
LA-UR-14-23072
Approved for public release; distribution is unlimited.

Title: Modeling the thermal deformation of TATB-based explosives. Part 1:
Thermal expansion of “neat-pressed” polycrystalline TATB

Author(s): Luscher, Darby J.

Intended for: Report

Issued: 2014-05-08 (rev.1)

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer,is operated by the Los Alamos National 
Security, LLC for the National NuclearSecurity Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396.  
By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to 
publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. 
Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the 
U.S. Departmentof Energy.  Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; 
as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.



Modeling the thermal deformation of TATB-based explosives.

Part 1: Thermal expansion of “neat-pressed” polycrystalline TATB

D.J. Luscher

Fluid Dynamics and Solid Mechanics Group, T-3

Los Alamos National Laboratory

April 29, 2014

Abstract

We detail a modeling approach to simulate the anisotropic thermal expansion of polycrystalline (1,3,5-

triamino-2,4,6-trinitrobenzene) TATB-based explosives that utilizes microstructural information includ-

ing porosity, crystal aspect ratio, and processing-induced texture. This report, the first in a series, focuses

on nonlinear thermal expansion of “neat-pressed” polycrystalline TATB specimens which do not contain

any binder; additional complexities related to polymeric binder and irreversible ratcheting behavior are

briefly discussed, however detailed investigation of these aspects are deferred to subsequent reports.

In this work we have, for the first time, developed a mesoscale continuum model relating the ther-

mal expansion of polycrystal TATB specimens to their microstructural characteristics. A self-consistent

homogenization procedure is used to relate macroscopic thermoelastic response to the constitutive be-

havior of single-crystal TATB. The model includes a representation of grain aspect ratio, porosity, and

crystallographic texture attributed to the consolidation process. A quantitative model is proposed to

describe the evolution of preferred orientation of graphitic planes in TATB during consolidation and

an algorithm constructed to develop a discrete representation of the associated orientation distribution

function. Analytical and numerical solutions using this model are shown to produce textures consistent

with previous measurements and characterization for isostatic and uniaxial “die-pressed” specimens.

Predicted thermal strain versus temperature for textured specimens are shown to be in agreement with

corresponding experimental measurements. Using the developed modeling approach, several simulations

have been run to investigate the influence of microstructure on macroscopic thermal expansion behavior.

Results from these simulations are used to identify qualitative trends. Implications of the identified trends

are discussed in the context of thermal deformation of engineered components whose consolidation process

is generally more complex than isostatic or die-pressed specimens. Finally, an envisioned application of

the modeling approach to simulating thermal expansion of weapon systems and components is outlined

along with necessary future work to introduce the effects of binder and ratcheting behavior.

Key conclusions from this work include the following. Both porosity and grain aspect ratio have an

influence on the thermal expansion of polycrystal TATB considering realistic material variability. The

preferred orientation of the single crystal TATB [001] poles within a polycrystal gives rise to pronounced

anisotropy of the macroscopic thermal expansion. The extent of this preferred orientation depends on

the magnitude of deformation, and consequently, is expected to vary spatially throughout manufactured
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components much like porosity. The modeling approach presented here has utility toward bringing

spatially variable microstructural features into macroscale system engineering models.

1 Introduction

This report is the first in a series focused on continuum modeling of the thermal deformation of TATB-

based explosives. These explosives are a composite material comprising a relatively high volume fraction

(95% by weight) of the molecular crystal TATB (1,3,5-triamino-2,4,6-trinitrobenzene) while the balance is

a polymeric binder whose function is to hold the explosive crystals together. This report focuses on the

thermal expansion of “neat-pressed” polycrystalline TATB specimens that do not contain any binder. The

thermal deformation of TATB-based explosives exhibits (1) non-linear thermal expansion that depends upon

microstructure features which are significantly affected by details of the consolidation or manufacturing pro-

cess and (2) a ratcheting behavior that manifests as irreversible deformation accumulating with temperature

cycles. This work is focused solely on the influence of microstructure and material processing details on

the nonlinear thermal expansion (i.e. 1) and defers details of ratcheting behavior (i.e. 2) to a subsequent

investigation.

TATB is a relatively insensitive explosive molecular crystal used in several polymer bonded explosives

including PBX-9502, LX-17, and ultrafine TATB (Maienschein and Garcia, 2002; Skidmore et al., 2003).

Single crystal TATB possesses a triclinic unit cell and has strongly anisotropic elastic and thermal expansion

properties (Kolb and Rizzo, 1979; Bedrov et al., 2009) . Understanding and modeling thermal expansion

of polycrystalline TATB-based composites is an important aspect of thermomechanical models of high-

explosives used for providing guidance to design and operational decisions especially regarding the safety

and integrity of weapon system components. A detailed understanding of several aspects of the thermal

expansion of TATB composites has eluded researchers for several decades (Skidmore et al., 2003; Souers

et al., 2011). It is well known that the processing of explosives has a profound influence on the measured

thermal expansion. It is also well known that dominant alignment of the basal plane in preferred orientations

leads to pronounced anisotropy of the thermal expansion of TATB composites (Cady, 1975; Rizzo et al., 1981;

Skidmore et al., 2003).

Kolb and Rizzo (1979) employed x-ray diffraction to measure lattice parameters of single crystal TATB

over a range of temperatures and provided the first estimates of “bulk” thermal expansion for polycrystals.

Importantly, they observed that thermal expansion and contraction of single crystal TATB is completely

reversible and that the crystalline c-axis expands at a rate an order of magnitude more than for a- or b-

axes. Rizzo et al. (1981) investigated thermal expansion and volumetric ratcheting for a variety of TATB-

based polycrystal composites including neat-pressed TATB. They report linearized coefficients of thermal

expansion along axial directions for cylindrical specimens and demonstrate that the TATB formulation and

pressing condition influence thermal expansion rates, while characteristics of and amount of binder influence

the ratcheting behavior. Skidmore et al. (2003) reviewed previous thermal expansion data and performed

additional thermal expansion measurements on cylindrical specimens sampled at different orientations from

a larger, “quasi-isostatically” pressed component. They relay the importance of pressing-induced texture

to the observed anisotropy of thermal expansion in polycrystalline specimens. Cunningham et al. (2003)

measured thermal expansion and ratchet growth during temperature cycles of pure TATB, LX-17 (92.5%
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TATB, 7.5% kel-F binder), and PBX-9502 (95% TATB, 5% kel-F binder) and report axial and diametral

strain across temperatures ranging from -60◦C to 220◦C. Their results indicate that die-pressed pure TATB

polycrystal specimens exhibit axial rates of thermal expansion approximately twice that in the radial di-

rection. Maienschein and Garcia (2002) presented similar work, but focused on the explosive LX-17 and

did not include data for neat-pressed TATB polycrystal specimens. Souers et al. (2011) summarize results

from several experiments on LX-17, PBX-9502, and ultrafine TATB, the latter being defined as having a

significantly smaller characteristic particle size than normal TATB polycrystals.

There has been progress in modeling the thermal expansion behavior of TATB-based composites, most

notably, Gee et al. (2007); Maiti et al. (2008) have developed a mesoscale model employing molecular

dynamics to simulate irreversible thermal expansion of TATB-based explosives and the influence of binder

strength and particle size distributions on ratcheting behavior. Such models help provide an understanding

of the mechanisms involved during thermal deformation of TATB composites, but are not tractable for

large-scale continuum constitutive description of material response that would be employed in, for example,

a finite-element model of weapon system response to fluctuating environmental conditions.

