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Executive Summary

Multiphysics processes modeled by a system of unsteady differential equations are natu-
rally suited for partitioned (modular) solution strategies. We consider such a model where
probabilistic uncertainties are present in each module of the system and represented as a
set of random input parameters. A straightforward approach in quantifying uncertainties
in the predicted solution would be to sample all the input parameters into a single set,
and treat the full system as a black-box. Although this method is easily parallelizable and
requires minimal modifications to deterministic solver, it is blind to the modular structure
of the underlying multiphysical model. On the other hand, using spectral representations
polynomial chaos expansions (PCE) can provide richer structural information regarding the
dynamics of these uncertainties as they propagate from the inputs to the predicted output,
but can be prohibitively expensive to implement in the high-dimensional global space of un-
certain parameters. Therefore, we investigated hybrid methodologies wherein each module
has the flexibility of using sampling or PCE based methods of capturing local uncertainties
while maintaining accuracy in the global uncertainty analysis. For the latter case, we use
a conditional PCE model which mitigates the curse of dimension associated with intru-
sive Galerkin or semi-intrusive Pseudospectral methods. After formalizing the theoretical
framework, we demonstrate our proposed method using a numerical viscous flow simulation
and benchmark the performance against a solely Monte-Carlo method and solely spectral
method.
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A flexible uncertainty propagation framework for
stochastic multiphysics systems using modularly

embedded projections

A. Mittal, X. Chen, G. Iaccarino, C. Tong

Abstract

Previous works by the corresponding author have proposed and successfully
demonstrated a modular uncertainty propagation framework successfully in sub-
surface flow simulations for a stochastic reactive-transport model in homogenous
[1] and heterogenous media [2]. In this article, we consider a general multiphysics
system governed by a coupled system of field equations where each component
of the system is prescribed with uncertainties represented as random input pa-
rameters. We also consider a partitioned numerical solution strategy which
facilitates the reuse of legacy solvers for each uniphysics component of the sys-
tem and a modularly flexible environment for simulation devlopment. However,
due to the bidirectionally coupled nature of the system, each component must
account for uncertainties that arise in other components in its respective solution
field. Achieving this task along with the flexibility of reusing a component in
other multiphysics problems can be a challenging task in practice. We therefore
introduce a framework of reduced stochastic modeling using a conditional poly-
nomial chaos representations of uncertainties in each component of the solver.
Our framework facilitates the independent development, reuse and replacement
of each component without affecting other components to achieve a modularly
flexible stochastic simulation environment. We formalize the algorithmic frame-
work and demonstrate our methodology for 1) a 1D fluid-thermal interaction
problem and 2) a 1D fluid-thermal-particle interaction problem.

Keywords: Uncertainty Quantification, Stochastic Multiphysics, Hybrid UQ,
Stochastic Galerkin method, Polynomial Chaos.

1. Motivations

Numerous fields of science and engineering are actively investigating cou-
pled problems interacting across various physical domains, fields, scales or a
combination thereof. While addressing all types of multiphysics problems is
unreasonable, we will limit our concerns to coupled field equations which re-
quires the simulateous solution of 2 or more nonlinear component models. An
important concern that arises when we encounter such problems is whether to
use monolithic or partitioned solution approaches. While this debate is far from
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being settled due to each method’s advatnages over the other, we will concern
ourselves with partitioned solution strategies, which can enable the use of legacy
solvers for each partitioned component of a coupled system. This is often con-
sidered as a practical advantage for computational engineers as flexibility and
interdisciplinary expertise can trump the additional overheads entailed in setting
up a partitioned solution method.

The rapid growth of uncertainty quantification (UQ) in the last decade has
been primarily motivated by the demand for predictive simulations with accu-
rate quantification of the credibility and confidence of the obtained numerical
results. UQ has so far been mostly concerned with the analysis of simple uni-
physics models and the extension of methodologies to multiphysics models is
far from being straightforward. The simplest possible method of propagating
uncertainties in the inputs of a computer simulation would be the use of statis-
tical or random sampling such as Monte-Carlo (MC) methods [3, 4]. While this
approach and improvements such as quasi-Monte-Carlo [5], Latin hypercube [6],
Sobolev sequences, etc are easily adaptable to a deterministic solver code with
attractive features such as parallelization and dimensional independence, it is
essentially blind to the composition of the deterministic solver which may con-
tain rich structures as with multiphysics models. Also, the typical convergence
rate i.e. O

�
N�1/2

�
where N is the number of repeated simuation runs, is too

slow for any practical implementation when each simulation run has a signif-
icant computational cost of its own. Nevertheless, MC methods are still the
most robust for stochastic simulations and are often used in validation as well
as for estimating statistics on a cheaper surrogate model of the output. On the
other hand, non-statistical methods using stochastic expansions exhibit better
convergence properties in the case when the simulation outputs are sufficiently
smooth in the stochastic input space. Specifically, we are talking about the
use polynomial chaos expansions [7, 8] for the representation of uncertainties in
the inputs, model and outputs. The associated stochastic Galerkin projection
method [9] reduces a stochastic model into a deterministic one with a single
simulation run required to propagate uncertainties from the inputs to the out-
puts. The disadvantage however, is that the method is intrusive i.e. existing
determinstic codes need to be rewritten and the cost of solving the stochastic
Galerkin system (SGS) can be much higher than its determinstic counterpart.
To deal with the former disadvantage, a non-intrusive spectral projection (NISP)
method based on collocation in the stochastic domain has been proposed in var-
ious publications [10, 11] and its convergence rate with respect to the order of
the polynomial has been demonstrated to be comparable with intrusive meth-
ods [12] (once again, in cases where the outputs are sufficiently smooth). Both
methods fall under a class of methods known as spectral methods [13]. Sev-
eral local variants of these methods have been proposed [14, 15] to deal with
long term integration errors and to provide another aspect of adaptivity with
the spectral representation besides the polynomial order. Another disadvantage
that applies to intrusive and non-intrusive spectral methods alike is the curse of
dimensionality. The number of degrees of freedom in the expansion and sample
points for collocation grows exponentially with respect to the number of input
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parameters. With coupled problems in mind, we can expect that the curse of
dimension in implementing a spectral methods would be exacerbated with the
multi-component structure. Even if each component contributes a moderate
number of random variables, the coupled nature of the model can lead to a
large number of uncertainties in the global sense.

Previous works by the corresponding author [1. 2] made use of a generelized
polynomial chaos (gPC) approach to simulating unsteady reactive-transport
phenomenon with stochastic velocity, dispersivity and first-order reaction rates
which was partitioned into the transport and reaction components using a first
order additive operator splitting method. The linear nature of the coupled
transport and reactive operators allowed for an efficient polynomial order spe-
cific decomposition of the of the SGS for each component in the combined
space of uncertainties. We wish to abandon this oversimplified assumption on
the model and consider a general nonlinear coupled system of solution fields
in this article. We will however assume that the uncertainties contributed by
a given component is independent from the uncertainties contributed by other
components. With this assumption, we can represent uncertainties in the condi-
tional or reduced stochastic space of local uncertainties within each model while
retaining the possibility of expressing the output in the global space of uncer-
tainties for post-processing. Our proposed methodology can create significant
degree of flexibility by facilitating the independent development, management
and reuse of uniphysics components. Also, with this approach, the natural divi-
sion of modeling expertise which is often a practical constraint in deterministic
multiphysics simulation development can therefore be extended to stochastic
multiphysics simulation development.

The remaining sections of this article are organized as follows. In section
2, we introduce our governing multiphysics model and briefly discuss partioned
solution strategies used in deterministic simulations that are based on fixed
point iterations. In section 3, we review gPC, the construction of the SGS for
a partitioned component of the simulation and efficient solution methods using
Krylov subspace methods. In section 4, we describe our proposed modularly
embedded uncertainty propagation method using reduced gPC representations
of uncertainties within components. In section 5, we demonstrate our method
on a fluid-thermal interaction problem.

Convention Symbol Connotation

Lower case. x Deterministic scalar quantity

Lower case bold. x Stochastic scalar quantity

Upper case. X Deterministic vector quantity

Upper case bold. X Stochastic vector quantity

Bracket upper case. [X] Deterministic matrix quantity

Bracket upper case bold. [X] Random matrix quantity

Table 1. List of symbols and their connotations in sections 2-5.
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1.1. Remark on notations
Table 1 defines the notation used in the remainder of the article. Greek and

calligraphic symbols (such as ↵ and A resepectively) do not have a standard
connotation in this article and will be defined as and when necessary.

2. Partitioned solution of coupled field systems.

2.1. Model problem
This article will consider the solution of the following stochastic coupled

system.
F (U ; V , X) = 0, F , U 2 Rn1 , X 2 X ✓ Rm1 ,
G (V ; U , Y ) = 0, G, V 2 Rn2 , Y 2 Y ✓ Rm2 .

(1)

The given coupled field system is assumed to be a either a spatial discretization
of a steady-state equilibrium problem or at a single time step of an unsteady evo-
lution problem. U and V could denote the same quantity in different spatial
domains (multi-domain coupling) or in the same domain (multi-process cou-
pling). Further, we assume that the system is well posed for all values of X and
Y in (⌦,⌃, ⇢) where ⌦ is the sample space, ⌃ ⇢ 2⌦ is a ��algebra (non-empty
collection of subsets in ⌦ that is closed under complementation and countable
union of its members). and ⇢ is a probability measure that maps from ⌃ to
[0, 1]. Therefore, we need to find U and V in the probability triple (⌦,⌃, ⇢)
under the assumption of stbility and uniqueness. Discussions on obtaining the
given form (1) from a stochastic partial differential equation (PDE) system are
deferred until section 5. If we assume that X and Y are fixed quantities, a
monolithic solution method using Newton’s method would proceed as follows.
With an appropriate choice for U (0) and V (0), we iterate for ` = 0, 1, . . .


rUF rV F
rUG rV G

� 
U `+1 � U `

V `+1 � V `

�
= �

2
4 F

⇣
U `; V `, X

⌘

G
⇣
V `; U `, Y

⌘
3
5 . (2)

The monolithic method encapsulates both components, solution fields and un-
certainties into a single vector. i.e., if H = (F , G) 2 Rn1+n2 , W = (U , V ) 2
Rn1+n2 and Z = (X, Y ) 2 Z = X ⇥Y ✓ Rm1+m2 , we can rewrite (2) as follows.

h
rW H

⇣
W `�1; Z

⌘i⇣
W ` � W `�1

⌘
= �H

⇣
W `�1; Z

⌘
. (3)

Developing solution strategies based on (2) can be difficult in practice if legacy
solvers for the solution of each uniphysics components is already available.
Another approach would be to eliminate one of the fields (V in this case)
and represent V as an implicit function of U using the second component
G (V ; U , Y ) = 0. This would result in the first problem being dependent only
on U as F (U , V (U) ; X) = 0. This method is often limited in efficiency to
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only linear problems using a Schur decomposition or in problems where some
of the coupled variables are modeled as a handful of scalars. The latter case of
weak or network coupling has been investigated recently [16]. We now introduce
a partitioned solution method similar to (2).

