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SEM In-Situ Indentation Fracture Toughness of Metal-Ceramic Nanolaminates 

LA-UR 11-03546 
Abstract, Text: U 

William M. Mookl,2, Rejin Raghavan2, Damian Fre/, Nan Ul , Jon K. Baldwinl, Johann Michler2, Nathan A. 

Mara\ Amit Misra l 

1 MPA-CINT: Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM 

87545, USA. 

2 Laboratory for Mechanics of Materials and Nanostructures, Empa - Materials Science & Technology, 

Feuerwerkstrasse 39, 3602 Thun, Switzerland. 

At the small length scales in micro- and nanotechnology the phenomenon of "smaller is stronger" is 

often observed. This increase in strength generally results in a corresponding decrease in toughness that 

can degrade the reliability of thin films, small structures and devices. Thus it is of critical importance to 

investigate material combinations and structures that increase toughness at the nanoscale while they 

simultaneously maintain strength. Recent work at LANL on nanolaminates composed of alternating 

layers of a metal with either a metallic glass or a ceramic have shown great promise along these lines. 

Indentation experiments conducted inside of an SEM are used here to quantify both hardness and 

indentation fracture toughness of the nanolaminates. Both pileup and crack growth is observed 

throughout the entire indentation cycle providing insight into the deformation and fracture mechanisms 

active in these nanolaminates during a contact event. The goals of this research are to study and 

understand the mechanisms that enable these disparate materials to co-deform and to produce a 

laminate with both high strength and high toughness at small length scales. 
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EMPA. 
Challenge: To combine the toughness of a metal 
and the strength of a ceramic in a film. 

Materials Science & Technology 

• "Smaller is stronger" 
- Grain refinement = Hall-Petch 
- Thin films = Confined Layer Slip 
- Micropillars = Dislocation starvation 
- Nanoparticles = SurfaceNolume 

• "Smaller is tougher" 
- S.C. micropillars (Michler, et aI., 

APL, 2007) 
- S.C. nanoparticles (Gerberich, et 

aI., Phil. Mag., 2011) 

• But a little larger than "smaller" 
is usually not both stronger + 
tougher. 
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Background: Nanolaminate structure 

Columnar structure 

AI-TiN (2nm-2nm) 

~A~~m~ NATIONAL 
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Within column: twinned AI 

AI 
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AI-TiN (9nm-1 nm) 
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Bhattacharyya, et al. APL 96 (2010) 093113. 
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Background: Nanolaminate properties 
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Bhattacharyya, et al. Acta Mater. 59 (2011) 3804 
Bhattacharyya, et al. Scripta Mater. 58 (2008) 981 

,_ .... 1/!I!!!'fAQ;S1 
#/1 V A.." ~!'. 



UNCLASSIFIED 

EMPA. 
Materials Science & Technology 

Background: Indentation Parameters 

• Indention with cube corner to drive 
radial fracture. 

• Load range: 1 ~N to 1 N 

• Indentation strain rate: 4 orders of 
magnitude 

E.g., for a maximum load of 500 mN: 

& = 1 .0, loading 35 
& = 0.1, loading 305 

& = 0.01, loading 3005 

& = 0.001, loading 30005 
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Background: Indentation Fracture Toughness 
Lawn, Evans, Marshall, "Elastic-plastic indentation damage in ceramics: 
The median-radial crack system," J. Am. Ceram. Soc. 63, 9-10 (1980) 574. 

R R (E )1/
2 

( P ) K== - max ;c.c. H C3/2 

(8) Radial 

c 

KR = Residual stress intensity factor (MPa.Jm) 

E = Elastic Modulus (GPa) 
Al layer 
thickness 

TiN layer 
thickness 

Bilayer 
thickness Average Average 

H = Hardness (GPa) 

