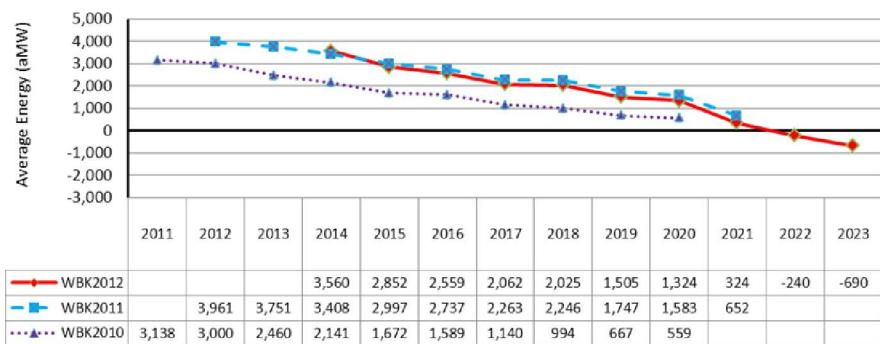
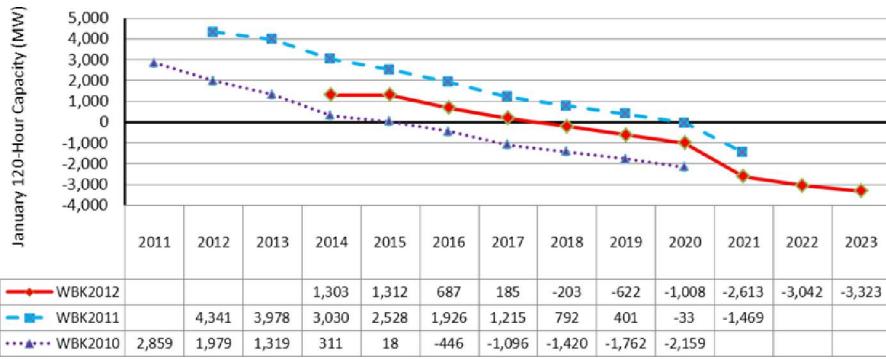



Figure 6-23

**PNW Regional Surplus/Deficit Projections
Comparison to Previous White Book Studies
Under 1937-Critical Water Conditions
January 120-Hour Capacity in Megawatts**

Comparison to Council's Sixth Power Plan

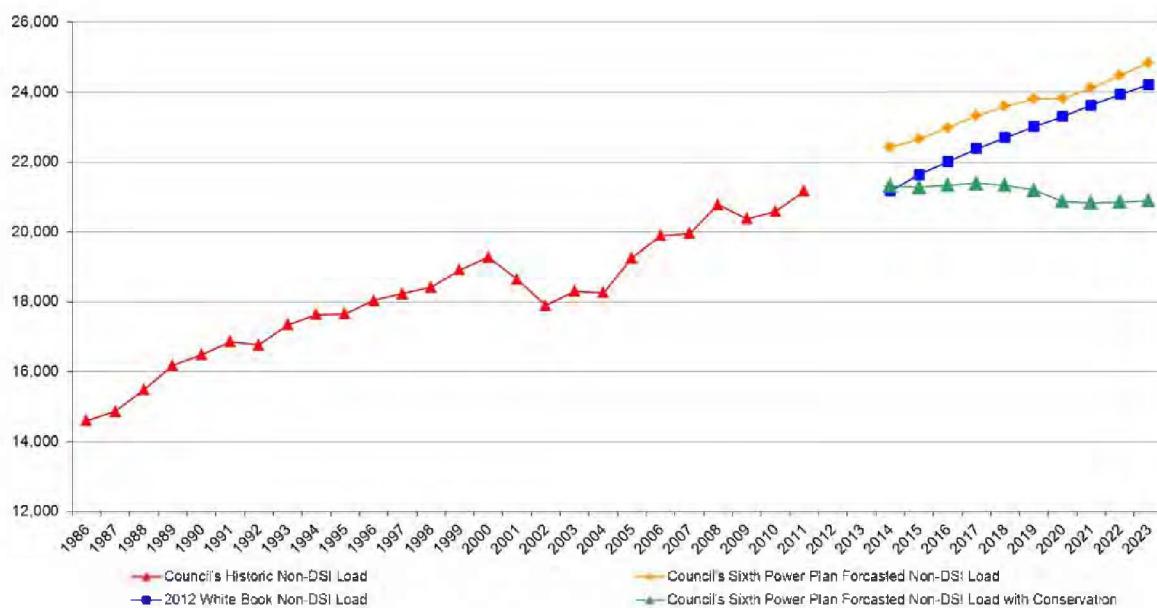
Comparing the PNW regional firm load forecast in the White Book to the Council's Sixth Power Plan (February 2010), requires that only a subset of load obligations are compared to provide consistency. The following discussion compares the non-DSI regional TRL forecast in each publication by removing the regional DSI load component in each forecast. It should be noted that the regional TRL forecasts do not include regional exports, which are a separate component of load obligations to the PNW region.

2012 White Book Non-DSI Total Retail Load Forecast: The 2012 White Book

TRL projections were forecasted for each entity and then aggregated into the displayed categories. BPA's TRL forecast is reduced for anticipated BPA-funded conservation through the 2014 Rate Case period. As more utilities report planned or implemented conservation measures, those impacts will be reflected in future BPA TRL forecasts.

Council Non-DSI Total Retail Load Forecast: The Council's Sixth Power Plan

for the near-term reflects lower non-DSI electricity demand due to current economic trends. The expected lower level of demand estimates anticipated levels of permanent load loss not expected to return as part of economic recovery. The Council's Sixth Power Plan is available at: <http://www.nwcouncil.org/energy/powerplan/6>


Comparison of the Non-DSI Total Retail Load Forecasts: The differences

between the 2012 White Book and the Council's Sixth Power Plan non-DSI load forecasts, without the Council conservation targets, shows the White Book firm load forecast to be an average of 3.6 percent lower over the 10-year study period. The difference is the extent of the economic downturn reflected in BPA's ALF forecast, when compared to the Council's estimates.

When comparing the 2012 White Book and the Council's Sixth Power Plan non-DSI load forecasts including the Council conservation targets shows the White Book firm load forecast to be an average of 7.1 percent higher over the 10-year study period. The difference is the inclusion of long-term Council conservation targets in the Council's estimates. Figure 6-24, below, compares the historic and forecasted non-DSI regional TRL from the Council's Sixth Power Plan to BPA's regional TRL forecast in the 2012 White Book. The Council's forecast is shown with and without assumed conservation savings that increase from approximately 1,107 aMW in 2014 to approximately 3,945 aMW in 2023.

Figure 6-24

**Non-DSI PNW Regional Firm Total Retail Loads Comparison
BPA 2012 White Book Load Projections and the
Council's Sixth Power Plan (February 2010)
Annual Energy in Average Megawatts**

THIS PAGE INTENTIONALLY LEFT BLANK

Section 7: Federal System Exhibits

THIS PAGE INTENTIONALLY LEFT BLANK

Exhibit 7-1: Annual Energy

**Federal System Surplus Deficit
Operating Year 2014 to 2023
Using 1937-Water Conditions**

THIS PAGE INTENTIONALLY LEFT BLANK

**Exhibit 1: Annual Energy
Loads and Resources - Federal System
Operating Year: 2014 to 2023 Water Year: 1937
2012 White Book Report Date: 10/19/2012**

S104-WB-20121129-173308

Energy-aMW	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Firm Obligations										
1 Non-Utility Obligation	611	613	613	626	641	651	657	662	664	665
2 Federal Agencies	123	125	125	138	153	163	169	174	176	177
3 USBR Obligation	176	176	176	176	176	176	176	176	176	176
4 DS1 Obligation	312	312	312	312	312	312	312	312	312	312
5 Transfers Out	7604	7609	7617	7601	7632	7581	7617	7597	7659	7635
6 Load Following 2012 PSC	3134	3187	3206	3235	3248	3273	3300	3334	3363	3384
7 Slice Block 2012 PSC	1817	1886	1845	1876	1853	1881	1854	1845	1845	1845
8 Slice Right to Power 2012 PSC	1943	1877	1907	1860	1907	1891	1932	1892	1931	1890
9 Exports	595	565	565	535	531	525	520	515	510	506
10 Intra-Regional Transfers (Out)	115	93.6	93.9	93.6	93.6	10.3	10.3	10.3	10.3	10.3
11 Federal Diversity	0	0	0	0	0	0	0	0	0	0
12 Total Firm Obligations	8216	8222	8230	8227	8273	8232	8274	8259	8323	8300
Net Resources										
1 Net Hydro	6917	6833	6811	6815	6815	6814	6811	6814	6802	6800
2 Regulated Hydro - Net	6563	6479	6458	6461	6461	6461	6458	6461	6461	6461
3 Independent Hydro - Net	354	354	353	354	354	354	353	354	342	340
4 Other Resources	1112	960	1106	941	1093	941	1093	941	1093	941
5 Cogeneration Resources	19.2	19.2	13.1	0	0	0	0	0	0	0
6 Combustion Turbines	0	0	0	0	0	0	0	0	0	0
7 Large Thermal Resources	1030	878	1030	878	1030	878	1030	878	1030	878
8 Renewable Resources	60.3	60.3	60.2	60.3	60.3	60.3	60.2	60.3	60.3	60.3
9 Small Hydro Resources	2.88	2.88	2.88	2.88	2.88	2.88	2.88	2.88	2.88	2.88
10 Small Thermal & Misc.	0	0	0	0	0	0	0	0	0	0
11 Contract Purchases	437	375	377	360	318	317	232	222	222	222
12 Imports	52.7	52.3	46.1	30.6	30.6	30.6	30.5	30.6	30.6	30.6
13 Intra-Regional Transfers (In)	211	151	160	160	118	118	34.3	25.8	25.8	25.8
14 Non-Federal CER	136	136	135	135	133	132	131	130	130	130
15 Slice Transmission Loss Return	36.6	35.4	35.9	35.0	35.7	35.3	36.1	35.3	36.1	35.3
16 Augmentation Purchases	0									
17 Reserves & Losses	-239	-230	-234	-229	-232	-228	-229	-225	-229	-225
18 Contingency Reserves (Spinning)	0									
19 Contingency Reserves (Non-Spinning)	0									
20 Load Following Reserves	0									
21 Generation Imbalance Reserves	0									
22 Transmission Losses	-239	-230	-234	-229	-232	-228	-229	-225	-229	-225
23 Total Net Resources	8227	7937	8061	7887	7994	7844	7907	7752	7889	7739
24 Total Surplus/Deficit	11.5	-284	-169	-340	-280	-388	-367	-507	-434	-561