2.2. Partitioned iterative solution
The simplest monolithic solution methods that can be modified into parti-

tioned solution methods are relaxation approaches that employ nonlinear Gauss-
Siedel iterations [17] as follows. With an appropriate choice for U (0) and V (0),
we iterate for ` = 0, 1, . . .

⇣
U `+1 � U `

⌘
= �&F

⇣
U `; V `, X

⌘
,⇣

V `+1 � V `
⌘

= �&G
⇣
V `; U `+1, Y

⌘
,

(4)

where & is the relaxation parameter which typically lies in the interval (�1, 1).
The slow linear convergence or a lack of convergence guaranteed by this method
is disadvantageous in practice. Instead, we use a partitioned Newton method
which solves (1) as follows. With an appropriate choice for U (0) and V (0), we
iterate for ` = 0, 1, . . .

h
rUF

⇣
U `; V `, X

⌘i⇣
U `+1 � U `

⌘
= �F

⇣
U `; V `, X

⌘
,h

rV G
⇣
V `; U `+1, Y

⌘i⇣
V `+1 � V `

⌘
= �G

⇣
V `; U `+1, Y

⌘
.

(5)

Given that the solution strategy is partitioned for given deterministic coupled
system with values of X and Y , a straightforward MC method could be imple-
mented in an outer loop in which we solve (5) for converged values of U and V .
This method would require minimum modification to each component’s legacy
solver and the computational model as a whole. However, as mentioned earlier,
the slow convergence rate of the estimated statistics of the solution would re-
quire a large number of repeated simulations. Instead we wish to construct a
cheaper surrogate model of the solutions with which exhaustive MC sampling
can be implemented at a fraction of the total cost.

While many possibilities exist for the choice of the surrogate, we will limit
our discussions in this article to the use of global polynomials with the assump-
tion of sufficient smoothness of the stochastic solution fields in Z. In the context
of UQ, these global polynomial models are known as polynomial chaos (gPC)
expansions. The next section is a review of constructing polynomial chaos rep-
resentations of uncertainties and the projection of the coupled stochastic system
(1) into the space of multivariate polynomials.

3. Uncertainty propagation using gPC

3.1. Preliminary definitions and review of gPC
The use of gPC methods has become ubiquitous for stochastic modeling

in the last decade and has been successfully demonstrated in several domains
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of computational science and engineering such as fluid mechanics [18], solid
mechanics [19], etc. Originally, gPC was introduced as Weiner chaos [20] by
Ghanem and Spanos; and subsequently extended to the Weiner-Askey family
of orthogonal polynomials [8]. Given a probability triple (⌦,⌃, ⇢) and a second
order random variable u = u (!) : ⌦ ! L2 (⌦, ⇢) the depends on a single
random variable !, we can represent x as the following polynomial expansion.

u (!) =
X

i�0

ui ̂i (!) , (6)

where the polynomials
n
 ̂i : i � 0

o
are the ⇢�orthogonormal polynomials with

respective polynomial degree (order) i; i.e. given i, j � 0,

ˆ

X
 ̂i ̂jd⇢ =

(
1 i = j

0 i 6= j
.

We remark here that the first basis polynomial  ̂0 would always equal 1 re-
gardless of ⇢, and polynomials of order > 1 represent ⇢�uncorrelated random
variables with zero mean and unit variance.

The above expansion x can be truncated upto a given polynomial order p.
We therefore, define an approximation xp as follows.

up =

pX

i=0

ui ̂i (!) . (7)

The Cameron-Martin theorem [21] states that an approximation up converges
to u as p ! 1 for any u 2 L2 (⌦, ⇢). In practice, the coordinates {ui : i � 0}
converge at an exponential rate if u is sufficiently smooth in ⌦. For a random
vector, we can extend this result for each component of the vector trivially. In
the general case a random vector U depends on multiple independent random
variables X =

�
x1 · · · xm

�
, we can construct the orthonormal polynomial

bases using a tensor product of univariate bases. Therefore, for a multiindex
i 2 Nm, we have

 ↵ (X) =
mY

i=1

 ̂
(i)

↵i
(xi) , (8)

where
n
 ̂

(i)

j : 1  i  m, j � 0
o

corresponds to ⇢(i)�orthogonormal polynomi-
als with respective polynomial degree (order) j. It is assumed here that the
joint probability density is a product of individual probability densities along
each direction i.e. d⇢ = d⇢(1) ⇥ · · · ⇥ d⇢(m). Therefore, U can be expanded as
follows.

U (X) =
X

|↵|�0

U↵ ↵ (X) . (9)

The truncation rule can in general be different along each direction but the
popular choice of truncation uses a total order rule to define the set of possible

6
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multi-indices Ip
m = {↵ 2 Nm : 0  ↵1 + · · · + ↵m  p} . Therefore, we have the

approximation Up as follows.

Up (X) =
X

↵2Ip
m

U↵ ↵ (X) =

pX

|↵|=0

U↵ ↵ (X) , (10)

The coordinates of the expansion can be obtained using the orthonormality of
the basis functions as follows.

U↵ =

ˆ

X
Up ↵d⇢. (11)

We assume that the arrangement of multi-indices follows a total degree lexico-
graphical order i.e.

Ip
m =

⇢
↵(0), . . . , ↵(⌫p

m) 2 Nm :
���↵(0)

���  · · · 
���↵(⌫p

m)
��� , ⌫p

m + 1 =

✓
m + p

m

◆�
.

(12)
With this assumption, we would once again obtain  ↵ = 1 : |↵| = 0 and
{ ↵ : |↵| � 1} as a set of ⇢�uncorrelated random variables with zero mean and
unit variance. Also, the first and second order statistics of the solution can be
readily approximated using the coordinates (U↵ : 0  |↵|  p) as follows.

µ1 (U) ⇡
´

⌦
Upd⇢ = U0,

µ2 (U) ⇡
´

⌦
(Up � U0) (Up � U0)

T
d⇢ =

Pp
|i|=1 UiU

T
i .

(13)

The simplest method of obtaining the coordinates of the expansion (10) is by
using a simple least squares minimization procedure on an ensemble of sam-
ples

n
U
⇣
X(i)

⌘
: 0  i  q, q > ⌫p

m

o
. Such a method would be considered non-

intrusive and the inputs samples could be obtained using MC. Another popular
non-intrusive method is the pseudospectral approximation method [22]. where
the input nodes are pre-selected instead of being randomly sampled, and the
coordinates are obtained using a Gaussian-quadrature rule for evaluating the
right hand side of (11). We will instead discuss an intrusive or embedded pro-
jection method for obtaining the PC coordinates when U is obtained using the
solution of a nonlinear field equation.

3.2. Embedded Galerkin projection method
Now, we consider a scenario where U is implicitly defined using a function

F (U ; X) = 0 and solved using a Newton method as follows.
h
rUF

⇣
U `; X

⌘i⇣
U `+1 � U `

⌘
= �F

⇣
U `; X

⌘
. (14)

Defining F `,p (X) = F
⇣
U `,p; X

⌘
and

h
J `,p (X)

i
=
h
rUF

⇣
U `; X

⌘i
, we have

a truncated polynomial expansion of F ` and
h
J `
i

given as follows.

F `,p (X) = F `,p
⇣
U `,p; X

⌘
=
Pp

|↵|=0 F `
↵ ↵ (X) ,h

J `,p (X)
i

= rUF `,p
⇣
U `,p; X

⌘
=
Pp

|↵|=0

⇥
J`
↵

⇤
 ↵ (X) .

(15)
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We then formulate an approximate Newton step i.e.
h
J `,p (X)

i ⇣
U `+1,p (X) � U `,p (X)

⌘
= �F `,p (X) , (16)

which needs to be satisfied at every X 2 X . Expanding (16), we get

pX

|↵|=0

pX

|�|=0

⇥
J`
↵

⇤ ⇣
U `+1
� � U `

�

⌘
 ↵ (X) � (X) = �

pX

|↵|=0

F `
↵ ↵ (X) . (17)

Finally, (17) is projected in the space spanned by the basis polynomials i.e.
{ ↵ : 0  |↵|  p}, and we obtain the embedded Galerkin projected form of
(14) as follows.

pX

|↵|=0

pX

|�|=0

✏↵��
⇥
J`
↵

⇤ ⇣
U `+1
� � U `

�

⌘
= �F `

� , 8� : 0  |�|  p, (18)

where ✏↵�� =
´

X  ↵ � �d⇢. Therefore, instead of solving a stochastic problem
by repeated sampling, we obtain the coordinates of U `+1,p by solving a single
deterministic equation (18). This method is called intrusive or embedded for
two reasons. Firstly, we require a significant overhaul of the deterministic solver
which solves (14). Secondly, the stochastic information is embedded within the
Galerkin system (18). We remark here that the deterministic linear system
(18) is fully coupled and is larger than the linear system solved in (14). We
now discuss an efficient method of solving (18) using commonly used iterative
Krylov subspace solvers.

3.3. Krylov iterative solution method
To simplify the notational complexity in subsequent discussions in this sec-

tion, we formulate a single-index version of (18) as follows.

