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The research supported by this grant was focussed primarily on first-order methods for solv-
ing large scale and structured convex optimization problems and convex relaxations of nonconvex
problems. These include optimal gradient methods, operator and variable splitting methods, alter-
nating direction augmented Lagrangian methods, and block coordinate descent methods. We now
describe this research.

We have developed two new first-order methods for solving the basis pursuit (BP) problem
min{‖x‖1 : Ax = b}. In [11] we describe a Sequence Penalty Algorithm (SPA) that computes a
feasible solution for the BP problem by solving a sequence of penalty problems. This algorithm
computes an ε-optimal and ε-feasible solution in O(ε−

3
2 ) iterations, where each iteration takes

O(n log(n)) operations whenever the matrix A is a partial Fourier, DCT or Wavelet matrix. In
particular, we do not require that A be an orthogonal matrix. The SPA can also efficiently solve
problems of the form min{

∑
j ‖Bjx‖1 : Ax = b}. Problems of this nature naturally appear whenever

we require some linear function of x to be sparse, i.e we may require that x is piecewise flat, or that
its derivative in a given direction is piecewise flat. In [12] we describe a First-order Augmented
Lagrangian (FAL) algorithm that computes an ε-optimal and ε-feasible solution to the basis pursuit
problem in O(1ε )-iteration. In each step of the algorithm we solve a constrained shrinkage problem.
This algorithm performs very well in practice; in particular, it is able exactly recover the zero-set
(i.e. the set of components where xi = 0) without any post-processing. In [28] we develop an
augmented Lagrangian technique with increasing penalty to solve a composite norm minimization
problem, and in [31] we extend this technique to solving general conic convex programs. In [30], we
propose an alternating direction method with increasing penalty for the stable principal component
pursuit problem.

We have combined a first-order operator splitting method (fixed-point continuation (FPC)) with
active set identification and subspace optimization to develop an extremely effective and efficient
method [8] for the BP problem. This method is proved to converge R-linearly and globally in [18]
and it has been shown to be able to recover signals with very large dynamic ranges in compressed
sensing applications. We have also developed an FPC method and a Bregman iterative algorithm
to solve matrix rank minimization problems [10,37] and analyzed their ability to recover low-rank
solutions [15]. In addition, in [21] we have developed accelerated versions of the linearized Bregman
method and proved that their iteration complexity is reduced from O(1/ε) to O(1/

√
ε) to obtain

an ε-optimal solution and applied them to compressed sensing and matrix completion problems.
In [20] we developed alternating linearization methods (ALMs) for solving convex optimiza-

tion problems that often arise as tight convex relaxations of nonconvex structured optimization
problems. Our methods solve problems of the form:

min{F (x, y) ≡ f(x) + g(y) : Ax+ y = b}.

1



Under the assumption that both f and g are convex functions with Lipschitz continuous gradients,
we prove that our methods require O(1/ε) iterations to obtain an ε-optimal solution. We also
propose accelerated versions of our methods that have an iteration complexity of O(1/

√
ε), while

requiring essentially the same computational effort at each iteration.
We developed specialized versions of these algorithms to solve various high dimensional prob-

lems in statistical learning. Specifically, we applied them to Gaussian graphical models (sparse in-
verse covariance selection) in [39] and to overlapping group LASSO problems involving appropriate
sparsity-inducing norm regularizers in [17]. We developed an alternative efficient block-coordinate
descent approach for solving group LASSO problems in [22]. We also, developed line search versions
of our accelerated ALMs and the fast prox-gradient FISTA method that preserve these methods’
fast iteration complexity in [25], and specialized versions of ALMs and prox-gradient methods for
solving robust and stable principle component pursuit problems in [24].

In [19] we developed general K-splitting algorithms (K can be any finite number) for solving
convex optimization problems with Lipschitz continuous gradients. These methods are Gauss-
Jacobi-like and hence are parallelizable, which makes them particularly attractive for solving large-
scale problems. We prove that the number of iterations needed by the first class of algorithms
to obtain an ε-optimal solution is O(1/ε). The algorithms in the second class are accelerated
versions of those in the first class, where the complexity result is improved to O(1/

√
ε), while

the computational effort required at each iteration is essentially unchanged. To the best of our
knowledge, the complexity results for both our Gauss-Seidel and Jacobi-like methods are the first
such results to have been given for multiple splitting and alternating direction type methods.

In [9] we develop a third class of methods that is based on alternating direction schemes for
minimizing the dual augmented Lagrangian function for an SDP. For these methods we have only
partial convergence results. However, numerical results that we have obtained for frequency assign-
ment, maximum stable set and binary integer quadratic programming problems demonstrate the
robustness and efficiency of this approach.