THIS PAGE INTENTIONALLY LEFT BLANK

Exhibit 7-2: Monthly Energy

**Federal System Surplus Deficit
Operating Year 2014
Using 1937-Water Conditions**

THIS PAGE INTENTIONALLY LEFT BLANK

**Exhibit 2: Monthly Energy
Loads and Resources - Federal System
Operating Year: 2014 Water Year: 1937
2012 White Book Report Date: 10/19/2012**

S104-WB-20121129-173308

Energy-aMW	Aug1	Aug16	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr1	Apr16	May	Jun	Jul	Avg
Firm Obligations															
1 Non-Utility Obligation	718	716	670	519	473	498	476	470	505	671	671	743	751	834	611
2 Federal Agencies	113	113	103	107	132	154	151	140	135	113	113	104	105	119	123
3 USBR Obligation	292	290	254	100	27.6	32.8	13.5	16.9	57.8	246	246	327	335	402	176
4 DS1 Obligation	312	312	313	311	313	311	312	313	312	312	312	311	312	312	312
5 Transfers Out	7583	7334	6926	6823	8165	8785	8315	8018	7530	6958	6975	7625	7110	7533	7604
6 Load Following 2012 PSC	3086	3089	2841	2781	3236	3658	3616	3446	3054	2940	2940	2828	2946	3191	3134
7 Slice Block 2012 PSC	1636	1636	1716	1655	2046	2274	2310	2137	1989	1663	1663	1454	1351	1592	1817
8 Slice Right to Power 2012 PSC	2006	1749	1673	1617	2151	2118	1655	1579	1742	1715	1732	2764	2227	2154	1943
9 Exports	716	721	567	761	517	520	519	642	635	529	529	570	577	586	595
10 Intra-Regional Transfers (Out)	139	140	129	9.00	215	215	215	215	110	110	110	9.00	9.00	9.00	115
11 Federal Diversity	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12 Total Firm Obligations	8300	8050	7596	7341	8638	9283	8791	8488	8035	7629	7646	8368	7861	8366	8216
Net Resources															
1 Net Hydro	7209	6200	5776	5648	7575	7314	5768	5618	6133	6118	6197	10163	8115	7918	6917
2 Regulated Hydro - Net	6848	5842	5444	5327	7304	7135	5623	5466	5881	5684	5752	9445	7451	7514	6563
3 Independent Hydro - Net	361	358	332	321	271	179	145	152	251	434	445	718	664	403	354
4 Other Resources	1097	1134	1118	1113	1099	1107	1091	1086	1125	1129	1112	1120	1138	1112	1112
5 Cogeneration Resources	12.4	12.4	14.4	18.4	19.6	22.6	24.0	23.0	23.0	22.0	22.0	19.1	14.2	18.1	19.2
6 Combustion Turbines	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7 Large Thermal Resources	1030	1030	1030	1030	1030	1030	1030	1030	1030	1030	1030	1030	1030	1030	1030
8 Renewable Resources	51.9	89.1	71.2	62.4	46.3	51.1	34.2	30.0	69.0	74.2	57.0	68.1	91.1	61.6	60.3
9 Small Hydro Resources	2.63	2.63	2.63	2.67	2.84	3.19	3.21	3.05	3.10	3.09	3.09	2.83	2.72	2.63	2.88
10 Small Thermal & Misc.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11 Contract Purchases	406	402	478	410	573	703	471	466	481	474	474	224	333	229	437
12 Imports	133	133	23.6	20.4	37.9	269	36.4	37.2	33.9	16.2	16.2	1.12	1.00	16.1	52.7
13 Intra-Regional Transfers (In)	96.5	96.5	290	220	356	260	264	263	280	288	288	32.9	158	34.4	211
14 Non-Federal CER	138	139	133	139	138	134	139	137	134	138	138	138	132	138	136
15 Slice Transmission Loss Return	37.9	33.0	31.5	30.4	40.6	40.0	31.2	29.7	32.8	32.3	32.6	52.2	42.0	40.6	36.6
16 Augmentation Purchases	0	0	0	0	0	0	0	0	0						
17 Reserves & Losses	-246	-218	-208	-202	-261	-257	-207	-202	-218	-218	-220	-325	-270	-261	-239
18 Contingency Reserves (Spinning)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
19 Contingency Reserves (Non-Spinning)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
20 Load Following Reserves	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
21 Generation Imbalance Reserves	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
22 Transmission Losses	-246	-218	-208	-202	-261	-257	-207	-202	-218	-218	-220	-325	-270	-261	-239
23 Total Net Resources	8466	7518	7164	6969	8986	8866	7124	6968	7520	7504	7564	11183	9316	8998	8227
24 Total Surplus/Deficit	165	-532	-432	-372	348	-417	-1668	-1521	-515	-125	-81.6	2816	1455	632	11.5

THIS PAGE INTENTIONALLY LEFT BLANK

Exhibit 7-3: Annual 120-Hour Capacity

**Federal System Surplus Deficit
Operating Year 2014 to 2023
Using 1937-Water Conditions**

THIS PAGE INTENTIONALLY LEFT BLANK

**Exhibit 3: Annual 120-Hour Capacity
Loads and Resources - Federal System
January 2014 to 2023 Water Year: 1937
2012 White Book Report Date: 10/19/2012**

S104-WB-20121129-173308

120Hr-MW	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Firm Obligations										
1 Non-Utility Obligation	544	547	548	563	569	573	577	579	581	582
2 Federal Agencies	213	216	217	232	238	242	246	248	250	252
3 USBR Obligation	14.9	14.8	14.8	14.8	14.8	14.8	14.8	14.8	14.8	14.8
4 DS1 Obligation	316	316	316	316	316	316	316	316	316	316
5 Transfers Out	10265	10627	10624	10678	10645	10506	10522	10684	10681	10740
6 Load Following 2012 PSC	5431	5490	5528	5574	5627	5680	5733	5791	5842	5885
7 Slice Block 2012 PSC	2310	2424	2350	2403	2359	2409	2368	2355	2356	2356
8 Slice Right to Power 2012 PSC	2125	2286	2303	2288	2294	2362	2369	2396	2362	2389
9 Exports	1341	1373	1336	1321	1338	1338	1338	1338	1338	1338
10 Intra-Regional Transfers (Out)	282	283	282	287	283	16.0	16.0	16.0	16.0	16.0
11 Federal Diversity	-1224	-1229	-1176	-1195	-1256	-1300	-1302	-1212	-1234	-1245
12 Total Firm Obligations	10809	11174	11172	11241	11214	11079	11099	11263	11262	11323
Net Resources										
1 Net Hydro	9953	10767	10883	11009	11105	11197	11222	11316	11184	11299
2 Regulated Hydro - Net	9707	10522	10638	10764	10860	10951	10977	11070	10961	11076
3 Independent Hydro - Net	245	245	245	245	245	245	245	245	223	223
4 Other Resources	1159	1159	1159	1135	1135	1135	1135	1135	1135	1135
5 Cogeneration Resources	24.0	24.0	24.0	0	0	0	0	0	0	0
6 Combustion Turbines	0	0	0	0	0	0	0	0	0	0
7 Large Thermal Resources	1130	1130	1130	1130	1130	1130	1130	1130	1130	1130
8 Renewable Resources	0	0	0	0	0	0	0	0	0	0
9 Small Hydro Resources	4.59	4.59	4.59	4.59	4.59	4.59	4.59	4.59	4.59	4.59
10 Small Thermal & Misc.	0	0	0	0	0	0	0	0	0	0
11 Contract Purchases	875	679	662	605	471	471	286	286	285	286
12 Imports	73.2	73.2	57.1	1.00						
13 Intra-Regional Transfers (In)	512	313	313	313	182	182	0	0	0	0
14 Non-Federal CER	239	238	237	236	234	232	229	228	228	228
15 Slice Transmission Loss Return	50.7	54.6	54.9	54.5	54.4	56.0	56.2	56.8	56.0	56.7
16 Augmentation Purchases	0									
17 Reserves & Losses	-1966	-2138	-2207	-2311	-2401	-2498	-2497	-2485	-2480	-2490
18 Contingency Reserves (Spinning)	-378	-389	-391	-393	-395	-397	-399	-391	-391	-394
19 Contingency Reserves (Non-Spinning)	-378	-389	-391	-393	-395	-397	-399	-391	-391	-394
20 Load Following Reserves	-478	-533	-576	-639	-687	-726	-726	-726	-726	-726
21 Generation Imbalance Reserves	-385	-464	-485	-523	-567	-622	-622	-622	-622	-622
22 Transmission Losses	-347	-363	-364	-362	-357	-357	-352	-355	-351	-355
23 Total Net Resources	10021	10467	10497	10438	10310	10304	10146	10251	10124	10230
24 Total Surplus/Deficit	-788	-707	-675	-803	-904	-775	-953	-1012	-1138	-1093