⌫p
mX

i=0

⌫p
mX

j=0

✏i,j,k
⇥
J`

i

⇤ �
U `+1

j � U `
j

�
= �F `

k , 80  k  ⌫p
m, (19)

which can be compactly written as
h
J̃`
i ⇣

Ũ `+1 � Ũ `
⌘

= �F̃ ` such that

h
J̃`
i

=

⌫p
mX

i=0

[Ei] ⌦
⇥
J`

i

⇤
, Ũ ` =

2
64

U `
0
...

U `
⌫p

m

3
75 , F̃ ` =

2
64

F `
0
...

F `
⌫p

m

3
75 , (20)

where ⌦ denotes the kronecker product and [Ei]jk = ✏ijk. Using a generic
Krylov subspace method on (19) results in a solution that is a linear combination

of
⇢h

J̃`
ii�1

F̃ ` : 1  i  n (⌫p
m + 1)

�
and the computations within the solver

8
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would not need to store the matrix
h
J̃`
i

explicitly. Instead we would store the
matrix indirectly by defining a routine to compute the linear transformation
M = MJ̃` : M (Z) =

h
J̃`
i
Z for an arbitrary input vector Z 2 Rn(⌫p

m+1).
A method of evaluating M using an approximate pseudospectral factorization
of

h
J̃
i

has been proposed in [23] for linear field equations i.e. F (U ; X) =

[A (X)] U �B (X) where [J ] corresponds to [A]. We follow a similar approach
that is based on the following property of [J ]. For a given positive h ⌧ 1, the
first order approximation of a matrix-vector product evaluated using [J ] and a
vector Z 2 Rn is

[J (X)] Z =
h
rUF

⇣
U `; X

⌘i
Z ⇡ F (U + hZ; X) � F (U ; X)

h
, (21)

and the second order approximation is

[J (X)] Z =
h
rUF

⇣
U `; X

⌘i
Z ⇡ F (U + hZ; X) � F (U � hZ; X)

2h
. (22)

The choice of h is usually defined using a fixed positive "⌧ 1 with h = "kZk�1
1 .

In our implementations, we choose " = 10�3. This method of approximating
matrix-vector products in a Krylov iterative solver is often called the Jacobian-
Free-Newton Krylov method (JFNK) [24].

3.3.1. Factorization of the nonlinear SGS
We will now describe a factorization method for nonlinear field equations.

Given a set of quadrature points and weights
��

X(i), w(i)
�

: 0  i  q
 
, we de-

fine [ ] 2 R(⌫p
m+1)⇥(q+1) : [ ]ij =  i

�
X(j)

�
. Using these definitions, we propose

the following 3�step procedure for evaluating M for a given vector Z.

1. Reshape Z 2 Rn(⌫p
m+1) into a matrix

h
Z̃
i
2 Rn⇥(⌫p

m+1). Evaluate
h
Ẑ
i

=
h
Z̃
i
[ ] with columns

⇥
Ẑ0 · · · Ẑq

⇤
.

2. For i = 0, . . . , q, evaluate M̂i = w(i)J
�
X(i)

�
Ẑi using (21) or (22). Con-

struct the matrix
h
M̂
i

=
⇥

M̂0 · · · M̂q

⇤
.

3. Evaluate
h
M̃
i

=
h
M̂
i
[ ]

T and reshape
h
M̃
i
2 Rn⇥(⌫p

m+1) into a vector

M 2 Rn(⌫p
m+1).

Steps 1 and 3 can be thought of as pre-processing and post-processing steps
respectively and are relatively cheaper to process compared to step 2. Evaluat-
ing F̃ ` can also be done using the same set of quadrature points and weights.
Suppose  i : 0  i  q is a column of  , we use the values of F `,p

�
X(i)

�
to

obtain F̃ ` as follows.

F̃ ` =

qX

i=0

w(i) i ⌦ F `,p
⇣
X(i)

⌘
, (23)

9
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In practice, the convergence of the Krylov iterative solver can be significantly
accelerated with the use of a preconditioner

h
P̃ `
i

, which results in the modified
stochastic system

h
P̃ `
i�1 h

J̃`
i ⇣

Ũ `+1 � Ũ `
⌘

= �
h
P̃ `
i�1

F̃ `. (24)

We will now briefly discuss two types of commonly used preconditioning matri-
ces.

3.3.2. Preconditioning
In [23] , the significant acceleration of convergence using block-diagonal pre-

conditioners
h
P̃ `
i

= [I] ⌦
⇥
P `
⇤

is demonstrated on paramterized linear systems

arising out of elliptic boundary values problems. The best choice for
⇥
P `
⇤

indi-

cated by the experiments is the mean of
h
J `,p

i
i.e.

⇥
P `
⇤

=

ˆ

X

h
J `,p (X)

i
d⇢ ⇡

qX

i=0

h
J `,p

⇣
X(i)

⌘i
w(i). (25)

This modified equation (24) with block-diagonal preconditioners can be also
be factorized; we can implement a similar 3�step process of evaluating matrix-
vector products as described earlier with a slight modification in step 2, where we
instead solve [P ] M̂i = w(i)J

�
X(i)

�
Ẑi : 0  i  q. Although this preconditioner

fails to incorporate higher order stochastic information, it is fairly inexpensive to
find its Cholesky decomposition for inversion. as a block-diagonal preconditioner
for the solution of (19). A popular choice for non block-diagonal preconditioners
is the kronecker product matrix [25] which is given as follows.

h
P̃ `
i

=

⌫p
mX

i=0

tr
⇣⇥

J`
i

⇤T ⇥
J`

0

⇤⌘

tr
⇣⇥

J`
0

⇤T ⇥
J`

0

⇤⌘ [Ei] ⌦
⇥
J`

0

⇤
. (26)

Although the kronecker product preconditioner incorporates higher order stochas-
tic information, it is much more expensive to invert using standard decompo-
sition methods. The overall computation time however, is reported to be com-
parable to the use of the mean block-diagonal preconditioner is used [24]. We
will restrict our preconditioning for the test problems in section 5 to the mean
block-diagonal form.

3.4. Reuse of components and flexibility
In sections 3.2 and 3.3, we described the construction and solution of the

embedded Galerkin projection system (SGS) for a single stochastic field equa-
tion F (U , X) = 0. We also described a non-intrusive method of implementing
Krylov iterative solvers for the SGS However, for the problem at hand (1), where
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2 field equations are coupled, the standard implementation of the SGS propaga-
tion method would entail a projection of each component of (5) using the global
(m1 + m2)�variate polynomial basis functions. This process can prohibit the
reuse of the resultant stochastic solvers which could serve as legacy components
in a future problem. Also, updating one component’s stochastic space would
require a significant update to all of the component solvers involved in the sim-
ulation. This would preclude the much desired flexibility in the development
and reuse of legacy solver components for stochastic simulations. Instead of the
standard SGS method, we propose a method of reduced or conditional projec-
tions which we call modularly embedded projections. The essential idea is to
use a conditional stochastic expansion within each module and recondstruct the
global stochastic expansion once the conditional stochastic expansion coordi-
nates have been updated.

4. Modularly embedded projection method

4.1. Conditional gPC approximation
Considering the model problem (1), we define a truncated and separated

gPC approximation Up ⇡ U (or V p ⇡ V ) that are dependent on independent
random vectors X 2 X ✓ Rm1 and Y 2 Y ✓ Rm2 as follows.

Up (X, Y ) =
X

↵ 2 Ip
m1

X

� 2 Ip�|↵|
m2

U↵� ↵ (X)�� (Y )

=

pX

|↵|+|�|=0

U↵� ↵ (X)�� (Y ) , (27)

where the polynomial basis functions { ↵ : 0  |↵|  p} and {�↵ : 0  |↵|  p}
are defined with respect to ⇢X and ⇢Y respectively. We can construct the tensor
product form of global polynomial basis functions based on the assumption
that X and Y are independent i.e. d⇢ (X, Y ) = d⇢X (X) ⇥ d⇢Y (Y ). The
constituent densities ⇢X and ⇢Y are also assumed to be in their product form
so that their corresponding polynomial basis functions also assume a tensor
product form. Using the global gPC form (27), we can construct a conditional
or reduced [25] gPC decomposition of Up and V p as follows.

Up (X, Y ) =
Pp

|↵|+|�|=0 U↵� ↵ (X)�� (Y ) =
Pp

|↵|=0 Û↵ (Y ) ↵ (X) ,

V p (X, Y ) =
Pp

|↵|+|�|=0 V↵� ↵ (X)�� (Y ) =
Pp

|�|=0 V̂ � (X)�� (Y ) ,

(28)
where

Û↵ (Y ) =
´

X Up (X, Y ) ↵ (X) d⇢X (X) =
Pp�|↵|

|�|=0 U↵��� (Y ) ,

V̂ � (X) =
´

Y V p (X, Y )�� (Y ) d⇢Y (Y ) =
Pp�|�|

|↵|=0 V↵� ↵ (X) .
(29)

The decompositions given by (28) result in a conditional expansions of the
Up (X, Y ) = Û

p
(X; Y ) and V p (X, Y ) = V̂

p
(Y ; X), where the coordinates
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are now random variables themselves and can be obtained from the global ex-
pansion coordinates using (29). We have thus reduced the number of degrees of
freedom of Up and V p from ⌫p

m1+m2
+1 =

�
p+m1+m2

p

�
to ⌫p

m1
+1 =

�
p+m1

p

�
and

⌫p
m2

+ 1 =
�
p+m2

p

�
respectively. With respect to the model problem (1), we will

now introduce a reduced or conditional Galerkin projection method where only
the local uncertainties are embedded by the transformation and the external
random variables are handled non-intrusively by an interfacing wrapper.