Here, we report on detailed continuum modeling employing homogenization techniques to quantify, for

the first time, the relationship between grain morphology (texture, porosity, and shape) and the composite

thermal expansion behavior of pure TATB polycrystalline specimens. The models developed in this paper are

a step towards a continuum thermomechanical constitutive description for the irreversible strain-ratcheting

behavior demonstrated by TATB-based composites during cyclic temperature changes. However, the focus

of this paper is not on the ratcheting mechanism itself, but instead on the effective reversible thermal

expansion behavior of pure TATB composites (i.e. no binder) as a first critical step towards a general

constitutive theory.

The balance of this report is organized as follows. Section 2 discusses thermoelastic properties of single-

crystal TATB measured from atomistic simulation and experiments. Theoretical aspects of both the contin-

uum homogenization and modeling the evolution of texture, as well as details of numerical implementation,

are presented in Section 3. In Section 4 simulation results are compared with experimental measurements

and used to establish credibility in trends identified between microstructure characteristics and macroscopic

thermal expansion. Implications to the macroscale response of engineered components are presented in Sec-

tion 5 along with an outline for applying the developed modeling approach to finite-element simulations of

weapon system response. Finally a brief summary of the work, conclusions, and needed future work are

highlighted in Section 6.

2 Thermoelasticity of single-crystal TATB

Variation of crystal lattice parameters due to temperature changes

The thermal expansion of single crystals of TATB has been experimentally measured using x-ray diffraction

independently by Kolb and Rizzo (1979) and Sun et al. (2010), and numerically simulated using molecular

dynamics (Gee et al., 2004; Taylor, 2013) and Monte Carlo techniques (Sewell, 1996; Rai et al., 2008), both

employing empirical (or empirically fit) potential-based force fields. Experimental results of Kolb and Rizzo

(1979) and Sun et al. (2010) differ substantially, especially concerning the thermal expansion rates. The
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Table 1: Rates of thermal expansion in TATB lattice parameters from experimental and simulation data

published in literature. Units are ×10−6K−1.

Reference ᾱa ᾱb ᾱc Notes

Kolb and Rizzo (1979) 8.26 20.9 248 experiment

Sun et al. (2010) 11.3 10.4 167 experiment

Sewell (1996) 11 11 170 Monte Carlo

Gee et al. (2004) 24.6 24.9 134 molecular dynamics

Rai et al. (2008) 20 30 90 Monte Carlo

Taylor (2013) 15.8 16.8 57.6 molecular dynamics
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Figure 1: Variation of lattice parameters a, b, and c (top) and α, β, γ (bottom) with temperature and

corresponding polynomial fits to data. Data from x-ray diffraction experiments Kolb and Rizzo (1979) and

Sun et al. (2010).
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works of Gee et al. (2004); Rai et al. (2008); Bedrov et al. (2009) and more recently Taylor (2013) reflect the

state-of-the-art in simulating equilibrium crystal structure under various isothermal and isobaric conditions.

Such techniques still struggle to capture rates of thermal expansion observed in experiment. For example,

consider the linear rates of expansion computed by ᾱ = 1
l

∂l
∂T for each cell length, a, b, and c, reported in

Table 1. Clearly, there is not strong agreement across experiment and simulation techniques. Such properties

are elusive because, for the case of simulation, they depend upon details of the interatomic potentials that

are computationally intractable to include in a first-principles manner; consequently simplifying analytical

assumptions made in developing appropriate potentials are significant to this behavior. Presumably, the

experimental variation is attributed to specific processing dependent details leading to differences in crystal

structure; for example, levels of impurities and initial specific mass densities are likely different across

various laboratories (Zhang et al., 2012). Overall, comparing the results in Table 1 highlights that the

thermal expansion of single-crystal TATB is not well characterized. It is of passing interest that more recent

simulation results seem to be trending away from the predictions of lattice thermal expansion measured in

either experiment.

Lattice parameters a, b, c, and α, β, γ measured by Kolb and Rizzo (1979) and independently by Sun

et al. (2010) along with the corresponding best-fit polynomials are plotted in Fig. 1. The notable differences

are (1) the expansion rate of the c-axis is much larger from measurements of Kolb and Rizzo (1979) than Sun

et al. (2010); (2) variation of the length of c-axis appears to follow a quadratic behavior in measurements

of Kolb and Rizzo (1979) leading to an increased rate of thermal expansion at higher temperatures; this

behavior is not evident in the data of Sun et al. (2010); (3) expansion rates of a and b axes are similar

in the Sun et al. (2010) measurements, but b expansion is more than double that of a in Kolb and Rizzo

(1979); (4) the variation of β is more pronounced in results of Sun et al. (2010) than Kolb and Rizzo (1979);

on the other hand, variations of α and γ are more pronounced in results of Kolb and Rizzo (1979) than

Sun et al. (2010). It is possible that the differences in the processes used to synthesize TATB crystals by

these two separate research groups result in different levels of, for example, impurities, which affect thermal

expansion. Because the neat-pressed polycrystal TATB specimens used in the experiments we compare our

model with use TATB crystals synthesized using the process listed in Kolb and Rizzo (1979) , the lattice

thermal expansion measured by Kolb and Rizzo (1979) is used here.

Relationship between lattice parameter variations and continuum strain mea-

sures

In order to understand the importance of differences in lattice response within the context of continuum

mesoscale behavior it is first necessary to relate variations in lattice parameters to continuum definitions

of deformation, e.g., the second-order strain tensor. We outline the approach to convert measurements of

evolving lattice parameters into continuum strain measures developed by Schlenker et al. (1978).

Associated with the triclinic Bravais lattice (cf. Fig. 2) is a natural triclinic (non-orthogonal) basis

B = {a,b, c}, where the vectors a, b, and c are aligned with edges of the unit cell and whose magnitudes

are the lattice parameters a, b, and c, respectively. We orient an orthonormal Cartesian crystal basis,

C = {ec1, e
c
2, e

c
3}, such that a · ec1 = a, i.e., the ‘x-direction’ is aligned with the edge of the unit cell with

lattice parameter a and b · ec3 = 0, i.e., the ‘b-edge’ lies in the ‘xy-plane’. The transformation of tensor
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(a)

Figure 2: Geometric relationship between triclinic unit cell (with lattice parameters, a, b, c, α, β, γ) and the

associated Cartesian crystal basis used here.

coefficients from basis Bi to C is computed as {v}
C
= [Ti] {v}Bi

, where

[Ti] =



ai bi cos γi ci cosβi

0 bi sin γi di

0 0 ei


 (1)

di = ci (cosαi − cos γi cosβi) / sin γi, ei =
(
c2i sin

2 βi − d2i
)1/2

, and the subscript i denotes the ith deformed

state (Suh et al., 2000; He and Jonas, 2009). The notation {v}B is used to represent the array of coefficients of

vector v resolved using the basis B and, likewise, [A]
B

C
represents the matrix of coefficients of the second-order

tensor, A, against the mixed bases B and C.