Pmax - Maximum Load (mN) 

c = Crack length from center of indent IJm 

C;c~c. = Geometric constant = 0.04* 

*cube corner, Pharr, MSEA A253 (1998) 151. 

~~~~m~ NATIONA 
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(nm ) (nm) (nm) Er (GPa) H (GPa) 

450 SO sao 116.0 1.6 
180 20 200 14/ .3 2.0 --+ 90 10 100 112.0 2.8 
45 5 50 133.9 3.1 
18 2 20 100.0 4.0 

--+ 9 I 10 135.9 4.1 
250 250 sao 215.3 2.3 
100 100 200 175.2 3.5 

SO SO 100 179.2 5.2 
25 25 so 150.3 5.4 
10 10 20 145.3 6.3 

=* 5 5 10 129.5 5.7 
2 2 4 148.1 6.3 

Bhattacharyya, et al. Phil. Mag. 90, 13 (2010) 1711 
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SEM-Indentation Observations 

• Radial surface cracks in AI-TiN 

• 90 nm -10 nm 
• NO surface cracks at any rate (0 .001 < £ <20) 

• Consecutive shear band formation 

• 9 nm -1 nm 
• Indentation rate effect 

• £ « 0.001 ~ no radial surface cracks 

• E == 0.001 ~ cracking> 170mN 
• E > 0.05 ~ cracking < 90mN 

• NO growth during unloading 

• Both intra- and intercolumnar 

• Consecutive shear band formation 

• 5 nm -5 nm 
• NO observable effect of indentation rate 

• NO growth during unloading 

• Mainly intercolumnar 

• 2 nm -2 nm 
• NO observable effect of indentation rate 

• Possible growth during unloading 

• Intracolumnar cracks 
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Toughening mechanism: 
EMPA. 

Materials Science & Technology 

Indentation rate effect 
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No crack 

AI-TiN (9nm-1 nm) indentation: shear 
bands consume radial cracks 

Embryonic 
radial crack 

No crack 
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Toughening mechanism: 
Flow of AI blunts crack tips 

AI-TiN (2S0nm-250nm) indent where 
AI flowed into cracks. 

Bhattacharyya, et al. Phil. Mag. 90, 13 (2010) 1711 
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AI-TiN (Snm-5nm) indent to 1 N followed 
by reloading. 
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Can CSM detect when cracking begins, 
its extent and any flow of AI? 
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Co-deformation of AI-TiN (2nm-2nm) layers 

Compressed pillar 
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Micro-voids are generated between 
columns after compression 

under-focus 

~A,I~m~ NATIONAL 

over-focus 

UNCLASSIFIED 
EST. 1943 

EMPA. 



UNCLASSIFIED 

EMPA. 
Materials Science & Technology 

Intra- vs. intercolumnar radial fracture 

AI-TiN (9nm-1nm) AI-TiN (2nm-2nm) 

~Alamos . 
NATIONAL LABORATORY UNCLASSIFIED 
------- EST. 1943 ~~~~ ________________________________________________ ~~~~~~~~~~~~=-~ ____________________________________________________ ~~_;~~~;;~~ 

- • . J Jr"'IIlfl .v~~:~ 



c 

UNCLASSIFIED 

EMPA. 
Materials Science & Technology 

Nanolaminate Indentation Fracture Toughness 

• Possible toughening mechanisms 
• Flow of AI into cracks (?) 

• 5 nm - 5 nm 
• Monotonic loading 

• 2 cycles 

• 10 cycles 

• 20 cycles 

• 2 nm - 2 nm 

KR (MPa .rm) 

1.2 

1.3 

1.4 

1.5 

KR = R E Pmax 

( )

1/ 2 ( 

/;" H C3/ 2 ) 

• Monotonic loading 

• 2 cycles 

1.4 

2.8 

• Rate effect, low rate favors shear band formation at expense of radial cracking. 

~ ~,I~mIl.TP~OR:":Sy _____ _ NAT IONA 
EST. 1943 

• 9 nm -1 nm 

• E = 1.0 1.2 

• E = 0.001 1.5 
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How to define this complex deformation? 

• AI-TiN (90nm-1 Onm), 7 IJm deep c.c. indent 

• 

• Smooth load-displacement curve 

• Smooth pileup formation 

• Consecutive shear band formation 

AI-TiN (9nm-1nm), 7IJm deep c.c. indent 

• Serrated load-displacement curve 

• Serrated pileup formation 

• Individual shear bands form along one face of the indenter at a 
time and consume embryonic surface cracks when indentation 
rate is 5nm/s or below (see movie). 

• AI-TiN (5nm-5nm), 6 IJm deep c.c. indent 

• Smooth load-displacement curve 

• Minimal pile-up 

• Either zero or one shear band formed beneath indent on each 
indenter face. 

~Alamos 
NATIONAL LABORATORY UNCLASSIFIED 
---- EST. 1943 

1~ 

EMPA. 
Materials Science & Technology 

15 nm/s 

2 nm/s 

10 nm/s 

IlIA •. J ~ '11'41 
/I/IV~~l1 



UNCLASSIFIED 

Nanolaminate deformation beneath and around 
indents is similar to geological structures. 

EMPA. 
Materials Science & Technology 

In compression rocks either fold (ductile) or fault (brittle) and many complex structures have 
been defined beginning in the 17th century. 

5cm 

H=V 

(b) ~ Uod,'mm,d --t- Focelaod-"'9oo1 Imbri,al, Ihm'l ,y",m ----t- Ma,'m"m "P'" -l 
1 

4 3 - 2 