THIS PAGE INTENTIONALLY LEFT BLANK

Exhibit 7-4: Monthly 120-Hour Capacity

**Federal System Surplus Deficit
Operating Year 2014
Using 1937-Water Conditions**

THIS PAGE INTENTIONALLY LEFT BLANK

**Exhibit 4: Monthly 120-Hour Capacity
Loads and Resources - Federal System
Operating Year: 2014 Water Year: 1937
2012 White Book Report Date: 10/19/2012**

S104-WB-20121129-173308

120Hr-MW	Aug1	Aug16	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr1	Apr16	May	Jun	Jul
Firm Obligations														
1 Non-Utility Obligation	1127	1127	1035	999	663	794	544	813	922	947	947	1052	1098	1168
2 Federal Agencies	141	141	131	154	185	214	213	196	197	169	169	151	155	157
3 USBR Obligation	671	671	589	529	162	264	14.9	301	409	462	462	585	627	696
4 DS1 Obligation	316	316	316	316	316	316	316	316	316	316	316	316	316	316
5 Transfers Out	8917	8427	8193	7875	9873	10557	10265	9546	9026	8147	8218	8899	8410	8906
6 Load Following 2012 PSC	4199	4199	4033	4286	4812	5473	5431	5127	4666	4511	4511	4153	4138	4360
7 Slice Block 2012 PSC	1636	1636	1716	1655	2046	2274	2310	2137	1989	1663	1663	1454	1351	1592
8 Slice Right to Power 2012 PSC	2349	1891	1928	1808	2528	2566	2125	1887	2181	1882	1883	3192	2662	2555
9 Exports	1604	1604	1450	1615	1339	1340	1341	1469	1455	1338	1338	1398	1400	1436
10 Intra-Regional Transfers (Out)	234	234	234	9.00	287	283	282	283	145	143	143	9.00	9.00	9.00
11 Federal Diversity	-1105	-1138	-1168	-1498	-1140	-1379	-1224	-1358	-1410	-1390	-1320	-1307	-1150	-1046
12 Total Firm Obligations	10044	9554	9229	8875	10536	11351	10809	10359	9948	9094	9165	9950	9509	10074
Net Resources														
1 Net Hydro	11283	9477	9387	9078	11558	11730	9953	9441	10511	9274	9277	14449	12495	12143
2 Regulated Hydro - Net	10814	9014	8849	8662	11163	11455	9707	9222	10147	8669	8659	13690	11696	11627
3 Independent Hydro - Net	469	464	539	416	395	276	245	219	363	606	618	759	799	516
4 Other Resources	1146	1146	1147	1152	1154	1157	1159	1158	1158	1157	1157	1154	1148	1151
5 Cogeneration Resources	12.4	12.4	14.4	18.4	19.6	22.6	24.0	23.0	23.0	22.0	22.0	19.1	14.2	18.1
6 Combustion Turbines	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7 Large Thermal Resources	1130	1130	1130	1130	1130	1130	1130	1130	1130	1130	1130	1130	1130	1130
8 Renewable Resources	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9 Small Hydro Resources	3.49	3.49	3.00	4.11	4.49	4.60	4.59	4.62	4.58	4.58	4.58	4.58	4.09	3.19
10 Small Thermal & Misc.	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11 Contract Purchases	529	518	769	708	1006	1118	875	869	876	852	852	325	565	355
12 Imports	176	176	72.3	72.3	103	305	73.2	73.2	73.2	56.9	56.9	11.0	1.00	56.0
13 Intra-Regional Transfers (In)	58.0	58.0	412	354	604	512	512	512	512	512	512	0	262	0
14 Non-Federal CER	239	239	239	239	239	239	239	239	239	238	238	238	238	238
15 Slice Transmission Loss Return	56.2	45.2	46.1	43.1	60.4	61.3	50.7	45.0	52.1	44.9	44.9	76.4	63.6	61.1
16 Augmentation Purchases	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17 Reserves & Losses	-1983	-1871	-1864	-1837	-2044	-2091	-1966	-1919	-1945	-1863	-1863	-2086	-2037	-2037
18 Contingency Reserves (Spinning)	-352	-326	-319	-329	-388	-407	-378	-362	-357	-337	-337	-372	-362	-371
19 Contingency Reserves (Non-Spinning)	-352	-326	-319	-329	-388	-407	-378	-362	-357	-337	-337	-372	-362	-371
20 Load Following Reserves	-486	-486	-486	-478	-478	-478	-478	-478	-478	-478	-478	-478	-492	-492
21 Generation Imbalance Reserves	-411	-411	-411	-385	-385	-385	-385	-385	-385	-385	-385	-385	-400	-400
22 Transmission Losses	-380	-321	-327	-315	-405	-413	-347	-331	-367	-327	-327	-480	-422	-403
23 Total Net Resources	10975	9271	9440	9102	11674	11914	10021	9549	10599	9420	9423	13842	12171	11613
24 Total Surplus/Deficit	931	-283	212	227	1138	563	-788	-810	651	326	258	3892	2663	1538