Accordingly, the coefficients of a position vector X can be expressed in either the triclinic lattice or

Cartesian crystal bases and related to each other via {X}
C
= [T0] {X}

B0
. Without a loss of generality,

we can express the deformed position of a point in the unit cell with initial position X as x = FX, where

F = ∂x
∂X is the deformation gradient within the unit cell. The coefficients of the deformed position vector

are expressed in the Cartesian crystal basis as

{x}
C
= [F]

C

C
{X}

C
= [F]

C

C
[T0] {X}

B0
(2)

At the same time, the transformation equation gives {x}
C
= [Ti] {x}Bi

and when combined with Eq. 2

results in

{x}
Bi

= [Ti]
−1

[F]
C

C
[T0] {X}

B0
(3)

However, because vector coefficients reflecting the deformed position of a point fixed in the unit cell expressed

in basis Bi are identical to the coefficients of the undeformed position of the same point expressed in the

undeformed basis B0, Eq. 3 can be solved for

[Fi]
C

C
= [Ti]

[
T−1

0

]
(4)

Finally, applying Eqs. 1 and 4 to sets of lattice parameters characterizing the undeformed reference and

deformed lattice configurations, i.e., (a0, b0, c0, α0, β0, γ0) and (ai, bi, ci, αi, βi, γi), respectively, enables calcu-

lation of the components of the associated deformation gradient with respect to the Cartesian crystal basis,
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C. Using the deformation gradient associated with the deformed lattice, coefficients of the corresponding

small strain tensor can be directly computed according to

ǫi = sym [Fi]− I (5)

The normal components of strain are thus evaluated as

ǫ11 =
a (T )

ar
− 1 (6a)

ǫ22 =
b (T )

br

sin γ (T )

sin γr
− 1 (6b)

ǫ33 =
c (T )

cr

e (T )

er
− 1 (6c)

Expansion of the a, b, and c axes influences only the ǫ11, ǫ22, and, ǫ33 components of strain, respectively.

Because of the alignment of our Cartesian frame with the a-axis of the triclinic lattice, the expression for ǫ11

is intuitive. Linear expansion of the a axis results in a linear coefficient of thermal expansion along ǫ11, i.e.,

α11 = a′ (T ) /ar and does not depend on variations of any other lattice parameter. In general, linear thermal

expansion of the b and c axes will not result in a linear thermal expansion expressed in the Cartesian basis

if any of the lattice angles α, β, or γ vary with temperature. However, if the changes in angles are small,

for example δγ = γ − γr << 1, then sin γ ≈ sin γr + δγ cos γr and, consequently, all normal components of

thermal expansion can be approximated as linear with good agreement. Note, the accompanying linearized

thermal expansion rates are influenced by even small variations of α, β, or γ. Of course, if the variation of c

is nonlinear with respect to temperature, then ǫ33 will be nonlinear even for constant angles. Shear strains

induced by stress-free thermal deformation involve variations of all unit cell lengths and angles and are not

generally zero, i.e.,

ǫ12 =
arb (T ) cos γ (T )− a (T ) br cos γr

2arbr sin γr
(7a)

ǫ23 =
brc (T )d (T ) sin γr − b (T ) crdr sin γ (T )

2brcrer sin γr
(7b)

ǫ31 =
a (T ) brcr (dr cos γr − cosβr sin γr)− arb (T ) crdr cos γ (T ) + arbrc (T ) cosβ (T ) sin γr

2arbrcrer sin γr
(7c)

Strain components computed using Eq. 5 and the fits shown in Fig. 1 are plotted against temperature

in Fig. 3. The apparent normal components of thermal expansion are linear over temperature with the

exception of ǫ33 (for the Kolb and Rizzo, 1979, data). As has been discussed previously by Kolb and

Rizzo (1979) and subsequent works addressing thermal ratchet growth of TATB based explosives, the rate of

thermal expansion in the Cartesian crystal ec3 direction (aligned predominantly with the crystal c-axis) is an

order of magnitude larger than that in the ec2 direction which is approximately twice the value of that for the

ec1 direction. What has not been previously discussed is the shear coupling evident in Fig. 3. In particular,

stress-free changes in temperature induce shear strain ǫ23 at approximately the same rate as normal strain

ǫ22 which is a secondary effect considering the magnitudes of ǫ11 .
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Figure 3: Components of thermal strain versus temperature from fits to experimental data of Kolb and Rizzo

(1979); Sun et al. (2010).

Table 2: Anisotropic, tangent linear thermal expansion coefficients for TATB single crystals. All values are

expressed with units of 10−6 ◦C−1

Source α11 α22 α33 α23 α31 α12

Kolb (-30◦C) 8.27 27.1 198 -0.6 -2.40 1.65

Kolb ( 23◦C) 8.27 27.1 273 -15.6 -3.79 1.67

Kolb ( 55◦C) 8.27 27.1 318 -24.5 -4.62 1.67

Sun ( 23◦C) 11.3 10.4 181 -18.8 9.57 0.25
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Table 3: TATB elastic stiffness coefficients as reported in Bedrov et al. (2009). All values are expressed using

units of GPa.

Property Value Property Value Property Value

L11 65.7 L22 62.0 L33 18.3

L44 1.4 L55 0.68 L66 21.6

L12 18.5 L13 4.0 L23 5.0

L14 -0.2 L15 -1.0 L16 1.0

L24 0.6 L25 -0.5 L26 1.0

L34 0.2 L35 -0.4 L36 -0.4

L45 0.1 L46 0.3 L56 0.4

Elastic constants

Historically, it has not been possible to grow single crystals of TATB large enough to accommodate standard

experimental approaches used for determining the full elasticity tensor. Consequently, elastic constants for

single crystal TATB have not been measured experimentally. Only recently, calculations of elastic constants

have been performed using molecular dynamics (Bedrov et al., 2009) and density functional theory (Valenzano

et al., 2012). While there is some agreement between the parameters calculated by Bedrov et al. (2009) and

those computed by Valenzano et al. (2012), the C11 coefficients differ by 19%; those predicted by Bedrov

et al. (2009) are generally more compliant than those of Valenzano et al. (2012). Lattice parameters (i.e., a,

b, c, α, β, γ) computed by Bedrov et al. (2009) are generally closer than those computed by Valenzano et al.

(2012) to experimentally measured values Cady and Larson (1965) under ambient conditions. Additionally,

the stiffnesses reported by (Valenzano et al., 2012) for another molecular crystal (PETN) are consistently

stiffer than corresponding experimental measurements. We use the elastic constants computed by (Bedrov

et al., 2009) as reported in Table 3. Incidentally, we have found only small differences in the computed

macroscale thermal expansion using these different elastic moduli.

3 Theory

Heterogeneous Mesoscale

Consider a statistical volume element (SVE) of polycrystalline material at a scale of representation where

heterogeneities exist due to varying orientation and shape of individual crystals interacting with poros-

ity (voids). This mesoscale sits between that of a single-crystal (microscale) and the quasi-homogeneous

macroscale. At any location, x, within the mesoscale SVE the local relationship between stress and strain

is given by thermoelastic constitutive relations, i.e.,

ǫ (x) = M (x) : σ (x) + ǫ
th (x, T ) (8)

where x denotes the position within the polycrystal, M is the spatially varying 4th order local compliance

tensor and ǫth is a stress-free strain associated with thermal expansion under an evolving temperature, T .
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Equivalently, the local fine scale response can be expressed as

σ = L (x) :
(
ǫ− ǫ

th (x, T )
)

(9)

where L = M−1 is the spatially varying local stiffness tensor. For polycrystal aggregates comprising various

single crystals

M (x) = [Q⊠Q] : Mc : [Q⊠Q]T and L (x) = [Q⊠Q] : Lc : [Q⊠Q]T (10)

where Mc
ijkl and Lc

ijkl are coefficients of the single-crystal compliance and stiffness tensors, respectively,

resolved in the Cartesian crystal basis C = {eci}, Q is a is a proper orthonormal rotation relating crystal base

vectors to the SVE (or specimen) Cartesian base vectors ei according to eci = Qijej. Note, the ‘⊠’ operator is

defined such that [A⊠B]ijkl = AikBjl. In the case that all crystals have the same thermoelastic properties

(with respect to the crystal basis), spatial heterogeneity in M (x) arises due to the spatial distribution of

crystal orientations, i.e., Q (x) = Qα ∀x ∈ Vα where Vα is the volume occupied by the αth crystal.