4.2. Conditional Galerkin projection method
In section 3.2, we reviewed the embedded solution strategy using SGS for

a stochastic single component model. Following a local Galerkin projection
protocol on the partitioned solution method (5), where we project the first
Newton step on each polynomial basis function of X and project the second
Newton step on each polynomial basis function of Y , we obtain the following
stochastic linear systems.

h
J̃

`

F (Y )
i ⇣

Ũ
`+1

(Y ) � Ũ
`
(Y )

⌘
= �F̃

`
(Y ) ,

h
J̃

`

G (X)
i ⇣

Ṽ
`+1

(X) � Ṽ
`
(X)

⌘
= �G̃

`
(X) ,

(30)

where

J̃
`

F (Y ) =
P⌫p

m1
i=0 [EX ,i] ⌦

h
Ĵ

`

F ,i (Y )
i
, J̃

`

G (X) =
P⌫p

m2
i=0 [EY,i] ⌦

h
Ĵ

`

G,i (X)
i
,

Ũ
`
(Y ) =

0
BB@

Û
`

0 (Y )
...

Û
`

⌫p
m1

(Y )

1
CCA , Ṽ

`
(X) =

0
BB@

V̂
`

0 (X)
...

V̂
`

⌫p
m2

(X)

1
CCA ,

F̃
`
(Y ) =

0
BB@

F̂
`

0 (Y )
...

F̂
`

⌫p
m1

(Y )

1
CCA , G̃

`
(X) =

0
BB@

Ĝ
`

0 (X)
...

Ĝ
`

⌫p
m2

(X)

1
CCA .

(31)

[EX ,i]jk =
´

X  i (X) j (X) k (X) d⇢X for 0  i, j, k  ⌫p
m1

and [EY,i]jk =
´

X �i (Y )�j (Y )�k (Y ) d⇢Y for 0  i, j, k  ⌫p
m2

. The residual coordinates are

F̂ i (Y ) =
´

X F
⇣
Û

`,p
; V̂

`,p
⌘
 id⇢X and Ĝi (X) =

´

Y G
⇣
V̂

`,p
; Û

`+1,p
⌘
�id⇢Y ;

the Jacobian coordinates are
h
ĴF ,i (Y )

i
=

´

X rUF
⇣
Û

`,p
; V̂

`,p
⌘
 id⇢X and

h
ĴG,i (X)

i
=
´

Y rV G
⇣
V̂

`,p
; Û

`+1,p
⌘
�id⇢Y . Therefore, by using this reduced

Galerkin projection method, each component solver or ’module’ can embed its
local uncertainties in the corresponding nonlinear Newton step. We therefore
refer to the projections as the modularly embedded projections and refer to the
first and second components of (5) as Module 1 and Module 2 respectively.
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4.3. Interfacing wrappers
The conditional and global coordinates of the solution iterates needed are

transformed between one another with the help of the respective restriction
(scatter) and prolongation (gather) procedures. We make use of interfacing
wrappers that apply these transformations as the iterates pass between the
modules.

The transformation from the global coordinates to the conditional coordi-
nates (restriction) has been formulated in (29). Applying the reverse transfor-
mation from the conditional coordinates to the global coordinates (prolongation)
however, would require a numerical approximation due to the following property
of the global coordinates.

U↵� =

ˆ

Y
Û↵ (Y )�� (Y ) d⇢Y (Y ) , V↵� =

ˆ

Y
V̂ � (X) ↵ (X) d⇢X (X) . (32)

We could approximate (32) using a numerical integration rule on the re-
spective external stochastic spaces. Instead we propose a simpler least squares
method that allows for an arbitrary choice of points to be sampled. Before we
further discuss this method, we define a matrix [U ] 2 Rn1⇥(⌫p

m1+m2
+1) matrix

with the global gPC coordinates of Up ⇡ U forming its columns. Similary,
we define a matrix

h
Û (Y )

i
: Y ! Rn1⇥(⌫p

m1
+1) with the conditional gPC

coordinates forming its columns. Instead of a total degree lexicographical ar-
rangement, we let the columns of [U ] follow a graded lexicographical order i.e.

Ip
m1+m2

=
n
↵0�0, . . . , ↵⌫p

m1+m2
�⌫p

m1+m2
2 Nm1+m2 : |↵|0  · · ·  |↵|⌫p

m1+m2

o
.

(33)
We therefore construct a sparse linear transformation between [U ] and

h
Û
i

as
follows. h

Û (Y )
i

= [U ] [⇧p (Y )] , (34)

where [⇧p (Y )] 2 R(⌫p
m1+m2

+1)⇥(⌫p
m1

+1) is a sparse matrix such that each row

has at most one non-zero element. If we define �q
m2

=
h
�0 · · · �⌫q

m2

iT

as the vector of polynomial basis functions upto total degree q and Ip
m1

=n
↵0, . . . , ↵⌫p

m1
2 Nm1 : |↵0|  · · · 

���↵⌫p
m1

���
o

as the index set of the conditional
coordinates, then [⇧p] would have the following structure.

[⇧p (Y )] =

2
6664

�p�|↵0|
m2

(Y ) 0 0

0
. . . 0

0 0 �
p�

����↵⌫
p
m1

����
m2 (Y )

3
7775 . (35)

Therefore, the linear transformation (34) is equivalent to (29). We can similarly
define transformations for the field V p ⇡ V but the details have been omitted
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here for the sake of brevity. Also, the first equation in (32) can be compactly
written as follows.

[U ] =

ˆ

Y

h
Û (Y )

i
[⇧p (Y )]

T
d⇢Y (Y ) . (36)

4.3.1. Least squares prolongation
Given a sufficiently large set of points

�
Y (i) 2 Y : 0  i  q

 
, we construct

the transformation matrices
�⇥
⇧p

�
Y (i)

�⇤
: 0  i  q

 
obtain samples of the

conditional coordinate matrices
nh

Û
�
Y (i)

�i
: 0  i  q

o
. The least squares

method of approximating [U ] is therefore based on the following overdetermined
system of equations.

[U ]
⇥ ⇥

⇧p

�
Y (0)

�⇤
· · ·

⇥
⇧p

�
Y (q)

�⇤ ⇤
=
h h

Û
�
Y (0)

�i
· · ·

h
Û
�
Y (q)

�i i
.

(37)
Therefore, we get

[U ] =

"
qX

i=0

h
Û
⇣
Y (i)

⌘i h
⇧p

⇣
Y (i)

⌘iT
#"

qX

i=0

h
⇧p

⇣
Y (i)

⌘i h
⇧p

⇣
Y (i)

⌘iT
#�1

.

(38)
Based on the structure of [⇧p] given by (35), we see that [⇧p] [⇧p]

T is block
diagonal and therefore, the inverse matrix on the right hand side of (38) is also
block diagonal. In general, we choose q � 2⌫p

m2
to ensure that the problem is

not ill-conditioned.
Alternatively, we could use a weighted least-squares approach. We remark

here that if the sampling points and weights are chosen according to a quadrature
rule, the inverse matrix would be equal to the identity matrix.

5. Implementation on a stochastic multiphysics model

! !

� � � G 2 �l �r

1

�, �, � � � G 2 �l �r

1

� � � G 2 �l �r

1

�, �, � � � G 2 �l �r

1

�, �, � � � G 2 �l �r

1

hot wall cold wall adiabatic wall

�, �, � � � G 2 �l �r

1

hot wall cold wall adiabatic wall

�, �, � � � G 2 �l �r

1

hot wall cold wall adiabatic wall

�, �, � � � G 2 �l �r

1

hot wall cold wall adiabatic wall

�, �, � � � G 2 �l �r

1

hot wall cold wall adiabatic wall

�, �, � � � G 2 �l �r

1

Fig 1: Geometry of spatial domain for modeling thermally driven cavity flow.
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5.1. 2D Fluid-Thermal interactions in a thermally driven cavity
We consider a 2D square cavity ⌦S = [�1, 1]

2 in which an incompressible
fluid is driven by the effect of temperature differences between the left and
right walls (Fig 1). The top and botton walls are assumed to be adiabatic.
We wish to model the interactions between the velocity field U =

⇥
u v

⇤T
:

[�1, 1]
2 ⇥ ⌦ ! R2 and internal energy field e : [�1, 1]

2 ⇥ ⌦ ! R of the fluid
using the following coupled steady state PDE system

(U · r) U + (� � 1)re � ⌫ (x1) (r · r) U � G (1 + � (x2) e) = 0,
(U · r) e �  (r · r) e = 0,

(39)

in ]�1, 1[
2 ⇥ ⌦ with boundary conditions

U |s1=�1 = U |s1=1 = U |s2=�1U |s2=1 = 0,
e|s1=�1 = cp✓l (y1) , e|s1=1 = cp✓r (y2) , n̂1 · re|s2=�1 = n̂1 · re|s2=1 = 0.

(40)
The uncertain parameters are prescribed as follows.

⌫ (x1) = ⌫̄ +
p

3⌫0x1,

� (x2) = �̄ +
p

3�0x2,

✓l (y1) = ✓̄l +
p

3✓0ly1,

✓r (y2) = ✓̄r +
p

3✓0ry2,

(41)

where x1, x2, y1 and y2 are i.i.d uniform random variables in [�1, 1]. For phys-
ical validity of our model, the mean and standard deviations of the uncertain
parameters are chosen to ensure positive values of ⌫, �, ✓l, ✓r and (✓l � ✓r).
Table 2 lists out the values prescribed for the deterministic parameters.

Parameter Symbol Value

Mean of fluid viscosity ⌫̄ 0.2

Mean of thermal expansion coefficient �̄ 0.02

Mean of left wall temperature ✓̄l 5

Mean of right wall temperature ✓̄r 1

StDv of fluid viscosity ⌫0 0.04

StDv of thermal expansion coefficient �0 0.004

StDv of left wall temperature ✓0l 1

StDv of right wall temperature ✓0r 0.2

Heat capacity ratio � 1.4

Gravity vector G
⇥

0 �10
⇤T

Thermal diffusivity  10

Specfic heat cp 2
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Table 2: List of deterministic parameters and their values.