THIS PAGE INTENTIONALLY LEFT BLANK

Exhibit 7-5: 80 Water Year Monthly Energy

**Federal System Surplus Deficit
Operating Year 2014**

**Exhibit 5: 80-Water Year Monthly Energy
Federal Report Surplus Deficit By Water Year
Operating Year 2014**

2012 White Book Report Date: 10/19/2012

S104-WB-20121129-173308

Energy-aMW - Surplus Deficit	Aug1	Aug1 6	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr1	Apr16	May	Jun	Jul	Avg
1 1929 Federal Report Surplus Deficit	376	184	-205	-172	135	-492	-769	-964	-502	-428	706	2029	2180	139	154
2 1930 Federal Report Surplus Deficit	-69.3	-671	77.4	-449	10.2	-471	-2024	-847	-639	-190	1333	1873	725	938	-49.0
3 1931 Federal Report Surplus Deficit	158	-497	21.6	-613	244	-977	-1916	-1732	-788	319	-1038	2431	1000	652	-176
4 1932 Federal Report Surplus Deficit	-576	-1092	-575	-486	-259	-587	-1982	-1879	1071	4343	4097	5254	5047	1319	867
5 1933 Federal Report Surplus Deficit	370	-3.68	405	-325	-267	283	1011	1812	1804	2200	1874	3761	5922	3051	1633
6 1934 Federal Report Surplus Deficit	1698	1729	-20.5	434	2314	4078	4640	4223	3312	4804	4243	4270	3082	1258	2811
7 1935 Federal Report Surplus Deficit	-589	-762	-235	-552	-492	17.6	1157	994	1121	2051	1356	3092	2518	1971	884
8 1936 Federal Report Surplus Deficit	1354	-147	-400	-342	87.5	-521	-1601	-1547	-195	497	3573	5318	4173	925	719
9 1937 Federal Report Surplus Deficit	165	-532	-432	-372	348	-417	-1668	-1521	-515	-125	-81.6	2816	1455	632	11.5
10 1938 Federal Report Surplus Deficit	226	-753	10.9	-502	-348	77.7	953	1252	1705	3409	4381	4496	3712	1866	1400
11 1939 Federal Report Surplus Deficit	23.5	-265	61.0	-202	17.5	-520	-538	-101	85.7	1930	2273	3983	1815	723	610
12 1940 Federal Report Surplus Deficit	-262	-923	-329	-161	543	155	-812	-613	1307	2328	2801	3566	2689	309	722
13 1941 Federal Report Surplus Deficit	-404	-896	-101	-277	-177	-125	-1026	-1351	-651	19.2	731	2630	2702	844	189
14 1942 Federal Report Surplus Deficit	-61.2	-689	226	-313	108	848	978	-501	-267	276	2283	3027	4301	2463	987
15 1943 Federal Report Surplus Deficit	855	256	625	-310	-334	109	1717	1519	2202	4937	5198	4571	5541	1545	1894
16 1944 Federal Report Surplus Deficit	167	-92.4	-118	-321	207	-516	-679	-812	-725	-389	1021	1562	206	320	-39.7
17 1945 Federal Report Surplus Deficit	-128	-889	-103	-471	19.1	-1509	-1608	-1100	-808	-716	-1103	3574	3991	118	58.1
18 1946 Federal Report Surplus Deficit	410	-344	43.4	-441	-36.0	249	746	1025	1390	3551	4621	4619	4314	2103	1507
19 1947 Federal Report Surplus Deficit	766	161	201	-355	191	2636	3505	2768	2417	2506	2290	4410	4664	2199	2121
20 1948 Federal Report Surplus Deficit	737	-12.9	26.0	1685	1552	1324	3058	1768	1279	2510	3977	5723	5870	2860	2397
21 1949 Federal Report Surplus Deficit	1836	1326	333	-110	132	165	1359	-351	2656	3311	4276	5430	4297	59.6	1621
22 1950 Federal Report Surplus Deficit	-500	-916	-483	-349	40.7	8.33	2939	1926	3561	4239	3459	4529	5035	2284	1882
23 1951 Federal Report Surplus Deficit	1602	1251	117	526	1861	2770	4140	4036	4494	4230	4042	4580	4231	2664	2909
24 1952 Federal Report Surplus Deficit	1710	514	57.0	1257	912	1415	2464	1968	2433	4271	4498	5471	4638	2011	2343
25 1953 Federal Report Surplus Deficit	636	-152	-435	-380	107	-508	172	771	995	1564	1875	4336	5999	2631	1301
26 1954 Federal Report Surplus Deficit	1193	587	-2.47	-187	420	923	2432	2285	2804	2780	2566	4554	4583	3443	2067
27 1955 Federal Report Surplus Deficit	2206	2140	2020	-61.0	991	495	-52.5	-991	-757	165	1504	3717	5770	3580	1487
28 1956 Federal Report Surplus Deficit	1949	719	-215	72.7	1477	2705	4106	3986	3561	4158	4770	5180	5848	2789	2932
29 1957 Federal Report Surplus Deficit	1242	450	94.2	41.3	85.8	999	1012	278	1636	4289	2743	5978	6008	1784	1862
30 1958 Federal Report Surplus Deficit	143	-639	-37.1	-254	220	-90.2	1336	779	1798	2650	3097	5308	5090	1424	1516
31 1959 Federal Report Surplus Deficit	30.4	-405	-144	-271	862	2157	3663	3222	2790	3425	2443	3832	5227	2029	2166
32 1960 Federal Report Surplus Deficit	1808	908	2072	2350	2397	2020	2168	1150	1572	5275	3851	3847	4275	1781	2463
33 1961 Federal Report Surplus Deficit	682	-196	-241	-170	220	312	1950	1236	2582	3643	1779	4512	5340	1579	1688
34 1962 Federal Report Surplus Deficit	96.4	-9.71	-248	-331	205	-186	1148	1035	246	4604	4533	4410	4759	88.0	1303
35 1963 Federal Report Surplus Deficit	529	-196	-230	111	1053	1828	1120	1326	685	1541	1859	3808	4843	1998	1532
36 1964 Federal Report Surplus Deficit	708	50.9	234	-352	-68.4	253	365	76.7	347	3261	1654	4252	5884	3323	1432
37 1965 Federal Report Surplus Deficit	1918	650	603	450	735	2848	4435	5085	3999	2372	4584	4778	4202	1994	2810
38 1966 Federal Report Surplus Deficit	1751	1255	-292	-3.34	479	539	1037	575	-88.3	4189	2281	3377	3058	2006	1287
39 1967 Federal Report Surplus Deficit	841	-89.9	-126	-358	-42.5	589	2829	2723	3530	1668	37.3	3816	5356	2573	1838
40 1968 Federal Report Surplus Deficit	1273	336	-6.69	-133	495	560	1886	2151	2108	1116	990	2277	4674	2283	1505
41 1969 Federal Report Surplus Deficit	1474	780	1050	552	1551	1436	3693	3899	2524	4208	4228	5339	4437	2213	2657
42 1970 Federal Report Surplus Deficit	317	-279	35.9	-214	301	-244	1043	846	1151	2069	1152	3936	5326	1037	1233
43 1971 Federal Report Surplus Deficit	389	-293	-217	-324	111	30.5	4170	4006	4122	4076	3778	5349	5744	3390	2518
44 1972 Federal Report Surplus Deficit	2162	1373	225	85.7	305	856	4230	3742	5408	4857	3187	5310	5744	3284	2910
45 1973 Federal Report Surplus Deficit	2134	2041	511	31.9	298	506	1097	95.4	-435	-1190	629	2370	2617	456	785
46 1974 Federal Report Surplus Deficit	-174	-777	-76.3	-532	-99.4	969	5234	5088	4505	4640	4609	5104	5441	3604	2765
47 1975 Federal Report Surplus Deficit	2109	1350	335	-386	163	63.1	1008	1544	2188	1514	1775	4347	5740	3837	1851
48 1976 Federal Report Surplus Deficit	1496	757	434	687	1789	3635	3483	3498	3581	4500	4215	5126	4801	2910	2948
49 1977 Federal Report Surplus Deficit	2414	2452	2455	86.0	212	-489	-733	-500	-504	-768	796	1161	3.17	18.6	350
50 1978 Federal Report Surplus Deficit	-366	-1033	-722	-555	-542	1019	1012	895	1181	4187	2498	4199	3014	1953	1175
51 1979 Federal Report Surplus Deficit	387	-59.0	1150	118	224	-275	421	-898	1193	1211	1934	5000	2060	153	917
52 1980 Federal Report Surplus Deficit	-506	-814	-325	-359	175	-746	-410	-206	-417	2470	2834	5437	4724	595	870
53 1981 Federal Report Surplus Deficit	-82.7	-699	-14.3	-235	141	2268	2571	997	728	270	2723	5005	5787	2526	1744
54 1982 Federal Report Surplus Deficit	1786	1797	30.0	-251	511	1122	2666	3603	4904	3742	3206	5039	5295	2686	2566

Exhibit 5: 80-Water Year Monthly Energy

Federal Report Surplus Deficit By Water Year

Operating Year 2014

2012 White Book Report Date: 10/19/2012 *Continued*

S104-WB-20121129-173308

Energy-aMW - Surplus Deficit	Aug1	Aug16	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr1	Apr16	May	Jun	Jul	Avg
55 1983 Federal Report Surplus Deficit	2098	1466	1123	595	592	1383	3113	2523	3952	3511	2635	4723	4480	2690	2503
56 1984 Federal Report Surplus Deficit	1806	733	331	-85.1	2042	1331	2229	2317	2584	4803	4533	4603	5957	2956	2509
57 1985 Federal Report Surplus Deficit	971	216	335	-29.0	587	473	624	487	983	2959	3239	4702	2946	-747	1169
58 1986 Federal Report Surplus Deficit	-801	-1266	-355	-249	1328	302	1815	2305	5263	3980	3718	3561	4517	1341	1877
59 1987 Federal Report Surplus Deficit	480	-252	-156	-387	105	554	-130	-1319	746	820	1526	4115	2614	416	666
60 1988 Federal Report Surplus Deficit	-675	-1259	-256	-528	-27.4	-788	-1621	-1466	-645	-29.3	1617	2460	2493	1021	43.2
61 1989 Federal Report Surplus Deficit	-243	-706	54.7	-753	-330	-67.7	-677	-892	562	3042	4096	4027	2686	293	669
62 1990 Federal Report Surplus Deficit	-165	-813	-181	-450	287	395	1441	1710	2447	2406	4739	3784	4396	1643	1539
63 1991 Federal Report Surplus Deficit	1310	527	-270	-564	1833	1587	2382	2707	2525	3249	2715	4344	4146	2775	2107
64 1992 Federal Report Surplus Deficit	1774	1523	-191	-427	165	-431	-643	-849	-1.06	306	1036	3374	2162	42.3	468
65 1993 Federal Report Surplus Deficit	-640	-1051	-196	-639	0.38	-296	-1847	-1637	382	755	1433	3868	3311	1333	386
66 1994 Federal Report Surplus Deficit	165	-331	127	-544	445	-333	-1518	-1519	-506	-196	1334	3176	2672	860	286
67 1995 Federal Report Surplus Deficit	-126	-766	-11.7	-734	-347	-689	-216	1023	1630	2986	1800	3316	4804	1753	1031
68 1996 Federal Report Surplus Deficit	419	-110	563	160	2666	4777	4904	4259	5293	3981	5098	5015	5128	3213	3383
69 1997 Federal Report Surplus Deficit	1947	731	-236	-226	481	1392	4861	5125	5382	4217	5008	5028	5706	3335	3052
70 1998 Federal Report Surplus Deficit	2014	1022	1068	1870	1415	1036	728	1066	951	1465	2482	5696	5607	1930	2074
71 1999 Federal Report Surplus Deficit	1095	-300	11.6	-281	-118	897	3361	3487	4165	3111	3585	4611	5757	3162	2390
72 2000 Federal Report Surplus Deficit	2252	2134	608	-115	2093	1893	1623	1439	1920	4147	4515	3817	2972	1602	2031
73 2001 Federal Report Surplus Deficit	958	-628	-206	-274	108	-475	-726	-709	-594	-481	700	1953	-302	349	-46.6
74 2002 Federal Report Surplus Deficit	-374	-773	-553	-1190	-424	-611	-1139	-598	-250	3183	3738	3045	4826	2708	723
75 2003 Federal Report Surplus Deficit	616	-134	59.2	-520	347	-373	-1198	-877	1607	2362	2151	3226	4503	352	804
76 2004 Federal Report Surplus Deficit	-433	-1092	-441	-301	269	310	-550	-631	-107	822	2245	3698	3248	579	573
77 2005 Federal Report Surplus Deficit	-223	-499	130	-109	202	816	800	146	146	203	1445	3885	3462	799	898
78 2006 Federal Report Surplus Deficit	157	-617	47.4	-593	198	312	1423	2514	2110	4928	4565	5503	4638	1426	1828
79 2007 Federal Report Surplus Deficit	-280	-946	-162	-493	361	258	1580	582	2858	3059	2476	3927	2823	1806	1311
80 2008 Federal Report Surplus Deficit	199	-892	-518	-295	148	-265	-185	-367	374	1401	622	5229	5986	2226	1087

Ranked Averages

81 Bottom 10 pct	119	-548	-153	-400	130	-706	-1376	-1144	-652	-255	394	2337	1468	521	-5.57
82 Middle 80 pct	634	17.9	119	-158	365	462	1090	911	1526	2536	2714	4225	4325	1742	1462
83 Top 10 pct	1649	888	184	274	1453	2883	4350	4244	4379	4140	4393	4911	4843	2681	2969