Homogenized Macroscale

At the macroscale, for example within a weapon system finite element model, the relationship between

mean-field stresses and strains is described by the homogenized constitutive behavior

ǭ = M : σ̄ + ǭ
th (T ) (11)

or, equivalently,

σ̄ = L :
(
ǭ− ǭ

th (T )
)

(12)

The homogenization theories employed in this work to identify L = M
−1

and, more importantly, ǭth (T )

from the heterogeneous mesoscale response are well-developed elsewhere (e.g. Kocks et al., 1998) and are

explained only briefly here. Under quasistatic conditions, relations between the heterogeneous stress and

strain fields within a polycrystal and the effective macroscale stress and strain are given by

σ̄ =
1

V

∫

V

σ (x) dV (13)

and

ǭ =
1

V

∫

V

ǫ (x) dV (14)

respectively, where V is the volume of the SVE. Classical upper and lower bounds (concerning strain energy)

associated with the homogenized coarse scale response are obtained through Voigt and Reuss assumptions

of uniform strain and stress, respectively. Assuming uniform strain at the fine scale, i.e. ǫ (x) = ǭ, reduces

the volume integral of Eq. 13 to the ensemble average

σ̄ =
〈
Lα :

(
ǭ− ǫ

th
α

)〉
(15)

where the 〈·〉 operator has been introduced to denote the ensemble average,
∑

α
Vα

V [·]. From Eq. 15 the

following upper bound for homogenized constitutive behavior is directly obtained

Lu = 〈Lα〉 ǭ
th
u = L

−1
:
〈
Lα : ǫthα

〉
(16)
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In a similar fashion, the Reuss lower bound homogenized properties are computed assuming σ (x) = σ̄

resulting in

Ml = 〈Mα〉 ǭ
th
l =

〈
ǫ
th
α

〉
(17)

The Hill estimate of these properties is computed by taking the average of upper and lower bounds, i.e.,

LH =
1

2

[
Lu +M

−1

l

]
ǭ
th
H =

1

2

[
ǭ
th
l + ǭ

th
u

]
(18)

The main theoretical dilemma associated with these upper- and lower- bound homogenization schemes is

that they are not physically consistent. For example, the uniform strain assumption is consistent with a

compatible mesoscale displacement field, but the associated stresses evaluated from Eq. 9 do not generally

satisfy equilibrium. On the other hand, an assumed uniform stress field does satisfy equilibrium, but the

associated mesoscale strain field from Eq. 9 is generally incompatible.

Self-consistent homogenization schemes simultaneously satisfy compatibility requirements of the mesoscale

displacement field, stress equilibrium, and the macro-homogeneity relation of Eqs. 13 and 14. Classically,

Eshelby used Green’s functions to solve for equilibrium stress and compatible strain fields for the case of

an elastic inclusion embedded within a homogeneous matrix. In cases where the inclusion region can be

described by an ellipsoidal geometry, the stress and strain fields are uniform within the inclusion (Eshelby,

1957). Eshelby’s results were applied by Hill (1965) and Walpole (1969) to obtain a solution for stress

and strain of elastic and elastoplastic single-crystals embedded within a homogenized matrix, and in turn,

identify homogenization relationships. The theory was extended to develop a self-consistent theory of ho-

mogenization for thermoelastic-viscoplastic polycrystals (cf. Lebensohn et al., 2007) and to include effects

of porosity (Lebensohn et al., 2004). We review the self-consistent homogenization theory employed in this

work, briefly.

Eshelby’s results relate the fluctuation stress field σ̃ = σ − σ̄ to the fluctuation strain field ǫ̃ = ǫ− ǭ by

ǫ̃ = −M̃ : σ̃ (19)

where the interaction tensor M̃ = (I− S)−1 : S : M, I is the 4th order identity tensor, and S is the Eshelby

tensor which depends upon the shape of the embedded inhomogeneity and upon the macroscale compliance,

M. From the local constitutive Eqs. 8, 9 and the interaction Eq. 19, the stress localization equation is

obtained

σα = Bα : σ̄ + bα (20)

where

Bα =
(
Mα + M̃

)−1

:
(
M− M̃

)
(21)

and

bα =
(
Mα + M̃

)−1

:
(
ǭ
th (T )− ǫ

th
α (T )

)
(22)

Note, bα is the contribution to the local mesoscale stress in the αth crystal attributed to the difference

between the stress-free crystal and macroscale polycrystal thermal expansion. Substitution of the stress
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localization equation or, equivalently, a strain localization equation into the macro-homogeneity relation

σ̄ = 〈σ〉 or ǭ = 〈ǫ〉, respectively, provides the self-consistent homogenization relations

M = 〈Mα : Bα〉 : 〈Bα〉
−1

(23)

and

ǭ
th (T ) =

〈
Mα : bα + ǫ

th
α (T )

〉
−M : 〈bα〉 (24)

Equations 23 and 24 are implicit nonlinear equations solved in this work using a general nonlinear solver

built into Scipy, an open-source scientific numerical computation module for Python. The compliance of a

void inclusion is infinite and, consequently, Eqs. 21 and 22 cannot be evaluated directly for the pore phase.

Lebensohn et al. (2004) demonstrate that Eq. 23 can be computed using the relationships Mv : Bv = Av : M

and Bv = 0, where

Av =
(
M̃ : L+ I

)
(25)

and the subscript ‘v’ denotes void phase. Likewise, Eq. 24 is evaluated using the relationships Mv :

bv + ǫ
th
v (T ) = Av : ǫth + av and bv = 0, where

av = −L̃−1 : L : ǫth (26)

Modeling the initial textured state from consolidation

Application of homogenization approaches depend upon a discrete representation, i.e. {Qi ∀ i ∈ [1..N ]}, of

the orientation distribution function (ODF) for the grains in the polycrystal. For cases where there is no

dominant or ‘preferred’ orientation of crystals in the polycrystalline material, the ODF reflects a uniform

distribution of all orientations. If there is one or more preferred orientations, or, more generally, a nonuniform

ODF, the aggregate is textured and the homogenized properties will exhibit anisotropy.

There are three main processing conditions associated with explosives: (1) isostatic pressing, (2) and

uniaxial (die) pressing, and (3) quasi-isostatic pressing, . Under cases of isostatic pressing (1), the consolida-

tion process is nearly volumetric, i.e., there is no distortion of the original pressing shape, and the resulting

component exhibits essentially no texture. On the other hand, uniaxial pressing (2) tends to realign the [001]

poles toward the axis of consolidation (Rizzo et al., 1981; Cady, 1975; Skidmore et al., 2003). This process

is often employed for pressing of cylindrical test specimens with application to, e.g., thermal expansion and

ratchet growth experiments. The consolidation process used to manufacture weapon system components

are somewhere in between isostatic and uniaxial pressings; thus, such processes are referred to loosely as

quasi-isostatic and it is expected that the resulting components exhibit a spatially variable texture.

There is a significant amount of thermal expansion and ratchet growth data in the literature associated

with various pressing conditions, but very few measurements of the actual texture associated with the test

specimens. Simulating the effects of these differing processing conditions on thermal expansion behavior

requires first predicting the textured state of the material. Here a proposed texture evolution model is used

to explore the influence of processing on macroscale material properties; in the future, such models can be

used to understand effects of more general processing conditions.
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Figure 4: Illustration of the mapping of pole orientations and associated spheres.