The spatial discretization of (39) and (40) is formulated on an N⇥N�element
uniform quadrilateral mesh, using bilinear shape functions and upwinding sta-
bilization (SUPG) [26]. Therefore, we obtain a coupled system of field equations
as per the model problem (1) where Module 1 updates the velocity field while
Module 2 updates the internal energy field. We have n1 = 2 (N � 1)

2 solu-
tion variables in Module 1 and n2 = (N � 1)

2
+ 2 (N � 1) solution variables in

Module 2.
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Fig 2: Spatial distribution of mean and standard deviations of velocity fields
u, v, and internal energy field e.
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5.1.1. Mean and variance approximation
Following the modularly embedded projection method (30), we obtained the

mean and standard deviation of the converged velocity and internal energy fields
for p = 3 and N = 30 (Fig 2). Retaining the spatial resolution of the solution,
Fig 3 shows the convergence of the spatial average of the mean and standard
deviation of u, v and e as p increases. The error is computed as the (absolute
value) of the difference between an statistics computed at truncation order p
and the statistics computed at truncation order p � 1.
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10
−2

p

e
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o
r

 

 

Mean u
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Mean e

S tDv u

S tDv v

S tDv e

Fig 3: Convergence of ther spatial average of the mean and standard deviation
approximations of u, v and e obtained using the global gPC coordinates.

5.1.2. Computational performance
For the implemented modularly embedded projection method, the total com-

putational was obtained for various values of p and N . We also implemented
the monolithic Newton method (3) with a globally embedded Galerkin projec-
tion method and obtained the respective computational cost for various values
of p and N . The results are compared in Fig 4. We observe that for higher
values of p, the modularly embedded projection method was computationally
less expensive due to two main reasons. Firstly, the total number of iterations
needed for both methods to converge did not increase significantly as p was suc-
cessively increased (Fig 5). Secondly, when compared to the globally embedded
projection method, the effective cost of solving a single Newton step with the
modularly embedded projection method was significantly lower even with the
sampling overheads from the wrappers (Fig 6). All experiments were performed
in MATLAB on a single core Intel 3.1Ghz i5 CPU with 4GB RAM, and the inhouse
BiCGStab solver was used solve the expensive Newton steps with a tolerance
value of 10�10.
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Fig 4: Total computation time of the modularly embedded projection (MEP)
method compared to the monolithic globally embedded projection (GEP)

method.
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Fig 5: Comparison of the total number of iterations needed to converge.
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Fig 6: Comparison of the (average) computation time per iteration.

6. Conclusions and future work

We have demonstrated an efficient multicomponent approach for uncertainty
propagation in stochastic multiphysics systems such as fluid-thermal interac-
tions. The modularly embedded strategy of developing components presented
can be easily integrated into a multicomponent solver using interfacing wrap-
pers. Therefore, our method facilitates a modularly flexible framework for devel-
oping stochastic simulations of complex multiphysics models. Although we have
only considered intrusive propagation methods within modules, our method can
be easily adapted to non-intrusive sampling based propagation as well. Thus,
our approach can in general be considered as a hybrid UQ methodology, which
is a hot topic of research within the community.

However, we have yet not addressed key bottlenecks associated with the
gPC representation of uncertainty such as the curse-of-dimension and long term
integration. In the context of high-dimensional stochastic models, we are cur-
rently investigating methods of dimension-reduction in the inter-module sense,
which is based on the contention that information exchanged between modules
of a partitioned solution approach often resides in a lower dimensional space.
Based on initial experimentation, we are confident about our claims and in the
near future, we are condfident of incorporating an efficient dimension reduction
methodology and extending our framework to handle very high-dimensional
stochastic multiphysics models and move a significant step closer to mitigating
the curse of dimension.
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A review of dimension and model reduction
methodologies in multiphysics systems with random

inputs

A. Mittal, G. Iaccarino

Abstract

In this article, we review state-of-the-art methodologies proposed for mitigat-
ing the curse-of-dimensionality in tackling multiphysics systems that are pa-
rameterized using high-dimensional random inputs. We consider an extension
of partitioned simulation strategies for strongly and weakly coupled problems
wherein, parametric uncertainties are represented and propagated using poly-
nomial chaos (gPC) expansions. In general, the number of independent random
inputs in coupled problems can be large and render any standard implementa-
tion of gPC to be computationally intractable. However, exploiting the coupling
structure can possibly lead to reduced dimension and reduced order stochastic
models of the exchanged information, and thus lead to significant computational
savings over the standard gPC approach. We explore this possibility and test
the reduction methodologies on a thermally driven cavity flow problem.

Keywords: Uncertainty Quantification, Multiphysics systems, Dimension
reduction, Model reduction, Polynomial chaos, Thermally driven cavity flow.

1. Introduction

With the aim of validating predictions from computer simulations against
real-world phenomenon, it becomes necessary to include naturally random quan-
tities i.e. uncertainties within the associated governing model. Uncertainties
mainly exist due to two main reasons. Firstly, models are often idealized ap-
proximations of their target scenarios. Secondly, limitations of experimental
techniques and measurements can lead to additional parametric uncertainties.
Uncertainty quantification (UQ) has therefore, become a key requirement for
achieving realistic predictive simulations.

Probability theory provides a unified mathematical framework for propa-
gating modeling errors as well as parametric uncertainties. The first step in a
probabilistic framework is to characterize input uncertainties as random vari-
ables or fields, based on methods borrowed from mathematical statistics [1] and
inference analysis [2]. The second step is to propagate uncertainties from inputs
to predictions by mapping their respective probabilistic representations. This
process, known as uncertainty propagation, can be achieved using Monte Carlo
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(MC) sampling methods [3] or stochastic spectral methods [4]. In the latter,
we are faced with the objective of constructing an accurate polynomial surro-
gate response of the quantities of interest predicted by the simulations, which,
in the context of UQ, is known as polynomial chaos (gPC) [5]. gPC methods
have received special attention in the UQ community due to their advantages
over traditional MC methods, and several approaches such as embedded projec-
tion [6], non-intrusive projection [7] and collocation [8] have been proposed for
propagating the respective gPC coordinates.

Many of the current engineering and scientific problems that are being tack-
led involve a complex physical model covered by many distinct disciplines in
physics and associated mathematics. A multiphysics system can, in general, be
mathematically modeled as an algebraically coupled system of equations based
on the interactions of two or more physical fields, domains, scales or a com-
bination thereof. In addition, computational requirements such as algorithmic
customization, independent modeling, reuse of legacy software and modularity
favor a partitioned solution strategy over the simultaneous (monolithic) ap-
proach [9,10].

In extending this partitioned approach to gPC based stochastic simula-
tions of coupled problems, we are often faced with the well known curse-of-
dimensionality due to a large number of independent sources of uncertainties.
This can lead to intractable computational costs in propagating uncertainties
using monolithic (global) gPC approaches. While recent works have addressed
this issue for special cases such as unidirectionally coupled problems [11] and
linear multiphysics systems [12], we focus our discussions on gPC propagation
in nonlinear and bidirectionally coupled problems. We assert that for strongly
and weakly coupled models alike, the information that is communicated across
various uniphysics components and iterations can be accurately represented us-
ing fewer stochastic degrees of freedom than the global gPC approach. This is
particularly true when the solution field is smoothed between iterations using a
forward operator, or when a fine-scale quantity is projected onto a coarse-scale
representation in multiscale problems.

The remainder of this article is organized as follows. In Section 2, we briefly
review the partitioned simulation strategy for strongly and weakly coupled de-
terministic multiphysics systems, as well as the non-intrusive projection method
of globally propagating the gPC coordinates. In Section 3, we outline a dimen-
sion reduction method for strongly coupled systems that maintains the separa-
bility of the random inputs, as well as dimension reduction for weakly coupled
systems using a composite gPC representation. In Section 4, we outline meth-
ods of model reduction that are based on a reduction of polynomial order and
number of quadrature points. In Section 5, we implement and benchmark these
methods on a thermally driven cavity flow problem.
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Algorithm 1 Partitioned Newton method for strongly coupled problems
input x1, x2.
setu0

1, u0
2, v0

1 and v0
2.

set ` 0.
do
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1  u`

1 �
"
@f1

�
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1, v
`
2, x1

�

@u1

#�1

f1

�
u`
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2, x1

�
,

set v`+1
1  g1

�
u`+1

1 , x1

�
.

set u`+1
2  u`

2 �
"
@f2

�
u`

2, v
`+1
1 , x2

�

@u2

#�1

f2

�
u`

2, v
`
1, x2

�
,

set v`+1
2  g2

�
u`+1

2 , x2

�
.

set ` `+ 1.

while max
�
ku`

1 � u`�1
1 k, kv`

1 � v`�1
1 k, ku`

2 � u`�1
2 k, kv`

2 � v`�1
2 k

�
> ✏

2. Multiphysics systems with random inputs

2.1. Model problem
In this article, we will devote our attention to obtaining the solution statistics

and global sensitivites of the following non-linear and bidirectionally coupled
system of equations.

f1 (u1, v2, x1) = 0; f1, u1 2 Rn1 , v1 = g1 (u1, x1) ; g1, v1 2 Rm1 ,
f2 (u2, v1, x2) = 0; f2, u2 2 Rn2 , v2 = g2 (u2, x2) ; g2, v2 2 Rm2 .

(2.1)

We define m1 and m2 as the coupling dimensions, and s1 and s2 as the stochastic
dimensions: x1 2 Rs1 with probability density function (PDF) ⇢1, and x2 2
Rs2 with PDF ⇢2. We assume that x1 and x2 are independent. To avoid
the numerical issues with gPC and long time integration, we will assume that
(2.1) denotes a spatially discretized model of a steady state system of partial
differential equations (PDE’s).

2.2. Strong versus weak coupling
From the point of view of stochastic dimension reduction, we can classify

the coupled problem (2.1), based on the coupling and stochastic dimensions, as
either strongly coupled with m1 + m2 � s1 + s2 or weakly coupled with m1 +
m2 < s1+s2. In the latter case, the dimension of the stochastic space is reduced
by reformulating the solution variables u1 and u2 as functions the coupling
variables v1 and v2. We will discuss these further in subsequent sections after
outlining the deterministic and stochastic simulation methods.
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Algorithm 2 Nonlinear elimination method for weakly coupled problems
input x1, x2.
set u0
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set ` 0.
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2.3. Partitioned Newton’s method
For fixed values of x1 and x2, i.e. the deterministic case, we consider a parti-

tioned iterative solution method which reuses legacy solvers for each component
f1 and f2. In the strongly coupled case, we could implement partial Newton it-
erative procedure outlined in Algorithm 1. As stated by the Banach contraction
mapping theorem, a sufficient condition for the partitioned Newton’s method to
converge is that the mapping from

�
u`

1, v
`
1, u

`
2, v

`
2

�
to

�
u`+1

1 , v`+1
1 , u`+1

2 , v`+1
2

�

is a contraction mapping.
For weakly coupled models, we could implement the nonlinear elimination

based iterative procedure outlined in Algorithm 2, which has better convergence
properties than the standard Newton’s method outlined in Algorithm 1 [13].