THIS PAGE INTENTIONALLY LEFT BLANK

Section 8: Pacific Northwest Regional Exhibits

THIS PAGE INTENTIONALLY LEFT BLANK

Exhibit 8-1: Annual Energy

Regional Surplus Deficit
Operating Year 2014 to 2023
Using 1937-Water Conditions

**Exhibit 6: Annual Energy
Loads and Resources - Pacific Northwest Region
Operating Year: 2014 to 2023 Water Year: 1937
2012 White Book Report Date: 10/19/2012**

S104-WB-20130606-150434

Energy-aMW	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Firm Loads										
1 Regional Firm Loads	21614	22116	22533	22910	23230	23541	23837	24158	24457	24745
2 Federal Agency	133	135	135	148	163	173	179	184	186	187
3 USBR	176	176	176	176	176	176	176	176	176	176
4 Cooperative	1885	1932	1972	2024	2054	2099	2140	2193	2235	2263
5 Municipality	2741	2770	2803	2831	2854	2876	2895	2918	2938	2958
6 Public Utility District	4449	4510	4555	4603	4655	4706	4751	4807	4856	4909
7 Investor-Owned Utility	11401	11726	11980	12206	12406	12588	12772	12954	13139	13324
8 Marketer	386	388	390	391	392	393	394	396	397	398
9 Direct-Service Industry	442	479	522	530	530	530	530	530	530	530
10 Exports	1555	1471	1420	1386	1358	1360	1363	1359	1310	1282
11 Canada	542	517	526	521	523	518	513	508	503	498
12 East Continental Divide	14.4	14.4	14.4	14.4	14.4	14.4	14.4	14.4	14.4	14.4
13 Inland Southwest	14.8	14.8	14.8	14.8	14.8	14.8	14.8	14.8	14.8	14.8
14 Pacific Southwest	983	924	865	835	806	813	821	822	778	754
15 Other	0	0	0	0	0	0	0	0	0	0
16 Federal Diversity	0	0	0	0	0	0	0	0	0	0
17	0	0	0	0	0	0	0	0	0	0
18 Total Firm Loads	23169	23586	23953	24295	24588	24901	25200	25517	25767	26027
Non-Firm Loads										
1 Regional Non-Firm Loads	10.6	10.6	10.7	10.6	10.6	10.6	10.7	10.7	10.7	10.7
2 Federal Agency	0	0	0	0	0	0	0	0	0	0
3 USBR	0	0	0	0	0	0	0	0	0	0
4 Cooperative	0	0	0	0	0	0	0	0	0	0
5 Municipality	0	0	0	0	0	0	0	0	0	0
6 Public Utility District	10.6	10.6	10.7	10.6	10.6	10.6	10.7	10.7	10.7	10.7
7 Investor-Owned Utility	0	0	0	0	0	0	0	0	0	0
8 Direct-Service Industry	0	0	0	0	0	0	0	0	0	0
9 Marketer	0	0	0	0	0	0	0	0	0	0
10 Total Non-Firm Loads	10.6	10.6	10.7	10.6	10.6	10.6	10.7	10.7	10.7	10.7
Resources										
1 Hydro	11953	11741	11749	11754	11754	11754	11748	11754	11754	11754
2 Regulated Hydro - Net	10902	10690	10699	10703	10703	10703	10698	10703	10703	10703
3 Independent Hydro - Net	1051	1051	1050	1051	1051	1051	1050	1051	1051	1051
4 Other Resources	14626	14529	14621	14466	14724	14519	14639	13926	13598	13397
5 Cogeneration Resources	2633	2636	2632	2635	2639	2623	2637	2642	2622	2636
6 Combustion Turbine Resources	3390	3390	3385	3393	3390	3409	3403	3405	3405	3410
7 Large Thermal Resources	6358	6257	6361	6189	6449	6241	6354	5630	5324	5104
8 Renewable Resources	1954	1956	1953	1958	1956	1957	1956	1958	1957	1957
9 Small Hydro	253	253	253	253	253	252	252	253	253	253
10 Small Thermal & Miscellaneous	37.8	37.8	37.8	37.8	37.5	37.5	37.5	37.5	37.5	37.5
11 Imports	938	947	923	913	918	911	916	921	927	932
12 Canada	68.5	68.5	68.5	68.5	68.5	68.5	68.5	68.5	68.5	68.5
13 East of Continental Divide	302	304	306	308	310	311	313	315	317	318
14 Inland Southwest	461	468	473	476	480	484	487	491	494	498
15 Pacific Southwest	106	106	75.4	59.6	59.6	47.1	47.2	47.1	47.1	47.1

**Exhibit 6: Annual Energy
Loads and Resources - Pacific Northwest Region
Operating Year: 2014 to 2023 Water Year: 1937**
2012 White Book Report Date: 10/19/2012 *Continued*

S104-WB-20130606-150434

Energy-aMW	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
¹⁶ Other	0	0	0	0	0	0	0	0	0	0
¹⁷ Reserves & Losses	-776	-767	-770	-765	-773	-767	-770	-750	-741	-736
¹⁸ Contingency Reserves (Non-Spinning)	0	0	0	0	0	0	0	0	0	0
¹⁹ Contingency Reserves (Spinning)	0	0	0	0	0	0	0	0	0	0
²⁰ Generation Imbalance Reserves	0	0	0	0	0	0	0	0	0	0
²¹ Load Following Reserves	0	0	0	0	0	0	0	0	0	0
²² Transmission Losses	-776	-767	-770	-765	-773	-767	-770	-750	-741	-736
²³ Total Resources	26740	26449	26522	26368	26623	26417	26534	25851	25537	25348
²⁴ Total Surplus/Deficit	3560	2852	2559	2062	2025	1505	1324	324	-240	-690

THIS PAGE INTENTIONALLY LEFT BLANK

Exhibit 8-2: Monthly Energy

**Regional Surplus Deficit
Operating Year 2014
Using 1937-Water Conditions**

**Exhibit 7: Monthly Energy
Loads and Resources - Pacific Northwest Region**
Operating Year: 2014 Water Year: 1937
2012 White Book Report Date: 10/19/2012

S104-WB-20130606-150434

Energy-aMW	Aug1	Aug16	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr1	Apr16	May	Jun	Jul	Avg
Firm Loads															
1 Regional Firm Loads	21591	21611	20039	19492	21872	24006	24203	23078	21203	20293	20293	19687	21268	22674	21614
2 Federal Agency	125	125	114	119	140	162	159	148	143	125	125	116	116	131	133
3 USBR	292	290	254	100	27.6	32.8	13.5	16.9	57.8	246	246	327	335	402	176
4 Cooperative	1951	1953	1726	1642	1861	2136	2091	1992	1770	1734	1734	1753	1885	2082	1885
5 Municipality	2474	2476	2412	2580	3027	3176	3234	3126	2794	2669	2669	2478	2447	2499	2741
6 Public Utility District	4138	4141	3888	4086	4791	5258	5223	4977	4417	4245	4245	4005	4102	4281	4449
7 Investor-Owned Utility	11788	11803	10871	10179	11203	12394	12630	11971	11184	10443	10443	10178	11544	12428	11401
8 Marketer	380	380	328	345	378	406	411	404	396	389	389	389	398	409	386
9 Direct-Service Industry	443	443	444	441	445	440	442	444	442	443	443	442	440	443	442
10 Exports	1803	2022	1774	1704	1343	1310	1188	1311	1522	1620	1452	1394	1811	1833	1555
11 Canada	622	627	488	720	488	488	488	617	604	488	488	488	488	522	542
12 East Continental Divide	15.0	15.0	13.1	13.2	14.3	16.0	15.8	15.5	14.0	13.3	13.3	12.9	13.4	15.7	14.4
13 Inland Southwest	22.6	18.6	11.6	18.8	11.6	15.8	13.7	11.9	8.09	8.80	14.1	20.7	15.4	17.2	14.8
14 Pacific Southwest	1143	1362	1261	952	828	790	671	666	896	1110	937	872	1294	1278	983
15 Other	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16 Federal Diversity	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18 Total Firm Loads	23393	23633	21812	21196	23215	25316	25392	24389	22725	21913	21746	21081	23079	24507	23169
Non-Firm Loads															
1 Regional Non-Firm Loads	0	0	14.3	0	0	0	3.50	23.0	54.4	33.8	33.8	0	0	0	10.6
2 Federal Agency	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3 USBR	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4 Cooperative	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5 Municipality	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6 Public Utility District	0	0	14.3	0	0	0	3.50	23.0	54.4	33.8	33.8	0	0	0	10.6
7 Investor-Owned Utility	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8 Direct-Service Industry	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9 Marketer	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10 Total Non-Firm Loads	0	0	14.3	0	0	0	3.50	23.0	54.4	33.8	33.8	0	0	0	10.6
Resources															
1 Hydro	11509	10039	10341	9693	12386	12411	10895	9531	10459	11746	10887	16579	15291	13589	11953
2 Regulated Hydro - Net	10518	9051	9385	8787	11573	11559	10173	8752	9493	10438	9561	14981	13718	12462	10902
3 Independent Hydro - Net	991	988	957	906	813	851	722	779	966	1307	1327	1598	1574	1127	1051
4 Other Resources	14946	15824	15423	15106	14853	15054	14537	14326	13975	15084	13438	11141	15697	15764	14626
5 Cogeneration Resources	2772	2771	2781	2745	2789	2870	2826	2834	2047	2789	2129	2244	2512	2735	2633
6 Combustion Turbine Resources	3611	3611	3413	3472	3513	3811	3790	3519	3489	3375	3324	1743	3399	3586	3390
7 Large Thermal Resources	6644	6644	6644	6644	6644	6644	6644	6644	6377	6018	5686	4495	6449	6644	6358
8 Renewable Resources	1548	2428	2291	2029	1733	1561	1118	1169	1867	2579	1967	2201	2848	2327	1954
9 Small Hydro	337	335	256	178	137	128	118	124	157	285	294	417	453	434	253
10 Small Thermal & Miscellaneous	33.9	34.0	37.7	37.9	36.6	39.7	41.0	35.7	38.7	38.1	37.9	41.1	36.4	36.8	37.8
11 Imports	944	944	762	728	1057	1441	1099	1079	851	716	716	735	879	962	938
12 Canada	142	142	16.0	17.3	37.5	285	66.4	72.6	64.8	30.6	30.6	27.5	36.5	21.5	68.5
13 East of Continental Divide	293	293	270	267	303	350	345	342	308	268	268	266	291	316	302
14 Inland Southwest	493	492	453	425	423	455	428	442	414	395	395	441	552	609	461
15 Pacific Southwest	15.8	15.7	22.6	19.4	294	351	260	222	62.9	22.1	22.1	0.12	0	15.1	106