~~~3~ 

Slumped material 8 
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H=V 

Poblet & Lisle, "Kinematic evolution and structural styles of fold-and-thrust belts," Geological Society, London, Special 
Publications 349 (2011) 1. 
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Nanolaminate Deformation Structures: EMPA. 
Materials Science & Technology 

Analogues to Geology 

Fault-propagation folds yield at 
hinges. 

Boudinage: geological term for structures 
formed when a rigid body fractures and is 
embedded in a ductile layer due to plastic 
flow of ductile layer from hydrostatic 
pressure. 

p 

c> 

Bhattacharyya, et al. Phil. Mag. (2010). 
~-,r''''~1tJ""" •. 'I:f?",,~:~,~j~-C~''f~£'i·r::.'!_:'~/~l'''''-~~!'l:.'Wi 

AI-TiN (9nm-1nm) 

hinges 

Storti, et al. "Growth stratal architectures associated to decollement folds and 
fault-propagation folds. Inferences on fold kinematics," Tectonophysics 282 (1997) 353. 

AI-TiN (250nm-250nm) 
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Analogues to Geology 
~:a= 

"Development of an imbricate thrust system and 
related fault-propagation folds following a break­
forward sequence and steepening of the earliest 
(hinterlandward) thrusts." 

·~;!:, :::" ~:: ,, ;::: i 
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Poblet & Lisle, "Kinematic evolution and structural styles of 
fold-and-thrust belts," Geological Society, London, Special 
Publications 349 (2011) 1. 

AI-TiN (90nm-10nm) 

AI-TiN (9nm-1 nm) 
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Nanolaminate Deformation Structures: EMPA. 
Materials Science & Technology 

Analogues to Geology 

Post-blockage evolution of a fault propagation 
fold can show either 'steep-limb breakthrough' 
or 'transport on the flat. ' 

lH'I'1'ITii 

Bhattacharyya, et al. Phil. Mag. (2010). 
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[
Transport on] 

the flat 

Mercier, et aI. , "Late-stage evolution of fault­
propagation folds : principles and example," J. of 

Structural Geology 19, 2 (1997) 185. 

6 _'J 
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Breakthrough 
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AI-TiN (90nm-10nm) 

AI-TiN (9nm-1nm) 
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Chevron Folds 

Ramsay, "Development of Chevron Folds," Geological Soc. of 
America Bulletin 85 (1974) 1741. 
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Bhattacharyya, et al. Phil. Mag. (2010). 
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Summary 

• SEM in-situ indentation insights 
- No radial crack growth during unloading. 
- Shear bands form at expense of radial cracks. 
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Future work and Acknowledgements 

• Optimize deposition parameters 
100M 

AI-TiN (5nm-5nm) x 200 bilayers / TiN (130nm, 

- High temp deposition = superlattices 10M epitaxial, 650 C) / MgO (001) 
.......... ..-

MgO (001) & (111); Si (001) & (111) 0 .......... 
1M 0 N "-"' 

creates different interface structures 0 0 
en 0> 0 

....... "-"' 

§ 100k ~ 0 
0> 

0 ~ () 

• Toughening mechanisms 
! 10k

i ~~ ~~ 2 1k 
c 

100 

• Critical metal and ceramic 
length scales 
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