Previous work by Schwarz et al. (2013) to model the texture evolution of the high explosive PBX-9502

adopted the phenomenology that the preferred orientation of TATB crystals is aligned in the direction of max-

imum shearing strain associated with the consolidation process. Their conceptual model is consistent with

the idea that, during consolidation, the deformation is accommodated by shear-driven slip along graphitic

planes of the material. There are a few limitations of their model; most importantly for our application,

it is of limited utility in continuum modeling because it does not give a quantitative distribution of crystal

orientation, rather one single preferred orientation of [001] poles. Additionally, the implementation of their

approach utilizes a subset of a symmetric two-dimensional plane strain tensor; thus, the preferred orientation

is independent of the skew part of the displacement gradient. In other words, their model is not affected

by material rotation. Finally, the phenomenology of their model aligns [001] poles normal to the orienta-

tion of maximum shear. Consequently, in a uniaxial (die) pressed specimen the Schwarz model predicts an

axisymmetric ring of preferred orientation inclined 45◦ from the axis of pressing. This is inconsistent with

experimental observations that the preferred orientation of [001] poles resulting from uniaxial consolidation

is aligned with the pressing direction (Cady, 1975; Skidmore et al., 2003).

March (1932) developed a model for the orientation distribution of aggregates of “platy” crystals that have

undergone deformation. The phenomenology of the model is purely geometric. The March model assumes

that, because of the pronounced aspect ratio of “sheet-like” or “platy” crystals, the basal planes oriented

normal to the thickness direction of each crystal convect with the deformation (Owens, 1973). Application

of the March theory to cases of volume-preserving deformation along a primary axis results in the March-

Dollase (Owens, 1973; Dollase, 1986) orientation distribution and has seen extensive use for experimental

characterization of a variety of materials (cf. Owens, 1973; Baker et al., 1993; Zolotoyabko, 2013). Here we

apply the March theory to cases of (1) isostatic and (2) uniaxial pressing to establish analytical expressions

for the relative distribution of [001] poles in polycrystal TATB. Subsequently, we outline an approach to

apply the March theory to modeling the evolution of the orientation of discrete polycrystal samples under

arbitrary deformation.

A vector normal to a plane described by the collection of α = 1..N material lines, lα0 , within the plane

satisfies n0 · l
α
0 = 0. If the collection of material lines are mapped into a different configuration by an affine

transformation lα = Mlα0 , then the normal to this plane in the new configuration is ñ = M−Tn0 such that

the convected plane normal satisfies ñ · lα = 0. This transformation represents the standard push-forward

operation for a covector. A crystallographic pole represents the normal to a plane, and, as the spatial
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gradient of a surface, transforms as a covector. Accordingly, the March model assumes that the poles normal

to “sheet-like” crystalline planes transform with the deformation of the material during consolidation by

ñ = F−Tn0 (27)

where n0 is a unit vector normal (to the a− b plane in the triclinic lattice) in the reference configuration, ñ

is the (non-unit) normal to the same plane in the current configuration and F is the deformation gradient

mapping material vectors from the reference to current configurations. Figure 4 illustrates this mapping.

Let the unit sphere, S0, of Figure 4 represent the orientation space of unit normal (pole) covectors, n0. We

parameterize this orientation space by the angles θ0 and φ0 such that n0 = sin θ0 cosφ0 e1+sin θ0 sinφ0 e2+

cos θ0 e3.

It is useful to note that the ratio between a region dA on the surface of a sphere and the total surface

area, A, is equal to the ratio between the volume of the conical region (bounded by dA on the surface) and

the total sphere volume, i.e.,

dA

A
=

dV

V
(28)

Furthermore, for a unit sphere (A0 = 4π and V0 = 4
3π), dV0 = 3 dA0.

Consider an infinitesimal area, dA0 surrounding the intersection of the vector n0 with the unit sphere S0

in Figure 4. In this manner dA0 represents an infinitesimal region of orientation space. The number of poles

whose orientation are contained within the orientation space dA0 is N = P (θ0, φ0) dA0, where P (θ0, φ0) is

a probability density. Equivalently, the probability distribution can be normalized by a constant coefficient

to obtain a distribution of “multiples of a random uniform distribution”, i.e.,

M0(θ0, φ0) = cP (θ0, φ0) = cN/dA0 (29)

In this way, M0(θ0, φ0) = 1 implies the orientation θ0, φ0 has the same relative occurrence as for a non-

textured polycrystal.

The material is deformed from the reference configuration into the current configuration by the defor-

mation gradient, F, such that each of the poles that originally had the orientation n0 are now aligned with

ñ = F−Tn0. Associated with this convected covector ñ is a sphere S̃ whose radius reflects the “stretch” of

a covector initially aligned with n0, i.e.,

R2 =
ñ · ñ

n0 · n0
= n0 ·

(
F−1F−T

)
· n0 =

[
n ·

(
FFT

)
· n

]−1
(30)

where the unit normal n = ñ/‖ñ‖. The latter of Eq. 30, where n = sin θ cosφ e1 + sin θ sinφ e2 + cos θ e3,

provides a more convenient parameterization R(θ, φ) rather than R(θ0, φ0) provided by the second to last

expression. The volume of S̃ is

Ṽ =
4

3
πR3 (31)

and the infinitesimal volume within S̃ that contains the N poles originally associated with orientation n0 is

dṼ = detF−1dV0 (32)

The number of poles, N , contained within this region is unaffected by the deformation, but the area over

which they intersect a unit sphere has changed, thus the orientation distribution is affected by the defor-

mation. Specifically, N poles intersect the unit sphere S0 over a region dA 6= dA0. Note that, because ñ
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is not a unit vector, S̃ is not a unit sphere and accordingly, dÃ is not the appropriate area for computing

distribution of pole density. The intersection of the deformed volume dṼ with the unit sphere S0 defines a

deformed region of parameter space, dA, whose relationship with S̃ is given by

dA

A
=

dÃ

Ã
=

dṼ

Ṽ
(33)

consequently, dA = AdṼ
Ṽ
.

The relative orientation distribution is calculated by M (θ, φ) = cN/dA, and from Eq 29 above giving

M (θ, φ) = dA0

dA M0 (θ0, φ0). Finally, from Eqs. 31-33 and the relationship dV0 = 3 dA0 for a unit sphere,

M (θ, φ) = M0 (θ0, φ0) detF R (θ, φ)
3

(34)

Below, it is shown that application of Equation 34 to the case of uniaxially die-pressed specimens results in an

axisymmetric distribution of the alignment of [001] poles with the most likely alignment along the direction

of pressing, i.e. θ = 0, and smoothly decreasing to a minimum likelihood of alignment orthogonal to the

pressing direction, i.e. θ = 1
2π. This expression is entirely consistent with experimental observations. It is

not directly clear from Equation 34 that this model for texture evolution depends upon material rotation. To

illustrate this aspect, we consider the case of a pure rotation. In this case, detF = 1 and R (θ, φ)
3
= 1. If the

initial orientation distribution is uniform M0 (θ0, φ0) = 1 then there is no evolution of texture M (θ, φ) = 1,

i.e., the rigid rotation of a uniform orientation distribution results in the same uniform distribution. On

the other hand, if a specimen with an initial distribution M0 (θ0, φ0) 6= 1 undergoes a rigid rotation, then

the resulting orientation distribution is M (θ, φ) = M0 (θ0, φ0). This relationship correctly states that the

likelihood of a crystal having its [001] in an orientation (θ, φ) after the rigid rotation is identical to the

likelihood that a crystal initially had the [001] in an orientation (θ0, φ0). The relationship between initial

and final orientations is known and provides the rotational relationship between the initial and final pole

figure with respect to a fixed coordinate basis. Ignoring locations at which the following expressions possess

singularities (which are mitigated by more detailed expressions), the initial orientations can be expressed as

nonlinear functions of the final orientations, i.e.,

φ0 = φ̂0 (θ, φ) = arccos [R13 sin θ cosφ+R23 sin θ sinφ+R33 cosφ] (35)

θ0 = θ̂0 (θ, φ) = arcsin

[
R11 sin θ cosφ+R21 sin θ sinφ+R31 cosφ

R13 sin θ cosφ+R23 sin θ sinφ+R33 cosφ

]
(36)

where Rij are coefficients of the rotation tensor R expressed in the fixed Cartesian basis. Along with Eqs.