We also developed an overlapping block-coordinate descent method for solving SDP prob-
lems [43], based on relaxing the n-dimensional positive semidefinite constraint on the matrix X.
By fixing any (n− 1)-dimensional principal submatrix of X and using its (generalized) Schur com-
plement, the positive semidefinite constraint is reduced to a simple second-order cone constraint.
When this method is applied to solve the maxcut or matrix completion SDP relaxations, closed-
form solutions for the subproblems are available. Our numerical results on large scale instances of
these problems show that these methods are extremely fast.

We have also developed algorithms for de-noising images that use network flow approaches
[3] that are based on binary Markov random field models and that use the Gallo-Grigoriadis and
Tarjan’s parametric version of the Goldberg-Tarjan preflow-push max-flow algorithm combined
with a divide-and-conquer approach, ones that use an alternating direction augmented Lagrangian
approach [35], and curvilinear search methods for color images [4]. Our most recent work on
first-order algorithms has focused on tensor completion and and low-rank tensor recovery [27] and
theoretical recovery guarantees that are somewhat analogous to those known for the corresponding
matrix cases. Specifically, for recovering tensors with low Tucker rank, the matrix unfoldings of
the tensor need to satisfy a mutual incoherence condition in addition to the usual incoherence
conditions for each unfolding [29,36].

For general (nonconvex) nonlinear programming (NLP), we developed an algorithm that com-
bines a piecewise linear penalty function approach with an interior-point `2-penalty approach. The
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resulting method [5] has properties of both a penalty method and a strengthened filter method,
and in particular, very strong global and local convergence properties. Extensive computational
tests show that our implementation is as effective as state-of-the-art NLP codes.

To solve large-scale, possibly non-convex optimization problems that arise from inverse problems
and other infinite dimensional problems, we developed a globally convergent line search multigrid
(multiscale) method in [2] that makes minimal demands on the minimization method used on each
grid level.

We have continued to work on semidefinite packing and covering problems. In [14], we extended
our previous work to a much larger class of semidefinite packing problems. This set of problems
includes the sparse Principal Component Analysis (PCA) problem. We show that our proposed
algorithm is faster than all previously known algorithms for this problem – both in theory and in
practice. In [38] we developed algorithms for approximately solving semidefinite covering problems.
This is a non-trivial extension that required the development of new methods of analysis. We also
reported the performance of our implementation of the proposed algorithms. The main bottleneck
in these algorithms is computing the exponential of a sparse matrix.

We continued working on applications of robust optimization in portfolio management and asset-
liability management. In [7] we developed techniques for ensuring that a pension fund is meets its
obligations when there is uncertainty in the equity return and the yield curve. Our model also allows
us to predict the worst-case contribution corresponding to a fixed portfolio management scheme.
In [1] we showed how to use robust optimization techniques to solve a cash flow problem when
the yield curve is uncertain and there are several different analyst views on the relative movement
of interest rates. The current state-of-the-art technique for solving these problem assumes that
the yield curve is described a copula model and then incorporates the analysts view into the
copula model using Bayes rule. This method does not scale very well as the time horizon as well
as the number of bonds available to hedge a portfolio. Our model results in a linear program
that can be solved very efficiently using dual-decomposition techniques. In [6], we developed a
behavioral-finance based model for joint evolution of price and volumes. We developed a convex
optimization based methodology to efficiently calibrate the model to observed data and predict
prices and volumes in the future. In [16] and [32], we proposed a fast first-order algorithm for
solving portfolio selection problems with multiple spectral risk constraints (a spectral risk function
is a convex combination of conditional value-at-risk constraints). Portfolio selection with spectral
risk constraints can be approximated by a linear program. The running time of our proposed
algorithm is at least two orders of magnitude smaller than that of the state-of-the-art solver applied
to the linear program. Moreover, unlike the LP-based approach, the running time of our proposed
algorithm is robust with respect to perturbations to problem data.

In [13] we investigated extremal income inequality in a stable network. Here the “stability”
is defined to mean that no subset of nodes of the network has an incentive to secede from the
grand coalition of all node, and the income distributions are compared using the Lorenz ordering.
Previously it was conjectured in the literature that the extremal income distribution is function of
the degree distribution – graphs with more unequal degree distribution would support more income
inequality. We showed that for bipartite graphs, the income inequality is completely determined
by the size of the maximal independent set. For general graphs we showed there is no extremum
distribution – there are many extremal distributions that are incomparable. We were able to
characterize the extreme points of the polytope of all stable income distribution when only cliques
of size 2 and 3 are allowed to secede.
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In [23], [33], and [40] we considered energy aware scheduling problems where the goal is to
minimize a convex combination of the total energy consumption and the deadline line related metric
such as completion time, or flow time. Problems of this nature arise in situation where processors
can be run at different speeds and there is significant energy savings when the processor speed is
scaled. We showed how to extend the well-known α-point algorithms to scheduling problems with
speed scaling.
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