2.4. Non-intrusive gPC propagation
We assume that the cost of executing each component solver is significant

and prohibits the use of any exhaustive sampling approach. Therefore, we seek a
polynomial surrogate of the solution and coupling variables using truncated gPC
expansions. We assume here that they each satisfy the finite second-moment
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[14]. At each iteration step `, we define y1 (x1, x2) =
⇥
u`

1 (x1, x2) ; v`
2 (x1, x2)

⇤

as the inputs to the first component and y2 (x1, x2) =
⇥
u`

2 (x1, x2) ; v`
1 (x1, x2)

⇤

as the inputs to the second component.
Assuming that the PDF’s of x1 and x2 are well known (e.g. uniform,

Gaussian), we can construct ⇢1�orthonormal polynomials { ↵
1 : ↵ 2 Ns1

0 } and
⇢2�orthonormal polynomials { ↵

2 : ↵ 2 Ns2
0 } from univariate orthonormal poly-

nomials. Therefore, the global gPC expansions are as follows.

y1 (x1, x2) =
X

|↵|+|�|�0
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1 (x1) 
�
2 (x2) ,

y2 (x1, x2) =
X

|↵|+|�|�0
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1 (x1) 
�
2 (x2) ,

(2.2)

Therefore, we can define the respective p�order truncated approximations as
follows.

ŷp
1 (x1, x2) =

pX

|↵|+|�|=0

y↵�
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1 (x1) 
�
2 (x2) ,

ŷp
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1 (x1) 
�
2 (x2) .

(2.3)

The gPC coordinates in (2.3) can be obtained using the non-intrusive spec-
tral projection (NISP) [7] method by defining the respective quadrature rulesn

x
(j)
1 , w

(j)
1

oQ1

j=1
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n
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in each stochastic domain. We therefore

approximate the gPC coordinates as follows.
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(2.4)

Separate quadrature rules in each stochastic domain are required in order to
approximate the coordinates of the following reduced [15] or modular gPC rep-
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resentations of y1 and y2.

ŷp
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where
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(2.6)

In order to compute the global mean, covariance and sensitivity indices, we
would require the global gPC coordinates, which can be obtained from the
modular gPC coordinates as follows.

y↵�
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⇡
Q2X

j=0

ỹ↵
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ỹ�
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↵
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⌘
w
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1 .

(2.7)

Although we have outlined the NISP method, the modular gPC coordinates
could be obtained using embedded projection or regression methods instead.
For strongly coupled models, samples of these coordinates are required as inter-
mediate quantities in the dimension reduction procedure described in the next
section.
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3. Stochastic dimension reduction

3.1. Strong coupling case
Karhunen-Loeve expansion (KLE) is widely used as a reduced dimensional

representation of random fields [16,17]. In the context of the coupled problem
(2.1), the standard KLE representation of the exchanged random quantities y1

and y2 would be as follows.

ŷp,d
1 (x1, x2) = '1,0 +

dX

j=1

&1,j'1,j#1,j (x1, x2) ,

ŷp,d
2 (x1, x2) = '2,0 +

dX

j=1

&2,j'2,j#2,j (x1, x2) ,

(3.1)

where

#1,j (x1, x2) =

pX

|↵|+|�|=0

#↵�
1,j  

↵
1 (x1) 

�
2 (x2) ,

#2,j (x1, x2) =

pX

|↵|+|�|=0

#↵�
2,j  

↵
1 (x1) 

�
2 (x2) .

(3.2)

Since, y1 and y2 are discrete approximations of spatially varying random fields,
the orthogonality of the basis vectors in the KLE representation (3.1) would be
satisfied in the functional or Hilbert space of basis vectors [18]. Therefore, we
define the corresponding Gram matrices [G1] and [G2] as the positive definite
weighting matrices for the following orthogonality conditions.

'T
1,j [G1]'1,k = �jk, 'T

2,j [G2]'2,k = �jk. (3.3)

Similar to the modular gPC representation, we instead seek a modular KLE
representation that maintains the segregation of the random inputs x1 and x2.
We therefore define alternative reduced dimensional representations of y1 and
y2 as follows.

ŷp,d1

1 (x1, x2) = �1,0 (x1) +

d1X

j=1

�1,j�1,j (x1) ✓1,j (x2) ,

ŷp,d2

1 (x1, x2) = �2,0 (x2) +

d2X

j=1

�2,j�2,j (x2) ✓2,j (x1) ,

(3.4)
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where

✓1,j (x2) =

pX

|↵|=0

✓↵1,j 
↵
2 (x2) , �1,j (x1) =

pX
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�↵
1,j 
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�↵
2,j 

↵
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(3.5)

The gPC coordinates in (3.5) can be obtained using samples of the modular
gPC coordinates y1 and y2 as follows.

3.1.1. Reduced SVD using modular gPC coordinates

If we define
n
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⌘
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as the corresponding sets of modular gPC coordinates that are sampled at the
respective quadrature points, we have
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1 . (3.6)

Once the coordinates of the mean are computed, we define the normalized and
zero�mean samples of the modular gPC coordinates as follows.
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⌘
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(3.7)

Once these samples have been computed, we perform a reduced singular value
decomposition (SVD) of the following data matrices [Z1] and [Z2].

[Z1] =

2
6664
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· · · z↵1
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(3.8)

where P1 =
�
s1+p

p

�
and P2 =

�
s2+p

p

�
denote the size of the respective sets of

⇢1�orthonormal and ⇢2�orthonormal polynomials of degree less than or equal
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to p. The reduced SVD factorizes the data matrices as follows.
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(Q2)
1,1 · · · ✓̂

(Q2)
1,d1

3
775

| {z }
[V1]

T

T

,

[Z2] =

2
664

�̂
↵1

2,1 · · · �̂
↵1

2,d2

...
...

�̂
↵P2

2,1 · · · �̂
↵P2

2,d2

3
775

| {z }
[U2]

2
64
�2,1

. . .
�2,d2

3
75

| {z }
[⌃2]

2
664

✓̂
(1)
2,1 · · · ✓̂

(1)
2,d2

...
...

✓̂
(Q1)
2,1 · · · ✓̂

(Q1)
2,d2

3
775

T

| {z }
[V2]

T

.

(3.9)
Finally, we can obtain the coordinates in (3.5) as follows.

✓↵1,j =

Q2X

k=1

✓̂
(k)
1,j 

↵
2

⇣
x

(k)
2

⌘q
w

(k)
2 , �↵

1,j =

q
[G1]

�1
�̂

↵

1,j ,

✓↵2,j =

Q1X

k=1

✓̂
(k)
2,j 

↵
1

⇣
x

(k)
1

⌘q
w

(k)
1 , �↵

2,j =

q
[G2]

�1
�̂

↵

2,j .

(3.10)

The dimensions d1 and d2 are selected based on a tolerance " that indicates the
fraction of the total variance that is ignored by the reduced SVD. Therefore, we
first compute the s2�rank SVD of [Z1] and s1�rank SVD of [Z2] and select the
dimensions as follows.

d1 = min
j2N

8
<
:

s2X

k=j+1

�2,k  "
s2X

k=1

�1,k

9
=
; , d2 = min

j2N

8
<
:

s1X

k=j+1

�2,k  "
s1X

k=1

�2,k

9
=
; .

3.1.2. gPC approximation in reduced dimensions
We define ✓i = [✓i,1; . . . ; ✓i,di

] : i 2 {1, 2} as the reduced dimensional random
vectors. Also, %1 and %2 are defined as the PDF’s of ✓1 and ✓2 respectively.
The modular gPC approximations using the reduced random variables can be
formulated as follows.

ŷp,d1

1 (x1, x2) = byp
1 (x1,✓1) =

pX

|↵|=0

ey↵
1 (✓1) 

↵
1 (x1) ,

ŷp,d2

2 (x1, x2) = byp
2 (x2,✓2) =

pX

|↵|=0

ey↵
2 (✓2) 

↵
2 (x2) .

(3.11)
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where ey↵
1 (✓1) and ey↵

2 (✓2) are approximated using (2.4). Similarly, the global
gPC approximation can be defined as follows.

byp
1 (x1,✓1) =

pX

|↵|+|�|=0

y↵�
1  ↵

1 (x1)⇡
�
1 (✓1) ,

byp
2 (x2,✓2) =

pX

|↵|+|�|=0

y↵�
2 ⇡↵

2 (✓2) 
�
2 (x2) .

(3.12)

The %1� orthonormal polynomials
n
⇡↵

1 : |↵| 2 Nd1
0

o
and %2�orthonormal poly-

nomials
n
⇡↵

2 : |↵| 2 Nd2
0

o
in (3.12) cannot be constructed using univariate poly-

nomials and a Cholesky factorization method, outlined in Section 4, is used
instead. We remark here that the same notation used for the global gPC coor-
dinates in (2.2) has been used in (3.12). Similar to (2.7), the transformations
from the modular to global gPC coordinates would be as follows.

y↵�
1 =

´

Rd1
ey↵

1 (✓1)⇡
�
1 (✓1) %1 (✓1) d✓1

=
´

Rs2
ỹ↵

1 (✓1 (x2))⇡
�
1 (✓1 (x2)) ⇢2 (x2) dx2

⇡
Q2X

j=1

ỹ↵
1

⇣
✓1

⇣
x

(j)
2

⌘⌘
⇡�

1

⇣
✓1

⇣
x

(j)
2

⌘⌘
w

(j)
2 .

y↵�
2 =

´

Rd2
ey�

2 (✓2)⇡
↵
2 (✓2) %2 (✓2) d✓2

=
´

Rs1
ỹ↵

2 (✓2 (x1))⇡
↵
2 (✓2 (x1)) ⇢1 (x1) dx1

⇡
Q1X

j=1

ỹ�
2

⇣
✓2

⇣
x

(j)
1

⌘⌘
⇡↵

2

⇣
✓2

⇣
x

(j)
1

⌘⌘
w

(j)
1 .