35 and 36, for cases of pure material rotation,

M (θ, φ) = M0

(
θ̂0 (θ, φ) , φ̂0 (θ, φ)

)
(37)

illustrates the dependence of the texture evolution model on material rotations. For general cases of defor-

mation, both strain and rotation affect the final texture.

Application of Eq. 34 to the separate cases of isostatic and uniaxial pressing of an intially texture-free (i.e.,

M0 (θ0, φ0) = 1) specimen of polycrystalline TATB provides a qualitative validation of the phenomenology

of the March theory. First consider the case of isostatic pressing. In this case, the deformation gradient

is λI, where λ is the principal stretch of covectors (all three are equal) and is related to the volumetric

deformation, i.e., detF = λ3. Accordingly, ñ = λ−1n, R3 = λ−3, which, upon substitution into Eq.
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Figure 5: Comparison of distribution of [001] poles in unaxially pressed specimens as measured by Cady

(1975) with fits of the analytical March distribution.

34, yields M (θ, φ) = 1. In other words, no texture results from a purely isostatic (or, more accurately,

volumetric) consolidation process.

Assuming an initially uniform orientation distribution, i.e., M0 (θ0, φ0) = 1 and uniaxial deformation of

a specimen from an initial thickness d0 to a final thickness d such that

[F] =



1 0 0

0 1 0

0 0 d/d0


 (38)

leads to

M (θ, φ) =
d

d0

[
sin2 θ +

(
d

d0

)2

cos2 θ

]−
3
2

(39)

Cady used X-ray diffraction to measure the texture of uniaxially (die) pressed cylindrical specimens of

TATB (Cady, 1975; Skidmore et al., 2003). The results were reported as plots of the “relative number of

aligned crystals” versus the angle between the [001] pole and the specimen face. Using the relationship
I(θ)
I(θr)

= M(θ)
M(θr)

, where I (θ) is the “relative number of aligned crystals” as reported by Cady, we fit the March

equation to these measurements. Specifically, the relative pole figure intensity at an angle θ = 90◦ between

the compression axis and [001] pole was estimated by averaging I (90) for all specimens and symmetric

measurements. The optimal value of the principal stretch, λ = d
d0

, that provided the least-square residual

for the expression

I (θ)

I90◦
=

[
sin2 θ +

(
d

d0

)2

cos2 θ

]−
3
2

(40)

was identified as d
d0

= 0.72. The experimental data points and best-fit March distribution are plotted in

Figure 5.

The March model for texture evolution in composites of platy crystals leads to the analytical expression

of Eq. 39. However, application of the self-consistent approach to compute homogenized thermal expansion

response requires a discrete representation (i.e. {Qi ∀ i ∈ [1..N ]}) of a full orientation distribution. For
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example, a discrete set of grain volume fractions and their associated Euler angles defining the relationship

between crystal and specimen bases.

One approach to generate such a sample is to begin with a discrete representation of uniform distribution

and then apply the deformation of Eq 27 to each of the crystal poles and compute the resulting discrete

sample of Euler angles. The algorithm begins with a set of N distinct orientations and corresponding volume

fractions,

O0 = {(Qα
0 ,Vα)∀α ∈ [1..N ]} (41)

that represent a uniform distribution of crystal orientations. In particular, we use the HEALPix algorithm

developed by Gorski et al. (2005) to generate O0. The HEALPix algorithm constructs a uniform equal

volume grid on the space of 3D orientations (SO(3)). For each of the crystals, coefficients of the [001] unit

pole vector with respect to the specimen coordinate basis, ei prior to deformation are computed as

{nα
0 }i = [Qα

0 ]i3 (42)

The deformed pole vector for the αth volume fraction is then computed according to

ñα = F−Tnα
0 (43)

and then normalized to a unit vector, i.e.,

nα =
ñα

‖ñα‖
(44)

The axis of a rotation that brings nα
0 into alignment with nα is identified from the cross product of the two

unit vectors, i.e.,

qα =
nα
0 × nα

‖nα
0 × nα‖

(45)

Likewise, the angle between nα
0 and nα is computed as

θα = arcsin [nα
0 · nα] (46)

The orthonormal rotation that will bring the crystal basis eci into alignment with the specimen basis ei

given the transformation of the lattice reflected by deformation of the [001] poles is computed using the

exponential map and angle-axis rotation convention (Bauchau and Trainelli, 2003), i.e.,

Qα = exp
[
θ̂αqα

]
·Qα

0 (47)

where the operator v̂ returns the skew tensor for which v is the axial vector. Computations of Eqs. 41-47 are

repeated for each of the volume fraction of crystals in order to generate the textured orientation distribution

O (F) = {(Qα,Vα)∀α ∈ [1..N ]}.

An alternate approach to simulating the evolution of texture for a discrete sampling of polycrystal

orientations is to randomly sample Eq. 39 to build statistical realizations of discrete orientations drawn

from the underlying analytical distribution function. Toth and van Houtte (1992) developed a method to

construct a discrete set of grain orientations from a discrete representation of the cumulative distribution

computed by integrating the underlying ODF over a uniform grid in orientation space. Each region within
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the SO(3) grid of orientation space is assigned a label, k, and the probability density integrated over the

zone as

fk =

∫

k

P (g)dg (48)

where g represents an orientation and P (g) is the probability density of that orientation. The discrete

cumulative distribution is constructed by

F (j) =

j∑

k=1

fk (49)

such that F (Ng) = 1 where Ng is the total number of discrete orientations in the grid. A set of N integers,

s, are randomly selected from a uniform distribution between 0 and 1. The discrete representation of the

ODF is constructed by selecting the kth orientations of the grid according to k = H(s), where x = H(y) is

the inverse of the discrete cumulative distribution, y = F (x).

The pole figures in Fig. 7 were generated from discrete ODFs constructed using the Toth and van Houtte

(1992) algorithm with a 5◦×5◦×5◦ grid of SO(3) and N = 4800 discrete samples. The underlying analytical

ODF is based on Eq. 39 for d
d0

= 0.72. The peak intensity is closer to the analytical value of 1.93 than

the pole figure of Fig. 6. This is because the uniform grid generated by the HEALPix algorithm does

not provide an initial orientation at precisely θ = 0, whereas the Toth and van Houtte (1992) algorithm

can favorably select orientations near θ = 0 depending upon the grid used. However, the simulation-based

approach results in more a uniform distribution that is generally in agreement with the underlying March

solution than the Toth and van Houtte (1992) approach for these textures. A third alternative would be

to use the grid generated by the HEALPix algorithm and adjust the volume fractions in accordance with

the relative likelihood of each orientation as expressed by Eq. 39. We have not pursued that approach and

consider the deformation simulation-based strategy sufficient.

4 Simulation Results

Using the elastic coefficients reported by Bedrov et al. (2009) and listed in Table 3, the thermal strains fit to

lattice parameter measurements of Kolb and Rizzo (1979), and discrete orientation distributions based on

the March model of texture evolution within the self-consistent homogenization scheme presented in Section

3, simulations were conducted to isolate the effects of porosity, crystal aspect ratio, and texture on thermal

strain.

Comparison of homogenization approaches

A small subset of our simulations were conducted assuming zero porosity and a crystal aspect ratio of

unity (spherical crystals) in order to compare the thermal expansion coefficients estimated using each of the

homogenization schemes discussed in Section 3. Orientation distributions reflecting the isostatic case and

unaxially die-pressed case were employed using the approach outlined above and assuming d
d0

= 1.0 and
d
d0

= 0.5, respectively.