**Exhibit 7: Monthly Energy
Loads and Resources - Pacific Northwest Region**
Operating Year: 2014 Water Year: 1937
2012 White Book Report Date: 10/19/2012 *Continued*

S104-WB-20130606-150434

Energy-aMW	Aug1	Aug16	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr1	Apr16	May	Jun	Jul	Avg
¹⁶ Other	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
¹⁷ Reserves & Losses	-773	-756	-748	-720	-798	-815	-748	-703	-713	-777	-706	-802	-899	-855	-776
¹⁸ Contingency Reserves (Non-Spinning)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
¹⁹ Contingency Reserves (Spinning)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
²⁰ Generation Imbalance Reserves	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
²¹ Load Following Reserves	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
²² Transmission Losses	-773	-756	-748	-720	-798	-815	-748	-703	-713	-777	-706	-802	-899	-855	-776
²³ Total Resources	26626	26051	25778	24807	27499	28090	25783	24232	24572	26769	24335	27652	30969	29461	26740
²⁴ Total Surplus/Deficit	3233	2417	3952	3612	4284	2775	388	-179	1792	4822	2556	6571	7891	4953	3560

THIS PAGE INTENTIONALLY LEFT BLANK

Exhibit 8-3: Annual 120-Hour Capacity

**Regional Surplus Deficit
Operating Year 2014 to 2023
Using 1937-Water Conditions**

**Exhibit 8: Annual 120-Hour Capacity
Loads and Resources - Pacific Northwest Region**
January 2014 to 2023 Water Year: 1937
2012 White Book Report Date: 10/19/2012

S104-WB-20130606-150434

120Hr-MW	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Firm Loads										
1 Regional Firm Loads	33182	33859	34419	34914	35359	35770	36176	36602	37000	37394
2 Federal Agency	221	224	225	240	246	251	254	256	258	260
3 USBR	14.9	14.8	14.8	14.8	14.8	14.8	14.8	14.8	14.8	14.8
4 Cooperative	3119	3165	3224	3283	3345	3410	3469	3538	3590	3631
5 Municipality	4591	4622	4649	4680	4707	4734	4759	4788	4815	4841
6 Public Utility District	7336	7396	7465	7520	7586	7649	7712	7775	7835	7899
7 Investor-Owned Utility	16995	17484	17842	18176	18457	18708	18962	19223	19479	19738
8 Marketer	443	445	446	448	450	451	453	454	456	458
9 Direct-Service Industry	463	508	553	553	553	553	553	553	553	553
10 Exports	1713	1595	1559	1544	1544	1544	1544	1544	1489	1489
11 Canada	1311	1343	1307	1307	1324	1324	1324	1324	1324	1324
12 East Continental Divide	20.9	20.9	20.9	20.9	20.9	20.9	20.9	20.9	20.9	20.9
13 Inland Southwest	0	0	0	0	0	0	0	0	0	0
14 Pacific Southwest	381	231	231	216	199	199	199	199	144	144
15 Other	0	0	0	0	0	0	0	0	0	0
16 Federal Diversity	-1224	-1229	-1176	-1195	-1256	-1300	-1302	-1212	-1234	-1245
17	-1224	-1229	-1176	-1195	-1256	-1300	-1302	-1212	-1234	-1245
18 Total Firm Loads	33672	34225	34803	35263	35647	36015	36418	36934	37255	37638
Non-Firm Loads										
1 Regional Non-Firm Loads	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00
2 Federal Agency	0	0	0	0	0	0	0	0	0	0
3 USBR	0	0	0	0	0	0	0	0	0	0
4 Cooperative	0	0	0	0	0	0	0	0	0	0
5 Municipality	0	0	0	0	0	0	0	0	0	0
6 Public Utility District	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00
7 Investor-Owned Utility	0	0	0	0	0	0	0	0	0	0
8 Direct-Service Industry	0	0	0	0	0	0	0	0	0	0
9 Marketer	0	0	0	0	0	0	0	0	0	0
10 Total Non-Firm Loads	4.00									
Resources										
1 Hydro	20631	21375	21492	21618	21714	21805	21830	21924	21815	21930
2 Regulated Hydro - Net	19295	20040	20156	20282	20378	20469	20495	20589	20479	20594
3 Independent Hydro - Net	1335	1335	1335	1335	1335	1335	1335	1335	1335	1335
4 Other Resources	16649	16650	16650	16649	16649	16649	16649	15399	15399	15399
5 Cogeneration Resources	3080	3080	3080	3080	3080	3080	3080	3080	3080	3080
6 Combustion Turbine Resources	5949	5949	5949	5949	5949	5949	5949	5949	5949	5949
7 Large Thermal Resources	7244	7244	7244	7244	7244	7244	7244	5994	5994	5994
8 Renewable Resources	126	127	127	127	127	127	127	127	127	127
9 Small Hydro	166	166	166	166	166	166	166	166	166	166
10 Small Thermal & Miscellaneous	85.4	85.4	85.4	84.3	84.3	84.3	84.3	84.3	84.3	84.3
11 Imports	1689	1698	1614	1563	1568	1528	1534	1539	1545	1550
12 Canada	155	155	155	155	155	155	155	155	155	155
13 East of Continental Divide	468	470	473	475	477	479	482	484	486	488
14 Inland Southwest	573	580	584	587	590	594	597	600	604	607
15 Pacific Southwest	493	493	402	346	346	300	300	300	300	300

**Exhibit 8: Annual 120-Hour Capacity
Loads and Resources - Pacific Northwest Region**

January 2014 to 2023 Water Year: 1937

2012 White Book Report Date: 10/19/2012 *Continued*

S104-WB-20130606-150434

120Hr-MW	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
¹⁶ Other	0	0	0	0	0	0	0	0	0	0
17 Reserves & Losses	-3991	-4182	-4262	-4377	-4482	-4586	-4599	-4537	-4541	-4560
¹⁸ Contingency Reserves (Non-Spinning)	-958	-977	-986	-993	-1000	-1006	-1012	-1000	-1004	-1011
¹⁹ Contingency Reserves (Spinning)	-958	-977	-986	-993	-1000	-1006	-1012	-1000	-1004	-1011
²⁰ Generation Imbalance Reserves	-385	-464	-485	-523	-567	-622	-622	-622	-622	-622
²¹ Load Following Reserves	-478	-533	-576	-639	-687	-726	-726	-726	-726	-726
²² Transmission Losses	-1212	-1232	-1230	-1229	-1229	-1227	-1228	-1190	-1186	-1190
23 Total Resources	34978	35541	35494	35452	35449	35396	35414	34325	34217	34319
24 Total Surplus/Deficit	1303	1312	687	185	-203	-622	-1008	-2613	-3042	-3323

THIS PAGE INTENTIONALLY LEFT BLANK

Exhibit 8-4: Monthly 120-Hour Capacity

**Regional Surplus Deficit
Operating Year 2014
Using 1937-Water Conditions**

**Exhibit 9: Monthly 120-Hour Capacity
Loads and Resources - Pacific Northwest Region**
Operating Year: 2014 Water Year: 1937
2012 White Book Report Date: 10/19/2012