(3.13)

This indicates that respective quadrature rules
n
✓

(j)
1 = ✓1

⇣
x

(j)
2

⌘
, w

(j)
2

oQ2

j=1
and

n
✓

(j)
2 = ✓2

⇣
x

(j)
1

⌘
, w

(j)
1

oQ1

j=1
can be defined. Since these rules contain the same

number of points, and therefore the same number of solver executions, we have
still not reduced the computational effort. Therefore, we would need to con-
struct a reduced set of quadrature points and weights, which is outlined in
Section 4.

3.1.3. Limitations and Effectiveness
Because the dimension reduction procedure described would initially require

the modular gPC coordinates, it can only be implemented in the unidirectional
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sense. In the context of the model problem (2.1), this means that any compu-
tational gains achieved in reducing the number of quadrature points would be
limited to a single component. The same limitations would arise if the standard
KLE representation (3.1) is implemented [19]. Therefore, the effectiveness of the
method would depend on the difference between the stochastic dimensions s1

and s2. If the difference is high, then the computational gains in the component
that has a smaller stochastic dimension would be high. Extending the method
to a suitable bidirectional implementation is still an area of active investigation.

3.2. Weak coupling case
When the overall stochastic dimension s1 + s2 is larger than the coupling

dimension m1 + m2, we can implement a composite gPC representation [20] in
the coupling variables v1 and v2 to obtain a reduced dimensional model of the
of the exchanged information y1 and y2. We define %1 and %2 as the PDF’s of
v1 and v2 respectively with v = [v1; v2]. Therefore, we can define the truncated
gPC approximations as follows.

y1 (v (x1, x2)) ⇡ byp0

1 (v (x1, x2)) =

p0X

|↵|=0

ey↵
1 ⇡

↵ (v (x1, x2)) ,

y2 (v (x1, x2)) ⇡ byp0

2 (v (x1, x2)) =

p0X

|↵|=0

ey↵
2 ⇡

↵ (v (x1, x2)) ,

(3.14)

where

ey↵
1 =

´

Rm2

´

Rm1
y1 (v1, v2)⇡

↵ (v1, v2) %1 (v1) %2 (v2) dv1dv2

=
´

Rs2

´

Rs1
y1 (v (x1, x2))⇡

↵ (v (x1, x2)) ⇢1 (x1) ⇢2 (x2) dx1dx2

⇡
Q1X

j=1

Q2X

k=1

y1

⇣
v
⇣
x

(j)
1 , x

(k)
2

⌘⌘
⇡↵

⇣
v
⇣
x

(j)
1 , x

(k)
2

⌘⌘
w

(j)
1 w

(k)
2 ,

ey↵
2 =

´

Rm2

´

Rm1
y2 (v1, v2)⇡

↵ (v1, v2) %1 (v1) %2 (v2) dv1dv2

=
´

Rs2

´

Rs1
y2 (v (x1, x2))⇡

↵ (v (x1, x2)) ⇢1 (x1) ⇢2 (x2) dx1dx2

⇡
Q1X

j=1

Q2X

k=1

y2

⇣
v
⇣
x

(j)
1 , x

(k)
2

⌘⌘
⇡↵

⇣
v
⇣
x

(j)
1 , x

(k)
2

⌘⌘
w

(j)
1 w

(k)
2 ,

(3.15)
In general, we assume that p0  p. Therefore, the cardinality of the set of
orthonormal polynomials in v would be P 0 =

�
p0+m1+m2

p0
�

and significantly
less than the cardinality of the original set of orthonormal polynomials P =�
p+s1+s2

p

�
. However, since the components of the solver need to be executed
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at various values of the random inputs x1 and x2, computational gains can be
achieved only by reducing the number of quadrature points that are required to
compute the composite gPC coordinates in (3.15). The computational construc-
tion of the gPC basis and quadarature rules is described in the next section.

4. Stochastic model reduction

In the previous section, a reduced dimensional gPC approximation of the
exchanged information was formulated for both strongly and weakly coupled
models. We will now describe the computational construction of orthonormal
polynomials and optimally sparse quadrature rules for a reduced dimensional
random vector. Before we proceed with describing the methods, we define x 2
Rs as the original random vector with PDF ⇢ and v = v (x) 2 Rm as the reduced
dimensional random vector with PDF % (m < s). Also, we let

�
x(j), w(j)

 Q

j=1

and
�
v
�
x(j)

�
, w(j)

 Q

j=1
be the respective quadrature rules in x and v with

w =
⇥
w(1); · · · ; w(Q)

⇤
.

4.1. Reduced dimensional gPC basis

We define P 0 =
�
p0+m

p0
�

as the cardinality of the set of orthonormal polyno-
mials {⇡↵ : ↵ 2 Nm

0 , 0  |↵|  p0} that need to be computed. We define (v)
↵ as

the multivariate monomial in v = [v1; · · · ; vm] with exponent ↵ = [↵1; · · · ;↵m],
which has the following product form.

(v)
↵

=

mY

j=1

v
↵j

j . (4.1)

We then define a Hankel matrix [H] as follows.

[H] =
´

Rm

2
64

(v)
↵1

...
(v)

↵P 0

3
75

2
64

(v)
↵1

...
(v)

↵P 0

3
75

T

% (v) dv

=
´

Rs

2
64

(v (x))
↵1

...
(v (x))

↵P 0

3
75

2
64

(v (x))
↵1

...
(v (x))

↵P 0

3
75

T

⇢ (x) dx

⇡
QX

j=1

2
64

�
v
�
x(j)

��↵1

...�
v
�
x(j)

��↵P 0

3
75

2
64

�
v
�
x(j)

��↵1

...�
v
�
x(j)

��↵P 0

3
75

T

w(j),

(4.2)

where |↵1|  · · ·  |↵P 0 |. The Cholesky factorization of [H] would yield a lower
triangular matrix [L] such that [H] = [L] [L]

T . From the vector of monomials
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used in (4.2), we can obtain the vector of orthonormal polynomials as follows.
2
64

⇡↵1
�
v
�
x(j)

��
...

⇡↵P 0
�
v
�
x(j)

��

3
75 = [L]

�1

2
64

�
v
�
x(j)

��↵1

...�
v
�
x(j)

��↵P 0

3
75 . (4.3)

We remark here that the left hand side quantity is needed in the formulations
(3.13) and (3.15).

4.2. Optimally sparse quadrature rules
In the previous section, we concluded that a reduction of the number of

quadrature points needed in approximating the gPC coordinates was essential
from the point of view of computational efficiency. If the weight corresponding
to a particular point is zero, then that point can effectively be excluded from
the quadrature rule. Therefore, we seek an optimally sparse vector of weights
ŵ =

⇥
ŵ(1); · · · ; ŵ(Q)

⇤
using the following L0�minimization problem.

ŵ = arg min
⌫2RQ

k⌫kL0 : [M ] w = [M ]⌫, (4.4)

where

[M ] =

2
64

�
v
�
x(1)

��↵1 · · ·
�
v
�
x(Q)

��↵1

...
...�

v
�
x(1)

��↵N0 · · ·
�
v
�
x(Q)

��↵N0

3
75 (4.5)

is the monomial matrix and N 0 =
�
2p0+m�1

m

�
. We convert the L0�minimization

problem into an L1�minimization problem as follows.

ŵ = arg min
⌫2RQ

k⌫kL1 : [M ] w = [M ]⌫. (4.6)

Following the approach in [21], we reformulate (4.6) as a linear minimization as
follows.

[ẑ; ŵ] = arg min
⌫ 2 RQ,
⇣ 2 RQ

eT ⇣ : [M ] w = [M ]⌫, ⇣ ⌫ 0, �⇣ � ⌫ � ⇣, (4.7)

where e = [1; · · · ; 1] is the vector of ones. The linear programming (LP) ap-
proach can yield an optimal solution which may not be optimally sparse. The
Tchakaloff’s theorem [22] guarantees a unique solution that has the minimum
number of non-zeros. However, we can implement Algorithm 3 to obtain a
degenerate LP optimal solution that is optimally sparse.

13

Page 35



Stanford University SPO 49606, Iaccarino DOE Agreement # DE-SC0005384

Algorithm 3 Extracting a sparse optimal solution from the LP optimal solution
input LP optimal solution ŵ.
do

set A  
n

1  j  Q : ŵ(j) 6= 0
o

.

set [MA] Ath rows of [M ] .

find p = [p1; · · · ; pQ] 2 ker [MA] .

set �  min
j2A

n��� pj

w(j)

��� : pjw
(j) < 0

o
.

set ŵ  ŵ + �p.

while � > 0

After extracting the sparse optimal solution to (4.7), we can exclude points
from the quadrature rule that correspond to a zero weight. If Q0 is defined as the
number of points in the optimally sparse quadrature rule, we can approximate
an expectation of a quantity y = y (v) as follows.

ˆ

Rm

y (v) % (v) dv =

ˆ

Rs

y (v (x)) ⇢ (x) dx ⇡
Q0X

j=1

y
⇣
v
⇣
x(j)

⌘⌘
ŵ(j). (4.8)

5. Realization for a multiphysics problem

!

� � � G 2 �l �r

1

� � � G 2 �l �r

1

�, �, � � � G 2 �l �r

1

hot wall cold wall adiabatic wall

�, �, � � � G 2 �l �r

1

hot wall cold wall adiabatic wall

�, �, � � � G 2 �l �r

1

hot wall cold wall adiabatic wall

�, �, � � � G 2 �l �r

1

hot wall cold wall adiabatic wall

�, �, � � � G 2 �l �r

1

Figure 1: Schematic representation of 2D Thermally driven cavity flow.
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With an eye on practical applications such as solar cavity modeling and
building insulation, we consider the steady state interactions of temperature
and laminar flow of an incompressible fluid in a 2D thermally driven square
cavity r = [r1; r2] 2 [�1, 1]

2. We define U = U (r), V = V (r), P = P (r)
and T = T (r) as the non-dimensionalized horizontal velocity, vertical velocity,
pressure and temperature fields repsectively. As illustrated in Figure 1, the left
wall is maintained at a higher temperature than the right wall, while the top
and bottom walls are adiabatic. In this example, we model the conservation of
mass and momentum in the first component and the conservation of energy in
the second component.