Linearized tangent coefficients of thermal expansion at T = 23◦C in the axial and radial specimen direc-

tions are reported in Table 4 for three different population sizes, N , of the discrete orientation distribution.
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Results for the isostatic case are not perfectly isotropic because of the discrete nature of the orientation dis-

tributions and low crystal symmetry. In particular, in the coordinate system employed here, the HEALPix

algorithm does not align a [001] pole precisely along the specimen ‘Z’ axis and accordingly the axial CTEs

are lower than radial. Clearly, as the number of discrete crystal orientations is increased the axial and radial

CTEs are converging toward each other for all methods. In this case, the Reuss and Voigt bounds differ by

a factor of two in thermal expansion, while the Hill average is within 6% of the self-consistent coefficient of

thermal expansion.

For the textured case, the axial CTE estimated by the Reuss and Voigt schemes do not bound that

computed using the self-consistent approach. The Voigt and Reuss averages provide upper and lower bounds

on the strain energy of the composite, not on a term by term basis of any specific property. In this case, the

self-consistent axial CTE is near the value estimated by the Reuss approximation, while the radial CTE is

within 10% of that estimated using a Hill average.

With the exception of the self-consistent scheme, the homogenizations schemes compared in Table 4

do not account for non-spherical crystal geometry and, accordingly, these results are not reflective of any

actual TATB-based composite. Instead, the results presented in Table 4 are included to offer a comparison

between these approaches and demonstrate relative level of convergence in thermal expansion for the orders

of discretization used here.

Comparison with experimental results

Rizzo et al. (1981) measured thermal expansion during temperature cycling of various TATB-based compos-

ites including explosives such as LX-17 and PBX-9502, and pure TATB “compacts” having no additional

binder. They report values over the temperature ranges T = −50◦C to −10−◦C and T = 40◦C to 70−◦C

estimated as the slope of thermal strain with respect to temperature at the midpoint of these respective tem-

perature ranges. The values measured by Rizzo et al. (1981) and the corresponding values computed using

the self-consistent theory are compared in Table 5. Generally, the self-consistent theory appears to over-

predict thermal expansion for the “isostatically pressed” case when compared to values measured by Rizzo

et al. (1981). The extent of preferred orientation for the uniaxially die-pressed case is not reported; assuming

a uniaxial consolidation and associated orientation distribution consistent with Eq. 39 and d
d0

= 0.5 the

predicted axial coefficient of thermal expansion over the temperature range T = 40◦C to 70−◦C is slightly

lower than the measured value. On the other hand the self-consistent estimate is larger than measured at

the lower temperature range. It is difficult to pin down discrepancies in these results because the values

of porosity, crystal aspect ratio, and extent of preferred orientation are not reported in Rizzo et al. (1981).

Additionally, from details provided in Rizzo et al. (1981), the details of their computation of coefficient of

thermal expansion from experimental data are not clear. It is plausible the calculation of such a derivative

is sensitive to experimental “noise”. We use these results as an indication of general agreement in overall

trends, but note the quantitative discrepancy.

Cunningham et al. (2003) measured thermal expansion in axial and radial directions in repeated ex-

periments using die-pressed pure TATB cylindrical specimens whose average density indicates a porosity

of approximately 4%. Simulations of this experiment were performed assuming an orientation distribution

consistent with Eq. 39, d
d0

= 0.5, and an average crystal aspect ratio of 1/200 (cf. Schwarz et al., 2013). The

values of thermal strain measured in the axial and radial directions (Cunningham et al., 2003) are plotted as
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Table 4: Predicted coefficients of thermal expansion for isotropic and textured polycrystal TATB predicted

at T = 23◦C using various homogenization schemes. These comparisons reflect simulations of zero porosity

and a crystal aspect ratio of unity (equiaxed crystals).

Isostatic d
d0

= 1 Uniaxial d
d0

= 0.5

Method N axial radial axial radial

Reuss

4800 102.29 103.04 152.08 78.14

9600 102.47 102.95 152.15 78.10

16000 102.57 102.90 152.19 78.08

Voigt

4800 51.80 52.45 105.48 31.93

9600 51.96 52.37 105.52 31.92

16000 52.05 52.33 105.54 31.92

Hill

4800 77.05 77.75 128.78 55.03

9600 77.21 77.66 128.83 55.01

16000 77.31 77.61 128.87 55.00

Self-Consistent

4800 81.42 82.41 153.93 50.11

9600 81.66 82.29 153.98 50.09

16000 81.78 82.22 154.02 50.08

21



Table 5: Comparison of axial linearized coefficients of thermal expansion computed in this work with those

measured by Rizzo et al. (1981) under similar conditions.

Method Pressing T = −30◦C T = 55◦C

Experiment (Rizzo et al., 1981) isostatic 40 76

Self-Consistent d
d0

= 1.0 56 82

Experiment (Rizzo et al., 1981) uniaxial die 69 129

Self-Consistent d
d0

= 0.5 81 122

circles and diamonds, respectively, against temperature in Figure 8a. The solid and dashed lines represent

results from self-consistent simulations for axial and radial specimen directions, respectively, correspond-

ing to the discrete orientation distribution illustrated by the [001] pole figure in Fig. 8b. The agreement

between measured and simulated thermal strains are good across this range in temperature, especially con-

sidering that the underlying single crystal lattice thermal expansion data was experimentally measured (and

subsequently fit) only over the range T = −57 to 100◦C.

Similar data is presented by Souers et al. (2011) for “ultrafine” TATB composites that utilize TATB

crystals that have been pulverized to a smaller characteristic diameter prior to consolidation. We performed

a corresponding self-consistent simulation assuming 7% porosity and an aspect ratio of 1/27 (these parame-

ters characteristic of the density and particle size distribution reported by Souers et al. (2011)) and the same

orientation distribution illustrated in Fig. 8b. A comparison of these simulation results with the measure-

ments reported in Souers et al. (2011) are shown in Fig. 9. In this case, the thermal strains at temperatures

above ambient T = 21◦C are in good agreement. The simulated thermal strains at colder temperatures also

match experimental values reasonably well.

Influence of porosity and crystal aspect ratio

Linearized coefficients of thermal expansion at T = 55◦C from simulations of various values of porosity are

shown in Fig. 10. The black diamonds are from simulations using an aspect ratio that is representative of

crystal morphology in “ultrafine” TATB specimens, while the green circles reflect results using an aspect ratio

representing normal TATB crystal morphology. Porosity has a significant and similar effect of decreasing

thermal expansion across the range 0 to 12% for both crystal aspect ratios.

The influence of crystal aspect ratio is demonstrated in Fig. 11 where linearized coefficients of thermal

expansion at T = 55◦C are plotted versus the inverse of aspect ratio (crystal diameter divided by thickness).

Fig. 11a includes results over a range of aspect ratios representative of “ultrafine” TATB speciments, while

the aspect ratios in Fig. 11b are representative of normal TATB. Clearly, the influence of aspect ratio is more

significant for crystals that are more nearly equiaxed. As the nominal crystal diameter grows (assuming a

relatively fixed thickness), thermal expansion decreases. The drop-off in CTE appears to saturate or diminish

with increasing diameter-to-thickness ratio.
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Figure 8: Comparison of simulation results and experimental data for the anisotropic thermal expansion of

unaxially (die) pressed specimens. The simulation results presented in (a) employed a distribution of crystal

orientations illustrated by the [001] pole figure shown in (b). The orientation distribution corresponds to a

uniaxial consolidation of d
d0

= 0.5. The simulation employed a distribution of crystals whose aspect ratio

was 1/200 and a porosity of 0.04 (equivalent to 96% TMD.)