S104-WB-20130606-150434

120Hr-MW	Aug1	Aug16	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr1	Apr16	May	Jun	Jul
Firm Loads														
1 Regional Firm Loads	29140	29140	26271	27116	30166	33313	33182	31497	28856	27339	27339	25709	28488	30521
2 Federal Agency	152	152	142	166	193	222	221	204	205	181	181	163	167	169
3 USBR	671	671	589	529	162	264	14.9	301	409	462	462	585	627	696
4 Cooperative	2595	2595	2428	2486	2720	3156	3119	2923	2667	2640	2640	2570	2619	2763
5 Municipality	3375	3375	3248	3743	4302	4603	4591	4421	3978	3781	3781	3282	3343	3527
6 Public Utility District	5469	5469	5210	5825	6782	7528	7336	6946	6211	5972	5972	5415	5406	5689
7 Investor-Owned Utility	15975	15975	13771	13485	15120	16643	16995	15810	14499	13429	13429	12819	15433	16766
8 Marketer	440	440	420	419	424	435	443	430	424	412	412	413	431	449
9 Direct-Service Industry	463	463	463	463	463	463	463	463	463	463	463	463	463	463
10 Exports	2398	2398	2243	2077	1714	1713	1713	1842	1831	1713	1721	1688	2193	2229
11 Canada	1463	1463	1311	1543	1311	1311	1311	1440	1427	1311	1311	1311	1311	1345
12 East Continental Divide	19.8	19.8	17.3	17.1	19.1	20.1	20.9	20.1	19.5	18.3	18.3	17.0	18.8	20.5
13 Inland Southwest	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14 Pacific Southwest	915	915	915	517	384	381	381	381	384	384	392	360	864	864
15 Other	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16 Federal Diversity	-1105	-1138	-1168	-1498	-1140	-1379	-1224	-1358	-1410	-1390	-1320	-1307	-1150	-1046
17	-1105	-1138	-1168	-1498	-1140	-1379	-1224	-1358	-1410	-1390	-1320	-1307	-1150	-1046
18 Total Firm Loads	30433	30400	27347	27696	30740	33646	33672	31981	29276	27662	27740	26090	29532	31704
Non-Firm Loads														
1 Regional Non-Firm Loads	0	0	14.0	0	0	0	4.00	23.0	54.0	34.0	34.0	0	0	0
2 Federal Agency	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3 USBR	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4 Cooperative	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5 Municipality	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6 Public Utility District	0	0	14.0	0	0	0	4.00	23.0	54.0	34.0	34.0	0	0	0
7 Investor-Owned Utility	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8 Direct-Service Industry	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9 Marketer	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10 Total Non-Firm Loads	0	0	14.0	0	0	0	4.00	23.0	54.0	34.0	34.0	0	0	0
Resources														
1 Hydro	21484	19961	19708	19236	21915	22147	20631	19624	20675	19355	19323	25122	23825	23144
2 Regulated Hydro - Net	19976	18454	18129	17725	20450	20756	19295	18379	19171	17566	17518	23132	21787	21517
3 Independent Hydro - Net	1508	1507	1579	1511	1464	1391	1335	1245	1504	1789	1805	1990	2038	1627
4 Other Resources	16396	16395	16409	16490	16577	16645	16649	16610	15924	16014	15013	13068	15786	16467
5 Cogeneration Resources	2941	2941	2964	3045	3063	3077	3080	3074	2406	3046	2566	2711	2932	2944
6 Combustion Turbine Resources	5602	5602	5665	5748	5876	5940	5949	5904	5853	5707	5707	4623	5075	5599
7 Large Thermal Resources	7244	7244	7244	7244	7244	7244	7244	7244	7244	6726	6196	5062	7090	7244
8 Renewable Resources	126	126	126	126	126	127	126	127	125	125	125	125	125	126
9 Small Hydro	401	399	327	244	185	173	166	177	212	326	336	461	480	473
10 Small Thermal & Miscellaneous	84.1	84.4	83.5	83.6	83.9	85.0	85.4	85.1	83.7	83.8	83.5	85.7	83.5	82.8
11 Imports	1414	1414	1186	1136	1566	1950	1689	1718	1295	1094	1094	1078	1319	1460
12 Canada	266	266	146	147	102	356	155	188	213	147	147	147	146	146
13 East of Continental Divide	391	391	371	370	413	474	468	466	417	360	360	363	395	408
14 Inland Southwest	701	701	598	547	549	627	573	571	546	519	519	559	778	851
15 Pacific Southwest	55.0	55.0	71.3	71.3	502	493	493	493	118	67.9	67.9	10.00	0	55.0

**Exhibit 9: Monthly 120-Hour Capacity
Loads and Resources - Pacific Northwest Region**

Operating Year: 2014 Water Year: 1937

2012 White Book Report Date: 10/19/2012 *Continued*

S104-WB-20130606-150434

120Hr-MW	Aug1	Aug16	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr1	Apr16	May	Jun	Jul
¹⁶ Other	0	0	0	0	0	0	0	0	0	0	0	0	0	0
¹⁷ Reserves & Losses	-3921	-3827	-3721	-3691	-3974	-4095	-3991	-3881	-3816	-3692	-3642	-3821	-4006	-4065
¹⁸ Contingency Reserves (Non-Spinning)	-898	-876	-830	-839	-930	-981	-958	-918	-886	-846	-839	-865	-917	-945
¹⁹ Contingency Reserves (Spinning)	-898	-876	-830	-839	-930	-981	-958	-918	-886	-846	-839	-865	-917	-945
²⁰ Generation Imbalance Reserves	-411	-411	-411	-385	-385	-385	-385	-385	-385	-385	-385	-385	-400	-400
²¹ Load Following Reserves	-486	-486	-486	-478	-478	-478	-478	-478	-478	-478	-478	-478	-492	-492
²² Transmission Losses	-1226	-1177	-1164	-1150	-1251	-1270	-1212	-1181	-1181	-1136	-1102	-1229	-1280	-1283
²³ Total Resources	35373	33943	33581	33171	36084	36647	34978	34071	34077	32771	31788	35448	36923	37006
²⁴ Total Surplus/Deficit	4940	3543	6221	5475	5343	3000	1303	2067	4747	5076	4014	9358	7391	5302

THIS PAGE INTENTIONALLY LEFT BLANK

Exhibit 8-5: 80 Water Year Monthly Energy

Regional Surplus Deficit
Operating Year 2014

**Exhibit 10: 80-Water Year Monthly Energy
Regional Report Surplus Deficit By Water Year
Operating Year 2014
2012 White Book Report Date: 10/19/2012**