5.1. Sources of uncertainty
We assume that the coefficient of thermal expansion is a random field with

an exponential covariance kernal. Therefore, we have

� (r, x1) = �0

0
@1 +

p
3��

s1X

j=1

� (r) ⇠j

1
A : C� (r, r0) / exp |r � r0| , (5.1)

where x1 = [⇠1; · · · ; ⇠s1
] is a random vector in [�1, 1]

s1 . We use s1 = 6 in this
example.

Also, the left wall temperature is assumed to vary uniformly as follows.

T (�1, r2, x2) = T0

⇣
1 +
p

3�T ⌘
⌘

, (5.2)

where x2 = [⌘] is a random scalar in [�1, 1]. Therefore, s2 = 1. In this example,
we set the coefficients of variation to �� = �T = 0.2.

5.2. Strongly coupled model
Following the non-dimensionalization in [23], the conservation equations for

the mass/momentum component are as follows.

@U
@r1

+
@V
@r2

= 0,

@
�
U2

�

@r1
+
@ (VU)

@r2
+
@P
@r1
� Pr

✓
@2U
@r2

1

+
@2U
@r2

2

◆
= 0,

@ (UV)

@r1
+
@
�
V2
�

@r2
+
@P
@r2
� Pr

✓
@2V
@r2

1

+
@2V
@r2

2

◆
� PrRaT = 0.

(5.3)

The conservation equation for energy component is as follows.

@ (UT )

@r1
+
@ (VT )

@r2
�
✓
@2T
@r2

1

+
@2T
@r2

2

◆
= 0. (5.4)

The non-dimensional quantities Pr and Ra are the Prandtl and Rayleigh num-
bers repsectively. The Rayleigh number is proportional to � and therefore, is

15

Page 37



Stanford University SPO 49606, Iaccarino DOE Agreement # DE-SC0005384

modeled as a random field with the same formulation as (5.1). We set Pr = 0.7
and Ra0 = 100 in this example. The continuity equation for mass conserva-
tion in the first component is transformed into a pressure Poisson equation as
follows.

@2P
@r2

1

+
@2P
@r2

2

+
@2

�
U2

�

@r2
1

+ 2
@2 (UV)

@r1r2
+
@2

�
V2
�

@r2
2

� Pr
@ (RaT )

@r2
= 0. (5.5)

5.3. Weakly coupled model
The weakly coupled model is based on approximating the coupled temper-

ature field in the first component and the coupled velocity field in the second
component using surrogate polynomial functions. Therefore, we have the fol-
lowing equation for conservation of vertical momentum.

@ (UV)

@r1
+
@
�
V2
�

@r2
+
@P
@r2
� Pr

✓
@2V
@r2

1

+
@2V
@r2

2

◆
� PrRaT̂ = 0, (5.6)

where T̃ = 1
2 (1� r1) ((1� r2) T (0,�1) + (1 + r2) T (0, 1)) is a bilinear approx-

imation of the coupled temperature field. Similarly, we have the following equa-
tion for conservation of energy.

@
⇣
ÛT

⌘

@r1
+
@
⇣
V̂T

⌘

@r2
�
✓
@2T
@r2

1

+
@2T
@r2

2

◆
= 0, (5.7)

where Û =
�
1� r2

1

� �
r2 � r3

2

�
@U
@r2

(0, 0) and V̂ =
�
r1 � r3

1

� �
1� r2

2

�
@V
@r1

(0, 0).
Therefore, we have m1 = m2 = 2.

5.4. Spatial discretization
We implemented a Finite-Volume method [24] on a uniform 20 ⇥ 20 mesh.

Therefore, we have n1 = 1200 and n2 = 400. The gradient, divergence and
Laplacian operators were all discretized using linear second order schemes. In
our implementation, we used a convergence tolerance of ✏ = 10�8 with which
the iterations converged within a maximum of 5 iterations.

5.5. Verification of NISP implementation
We first implemented the NISP method in MATLAB on a single core machine

(3.1 GHz Intel i5 CPU, 4GB DDR3 RAM) without dimension reduction for
successively increasing total polynomial degree p. Table 1 indicates the size of
the gPC basis and quadrature rules that were required. In this example, latter
corresponded to the Clenshaw-Curtis quadrature rules. A benchmark set of

converged solutions was generated at N random points
n

x̂
(j)
1 , x̂

(j)
2

oN

j=1
using

Monte-Carlo sampling. As per the notation in the model problem (2.1), we
define a pointwise error indicator as follows.

Ep
i = max

1jN
kui

⇣
x̂1

(j), x̂2
(j)
⌘
� ûp

i

⇣
x̂1

(j), x̂2
(j)
⌘
kL1 : i 2 {1, 2} .

The convergence plots are shown in Figure 2.
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p P Q

0 1 1

1 8 39

2 36 425

3 120 3501

Table 1: Cardinality of gPC basis and quadrature rules for NISP implementation.
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Figure 2: Pointwise error of solutions u1 and u2 versus polynomial degree p.

5.6. Mean , standard deviation and sensitivities
For the strong coupling case, the mean and standard deviation of the quan-

tities are shown in Figure 3 and Figure 4. For the weak coupling case, the
mean and standard deviation of the quantities are shown in Figure 3 and Fig-
ure 4. The sensitivity indices are computed using the ANOVA method [25] and
reported in Table 2. A total polynomial degree of p = 3 is used here.

Quantity Strong Weak
S1 (%) S12 (%) S2 (%) S1 (%) S12 (%) S2 (%)

U 56.06 1.73 42.21 52.35 2.10 45.55

V 58.04 1.72 40.24 56.07 2.21 41.72

P 34.26 1.42 64.32 32.28 1.34 66.38

T 1.26 0.14 98.60 0.11 0.02 99.87

Table 2: ANOVA based sensitivity indices. S1and S2 correspond to the
main effects of x1and x2. S12 corresponds to the interactions.
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Figure 3: Mean of quantities (strong coupling)

Figure 4: Standard deviation of quantities (strong coupling)
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Figure 5: Mean of quantities (weak coupling)

Figure 6: Standard deviation of quantities (weak coupling)
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5.7. NISP implementation with dimension reduction
We then implemented the NISP method with dimension reduction in the

strongly coupled model using p0 = p = 3 and various values of the tolerance ".
The reduction was limited to the energy component of the solver. To observe
the convergence as " decreases, the L1 distance between the mean and variance
of the converged solutions with and without dimension reduction were compared
and are reported in Table 3.

" d2 kE
⇣
ŷ3,d2

2

⌘
� E

�
ŷ3

2

�
kL1 kVar

⇣
ŷ3,d2

2

⌘
�Var

�
ŷ3

2

�
kL1

0.004 1 3.4⇥ 10�4 6.6⇥ 10�3

0.002 2 8.1⇥ 10�5 2.3⇥ 10�3

0.001 3 4.7⇥ 10�5 7.3⇥ 10�4

Table 3: L1 distance between mean and variance approximations
with and without dimension reduction in energy component.

In the weakly coupled model with p0 = p = 3, we compared the mean and
variance approximations obtained using the global and reduced dimensional
composite gPC representations of the solutions. We observed that the L1

distances between the approximated mean was 7.2⇥ 10�4 for y1 and 8.7⇥ 10�5

for y2. The same distances were computed for the variance approximations and
observed to be 2.6⇥ 10�2 for y1 and 3.8⇥ 10�3 for y2.

5.7.1. Computational gains
In the strongly coupled model, the expected gain (limited to the energy

component) in computational cost can be estimated as Q1/Q0
1. However, due

to the required SVD and LP computations, we observed a lower value for the
gain tCPU/t0CPU based on the actual run time. The results are reported in Table
4.

" d2 P 0 Q0
1 Expected gain (Q1/Q0

1) Actual gain (tCPU/t0CPU)

0.004 1 10 9 43.2 26.5

0.002 2 20 28 13.9 7.1

0.001 3 35 68 5.7 2.9

Table 4: Computational gains observed in the energy component with
p0 = p = 3. The original values of P and Q1 are 120 and 389 respectively.

In the weakly coupled model, the number of quadrature points needed was
Q0 = 587 and therefore, the expected gain is Q1Q2/Q0 = 6.0. However, based
on the CPU run time, we observed a gain of 3.1.
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6. Summary and Conclusions

We reviewed state-of-the-art methods of dimension and model reduction for
efficient gPC based uncertainty propagation in multiphysics systems. The meth-
ods described facilitated an efficient construction of reduced dimensional gPC
basis and quadrature rules using simple and widely used linear algebra tools.
By demonstrating their implementations on a 2D thermally driven cavity flow
example, we observed a significant reduction in dimension for the strongly cou-
pled model, as the effects of 7 random variables could be captured (within 0.5%
tolerance) using just 2 random variables in the energy component. However,
the dimension reduction is limited in scope, and we are actively exploring ways
of extending it to be suitable for bidirectional implementation. A promising ap-
proach for reducing the curse of dimensionality has been proposed for coupled
domain problems in [26].

In the weakly coupled paradigm, the composite gPC approach also pro-
vided a reasonable amount of computational savings. Although it falls outside
the context of dimension and model reduction, a method of transformatng a
bidirectionally coupled system into a network of unidirectionally coupled com-
ponents, which can overcome the need for costly iterations, has been proposed
in [27]. Extensions and improvements of such methods are also an important
topic of our ongoing research.

In the context of gPC based uncertainty propagation, we note that several
undeveloped and unexplored areas of improving its computational performance
still remain. These include methods of incorporating derivatives, known as
active subspace methods [28], and reducing the errors associated with long time
integration in unsteady models [29]. Investigating these topics is on our agenda
for the near future.
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