S104-WB-20130606-150434

Energy-aMW - Surplus Deficit	Aug1	Aug1 6	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr1	Apr16	May	Jun	Jul	Avg
1 1929 Regional Report Surplus Deficit	4652	4399	4726	4834	4739	2973	1518	1264	1852	3799	4189	5998	8952	4323	4149
2 1930 Regional Report Surplus Deficit	3036	2284	5062	3638	3891	2638	-72.2	1818	1604	4268	6012	4960	5414	5391	3510
3 1931 Regional Report Surplus Deficit	3274	2465	4932	3377	4400	1534	191	212	1226	4725	386	5881	5923	4274	3123
4 1932 Regional Report Surplus Deficit	1460	1058	3593	3331	3679	3085	-426	-240	5189	13265	11670	11849	14338	6471	5394
5 1933 Regional Report Surplus Deficit	4244	3788	5286	4033	4380	4888	5910	6868	6625	9166	6606	9204	15885	10988	7152
6 1934 Regional Report Surplus Deficit	7146	7320	4533	6440	9765	12518	13167	12039	9967	13860	11304	10344	10194	5978	9546
7 1935 Regional Report Surplus Deficit	1981	2113	4426	3737	4229	4485	6191	5815	5123	8515	5848	8296	9988	7780	5767
8 1936 Regional Report Surplus Deficit	5767	3794	4168	3827	4022	2527	1034	503	2334	5607	9877	11983	12986	5629	5140
9 1937 Regional Report Surplus Deficit	3233	2417	3952	3612	4284	2775	388	-179	1792	4822	2556	6571	7891	4953	3560
10 1938 Regional Report Surplus Deficit	4076	2260	4793	3733	4056	4692	5746	5913	6379	11550	12602	11468	11465	7449	6734
11 1939 Regional Report Surplus Deficit	3656	3294	4969	4302	4204	3103	2830	3341	3312	8462	7857	9682	8270	5013	5054
12 1940 Regional Report Surplus Deficit	2435	1604	4267	4079	4872	4366	1833	2550	5859	9303	8665	8236	8945	3933	4995
13 1941 Regional Report Surplus Deficit	1920	1488	4535	4068	3676	3633	1069	822	1401	4377	3876	6055	8872	4788	3735
14 1942 Regional Report Surplus Deficit	2557	1817	4194	4215	4413	5772	5077	2483	2238	4971	7760	7334	12704	8610	5474
15 1943 Regional Report Surplus Deficit	4687	4005	5256	4036	4140	4641	7138	6702	7544	15215	13953	11424	15080	7745	7704
16 1944 Regional Report Surplus Deficit	4607	3836	4966	4123	4536	3184	1859	1837	2214	3507	4535	4231	4649	3957	3654
17 1945 Regional Report Surplus Deficit	2439	1780	4355	3411	4043	1296	778	1323	1383	3371	340	8737	12431	3930	3804
18 1946 Regional Report Surplus Deficit	4069	2922	5102	3912	4517	5085	5865	5708	5935	12179	12812	11526	13319	8589	7120
19 1947 Regional Report Surplus Deficit	5435	4257	5452	4132	5143	9996	10356	9649	8327	10203	8420	10236	13430	8246	8246
20 1948 Regional Report Surplus Deficit	5061	3840	5254	8817	7977	6958	9617	6957	5450	9758	11103	12768	16070	9840	8715
21 1949 Regional Report Surplus Deficit	7415	6760	5133	4837	4951	4381	6050	2983	8301	11647	12202	12595	13265	4480	7181
22 1950 Regional Report Surplus Deficit	2732	2080	4237	4106	4906	4418	9799	7982	10810	13529	10970	10968	14944	9694	8031
23 1951 Regional Report Surplus Deficit	7252	6909	4827	6649	9172	10994	12139	12586	12216	13883	12174	11236	13266	9744	10227
24 1952 Regional Report Surplus Deficit	6958	4927	4926	8248	6773	7320	8428	7710	8050	13299	12736	13072	13868	7882	8766
25 1953 Regional Report Surplus Deficit	5022	3619	4332	3818	4276	2804	4973	5585	5114	8071	6896	10875	15973	9543	6582
26 1954 Regional Report Surplus Deficit	5710	5044	4523	4595	5523	6613	9019	8704	8983	11036	8857	10883	13810	11882	8316
27 1955 Regional Report Surplus Deficit	8445	8663	8726	5020	6921	5351	3677	1930	1582	5896	5531	8479	15666	11774	6966
28 1956 Regional Report Surplus Deficit	7634	5291	4214	5753	8271	10379	12337	11284	10499	13534	13696	12494	16390	10287	10148
29 1957 Regional Report Surplus Deficit	6731	5176	5466	5354	4921	6786	5803	4767	6732	13473	8945	13647	15967	7130	7817
30 1958 Regional Report Surplus Deficit	3946	2566	5068	4223	4630	4120	6721	5938	6792	10520	9552	12552	14275	6337	6986
31 1959 Regional Report Surplus Deficit	3541	3149	4867	4303	6649	9046	11151	10045	8846	11865	8816	9865	14699	8703	8468
32 1960 Regional Report Surplus Deficit	6980	5594	9081	10614	10016	8459	7725	6316	6377	15513	11235	9608	12775	7486	9005
33 1961 Regional Report Surplus Deficit	5400	3655	4803	4431	5242	4812	7767	6692	8370	11966	6536	10539	14612	6778	7308
34 1962 Regional Report Surplus Deficit	3825	3792	4526	4090	4654	3812	5922	5521	3382	14212	12913	10549	13605	4355	6462
35 1963 Regional Report Surplus Deficit	4717	3549	4659	5036	6818	8193	5779	7067	4474	7924	6783	9230	13963	7696	7019
36 1964 Regional Report Surplus Deficit	4887	4028	5568	4059	4518	4757	4778	3884	3911	11592	6420	10199	16085	11191	6870
37 1965 Regional Report Surplus Deficit	7540	5269	5788	5949	6002	10517	12602	13713	11221	9763	13088	11710	12677	7963	9635
38 1966 Regional Report Surplus Deficit	7025	6490	4223	5052	5445	5217	5649	4625	3286	13532	8019	8629	10700	7911	6524
39 1967 Regional Report Surplus Deficit	4683	4063	4973	4007	4339	5870	9448	9478	10063	8604	3413	9714	15017	9621	7728
40 1968 Regional Report Surplus Deficit	5942	4396	4377	5045	5725	5475	7926	8501	8085	6926	4871	6313	13998	8690	7082
41 1969 Regional Report Surplus Deficit	6252	5647	6871	6662	8105	7454	11059	11068	7925	13891	12570	12293	15963	11372	10094
42 1970 Regional Report Surplus Deficit	4380	3354	5299	4445	4936	3746	6039	5600	5483	8859	5253	9868	14632	5841	6389
43 1971 Regional Report Surplus Deficit	4422	3235	4753	4028	4763	4450	12360	12299	11608	13278	11482	12424	15627	11683	9154
44 1972 Regional Report Surplus Deficit	8280	6715	5045	5427	5472	6062	12318	11965	14854	15496	10611	12293	15963	11372	10094
45 1973 Regional Report Surplus Deficit	8345	8262	5686	5338	5199	5816	5874	3849	2183	2507	4398	6210	9552	4697	5522
46 1974 Regional Report Surplus Deficit	2814	2058	5025	3783	4701	6738	14741	14310	12775	14325	13013	11890	15470	12074	9763
47 1975 Regional Report Surplus Deficit	8214	6861	5192	4209	4935	4807	6370	6960	7432	8075	6873	10881	15733	11970	7790
48 1976 Regional Report Surplus Deficit	6527	5718	5433	6881	8697	12476	11086	10680	10412	13892	12096	12214	14196	10538	10136
49 1977 Regional Report Surplus Deficit	9048	9525	9545	5086	4637	2903	1692	2286	1821	2757	4378	3519	4173	3154	4311
50 1978 Regional Report Surplus Deficit	2027	1517	3262	3449	3717	6360	5776	5161	5524	13142	8670	10626	10177	7905	6219
51 1979 Regional Report Surplus Deficit	4659	4080	6895	5083	4658	3540	3925	2090	5846	6819	6735	11321	8726	4014	5619
52 1980 Regional Report Surplus Deficit	1983	2066	4410	3908	4203	2931	2796	3802	2524	9570	9473	12742	13806	5266	5651
53 1981 Regional Report Surplus Deficit	3035	2325	4905	4227	4694	9557	8885	6246	4518	5216	8190	11143	15066	8997	7304
54 1982 Regional Report Surplus Deficit	6650	7043	4482	4446	5476	6599	8981	11191	13154	12186	9493	12045	15056	9831	9062

Exhibit 10: 80-Water Year Monthly Energy

Regional Report Surplus Deficit By Water Year

Operating Year 2014

2012 White Book Report Date: 10/19/2012 *Continued*

S104-WB-20130606-150434

Energy-aMW - Surplus Deficit	Aug1	Aug1 6	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr1	Apr16	May	Jun	Jul	Avg
55 1983 Regional Report Surplus Deficit	7681	6642	6653	6345	5813	7466	10547	9346	11244	11976	8887	11431	13574	9861	9153
56 1984 Regional Report Surplus Deficit	7101	5435	5062	4956	9214	7221	9015	8520	8170	13987	11918	10572	15946	9930	8967
57 1985 Regional Report Surplus Deficit	5514	4945	5394	5065	6116	5070	4718	4417	5209	10949	10006	11213	10697	2155	6308
58 1986 Regional Report Surplus Deficit	1437	1068	4462	4701	7614	4702	7798	8086	14206	12922	10931	9055	13151	6011	7726
59 1987 Regional Report Surplus Deficit	4236	3264	4966	4063	4942	5354	3384	1368	5260	6392	6228	9710	9026	4284	5219
60 1988 Regional Report Surplus Deficit	1553	959	4502	3383	3881	2232	873	142	1769	4700	6384	6286	9087	5524	3713
61 1989 Regional Report Surplus Deficit	2318	1988	4700	3144	3867	3768	2816	1394	4035	10824	11987	9751	9796	4571	5121
62 1990 Regional Report Surplus Deficit	2899	2198	4707	3653	5378	5472	7416	7193	7936	9758	12158	9315	13065	7515	7079
63 1991 Regional Report Surplus Deficit	5828	4735	4175	3539	9041	7402	8301	9427	8182	11367	8556	10203	12605	10057	8161
64 1992 Regional Report Surplus Deficit	7138	6925	4079	3582	4594	3109	2173	2180	2941	5083	4835	7504	7720	3106	4423
65 1993 Regional Report Surplus Deficit	1465	1207	4153	3344	4051	2850	208	-41.8	3705	6338	6308	9390	10721	6415	4386
66 1994 Regional Report Surplus Deficit	4030	3212	4893	3301	4646	3035	1236	-90.7	2050	4283	5999	7721	9084	4913	4143
67 1995 Regional Report Surplus Deficit	2505	1672	4612	3127	3674	2874	3608	5731	6772	10639	6382	8389	13937	7186	5856
68 1996 Regional Report Surplus Deficit	4337	3680	5321	5246	10793	14033	13993	13327	14231	13281	14112	11942	14379	10484	10933
69 1997 Regional Report Surplus Deficit	7272	5253	4114	4470	5598	7349	13767	14107	14560	13715	13964	12414	16255	11481	10321
70 1998 Regional Report Surplus Deficit	7865	6115	7043	9639	7809	6572	5756	6082	5627	8146	8412	12998	15476	7682	8331
71 1999 Regional Report Surplus Deficit	5164	3484	5350	4068	4461	6625	10906	10829	11666	11454	11153	11325	16054	11220	8990
72 2000 Regional Report Surplus Deficit	8685	8466	5564	4659	9391	8500	7189	6582	6846	13271	12869	9301	10557	6893	8089
73 2001 Regional Report Surplus Deficit	5063	3015	4827	4071	4169	2701	1352	1614	1684	3079	4713	4899	3489	3788	3382
74 2002 Regional Report Surplus Deficit	1814	1663	3293	1991	3405	2753	2134	2239	2465	10929	10543	7590	13852	9740	5156
75 2003 Regional Report Surplus Deficit	4991	3518	5061	3315	4465	2851	1874	1511	5849	9012	7146	7678	12573	4140	5139
76 2004 Regional Report Surplus Deficit	1903	1107	3923	4021	4468	4436	2517	2186	2728	5993	7347	8556	10573	4979	4715
77 2005 Regional Report Surplus Deficit	2655	2910	4603	4534	4680	5676	5212	3859	3033	4868	5430	8705	10896	5198	5363
78 2006 Regional Report Surplus Deficit	3207	2094	4583	3266	4417	4581	7333	8708	7157	14387	12509	12628	13700	6376	7373
79 2007 Regional Report Surplus Deficit	2781	1710	4573	3313	5903	4933	6891	4844	9652	10838	8201	9354	10022	7146	6534
80 2008 Regional Report Surplus Deficit	3785	1839	3805	3661	3979	3530	3202	2593	3748	7314	4118	11628	16003	8685	5786

Ranked Averages

81 Bottom 10 pct	3140	2281	4641	3710	4110	2499	805	949	1634	4106	3600	5952	7219	4576	3560
82 Middle 80 pct	4769	3971	5038	4569	5370	5304	6007	5544	6184	9883	8700	10081	12810	7369	6823
83 Top 10 pct	6457	5112	4971	5520	7338	9819	12873	12746	12596	13486	12844	12024	14824	10493	10157

THIS PAGE INTENTIONALLY LEFT BLANK

THIS PAGE INTENTIONALLY LEFT BLANK

BONNEVILLE POWER ADMINISTRATION
DOE/BP-4476 • October 2012