−50 0 50 100
Temperature : ∘C

−0.01

0.00

0.01

St
ra
in

:m
/m

exp. axial
sim. axial
exp. radial
sim. radial

Figure 9: Comparison of simulation results and experimental data for the anisotropic thermal expansion of

unaxially (die) pressed specimens. The simulation employed the same distribution of crystal orientations

illustrated by the [001] pole figure shown in Fig. 8b corresponding to a uniaxial consolidation of d
d0

= 0.5.

The simulation employed a distribution of crystals whose aspect ratio was 1/27 and a porosity of 0.07

(equivalent to 93% TMD.)
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Figure 10: Plot illustrating the influence of porosity on the computed tangent coefficient of thermal expansion

of isotropic (non-textured) polycrystal TATB at T = 55◦C.
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Figure 11: Plots illustrating the influence of crystal aspect ratio (diameter / thickness) on the computed

tangent coefficient of thermal expansion of isotropic (non-textured) polycrystal TATB at T = 55◦C. The

range of aspect ratios included in (a) are representative of “ultra-fine” particle size distribution and that of

(b) represents normal TATB aspect ratios.
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Figure 12: Effects of texture induced from uniaxial die-pressing of cylindrical specimens. (a) Plot of axial

tangent CTE versus the ratio of compressed to initial thickness (principal stretch), d
d0

. (b) Plot of anisotropy

in tangent CTEs, α33

α11

, versus consolidation d
d0

Influence of texture

It is clear from experimental findings (Cady, 1975; Rizzo et al., 1981; Cunningham et al., 2003; Souers et al.,

2011) that the preferred orientation of TATB crystal [001] poles attributed to uniaxial die pressing leads to

anisotropy (an axisymmetric transverse isotropy) in thermal expansion. Simulation results presented in Figs.

8 and 9 represent the first model connecting the evolution of orientation distribution during uniaxial pressing

to predicted anisotropic thermal strains. Similar simulations were conducted over a range of consolidation

parameter values, i.e. d
d0

, to study the influence of consolidation on thermal expansion. Fig. 12a illustrates

the relationship between linearized coefficients of thermal expansion at three temperatures over a range of

the texture strength. Clearly, texture has a more pronounced influence on thermal expansion than porosity

or aspect ratio, especially considering that most experimental data has been collected by measuring only

the axial component of deformation. Fig. 12b plots the observed anisotropy versus texture strength. Com-

bined, these results highlight that, for components manufactured via a consolidation process characterized

by spatially variable deformation (e.g. cf. Schwarz et al., 2013) field, the magnitudes of thermal expansion

and associated anisotropy will exhibit spatial variation throughout the component.

5 Discussion

The simulation results presented above quantify the influence of microstructure on thermal expansion of

polycrystal TATB. The trends identified in this modeling are expected to be applicable to TATB-based ex-

plosives such as PBX-9502 and LX-17. For example, the influence of aspect ratio on thermal expansion is not

that important to the qualitative understanding of the response of engineered components, in part because

it is a smaller effect numerically, and, perhaps more importantly, because the particle size distributions are

relatively uniform spatially and do not change temporally. Quantitatively, aspect ratio must be included in
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continuum homogenization models, but variability of aspect ratios about a nominal value is not likely to

make a large contribution to overall material variability.

On the other hand, increasing porosity is clearly associated with a marked decrease in rates of thermal

expansion. While a focused experimental investigation to confirm this relationship has not been conducted,

existing experimental data points are consistent with the observation. During repeated temperature cycles

of TATB-based composites, the volume of a specimen will exhibit an accumulating permanent volumetric

growth. This behavior, referred to as “thermal ratchet growth”, is not specifically included in the present

model, but we can make a phenomenological connection. Asserting that mass is conserved within the

material, volumetric parts of thermal ratchet growth are accommodated by a decrease in material density,

or equivalently, an increase in porosity. Thus, according to our model, reduced rates of thermal expansion

for ratcheted specimens are expected and are indeed observed in experiment (e.g. Rizzo et al., 1981).

Likewise, the development of preferred orientation of TATB [001] poles has a distinct influence on the

magnitude and orientation of thermal expansion for a polycrystal component. The model presented here has

been applied to exploring the relationship between axial and radial thermal expansion behavior in uniaxial

or die-pressed specimens. The same model can be applied to understanding the development of texture

and associated anisotropic thermal expansion for engineered components of arbitrary geometry if sufficient

information about the pressing operation is known to estimate the spatial deformation field, i.e. F(x). A

critically important point established in this work is that the anisotropy depends not only on the actual

‘preferred orientation’, but also on the magnitude of deformation or, equivalently, extent of preferential

alignment along the orientation as well. It is anticipated (cf. results of Schwarz et al., 2013) that the

pressing of engineered components results in significant spatial variation of deformation in both magnitude

and orientation. Consequently, there likely exists a spatial variation in the anisotropy and orientation

of thermal expansion behavior within a manufactured part. Even under macroscopically unconstrained

thermal expansion, non-zero macroscale stresses can arise when the thermal expansion tensor is nonuniform.

Furthermore, for constrained thermal expansion, the distribution of stresses are likely to be nonuniform as

well. Such behavior may prove to be important, for example, in predicting the long term creep and relaxation

of explosive components under storage conditions.

It is feasible to apply the modeling approach presented here to predicting the spatially nonuniform thermal

expansion of engineered components within larger assembled systems. To do so, an estimate of the spatial

deformation field from the pressing or consolidation process is required. Then, using the spatial distribution

F(x) and the algorithm of Eqs. 41-47, one can obtain a spatially varying orientation distribution O (F(x)).

Finally, solving Eqs. 23 and 24 will lead to a self-consistent estimate of spatially varying, nonlinear thermal

expansion.

6 Conclusions

In this work we have, for the first time, developed a mesoscale continuum model relating the thermal

expansion of polycrystal TATB specimens to their microstructural characteristics. Specifically, our model

includes a representation of grain aspect ratio, porosity, and crystallographic texture attributed to the

consolidation process. An algorithm was built upon the March (1932) theory for particle alignment during

consolidation in order to develop discrete orientation distributions consistent with arbitrary deformation
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histories. Analytical and numerical solutions using this model were shown to produce textures consistent

with previous measurements and characterization for isostatic and uniaxial die-pressed specimens. Predicted

thermal strain versus temperature for textured specimens were shown to be in agreement with corresponding

experimental measurements. Using the model, several simulations were run to investigate the influence of

microstructure on macroscopic thermal expansion behavior. From these simulations we advance the following

conclusions.

• Porosity and grain aspect ratio have an influence on the thermal expansion of polycrystal TATB over

reasonable ranges.

• Preferred orientation of [001] poles in single crystal TATB within a polycrystal give rise to pronounced

anisotropy of the macroscopic thermal expansion.

• The extent of this preferred orientation depends on the magnitude of deformation, and consequently,

is expected to vary spatially throughout manufactured components much like porosity.

• The modeling approach developed here has utility toward bringing spatially variable microstructural

features into macroscale system engineering models.

Presently, the developed self-consistent model lacks any accounting of polymeric binder. Given the

similarity of thermal expansion coefficients for typical polymer binder and bulk polycrystal TATB, supporting

experimental evidence, and the small volume fraction of binder in explosives, it is expected that the binder

will have only a small influence on the overall thermal expansion. Future extensions of this work will address

the effects of binder. In particular, binder cannot be treated in the same manner as the volume fractions

of crystals and pores. The low volume fraction of binder is morphologically closer to a thin shell of binder

surrounding the ellipsoidal crystal inclusions. Such morphology is beyond the direct application of the self-

consistent theory employed here, although there have been various extensions to the theory to treat precisely

this case (Smith, 1974; Christensen and Lo, 1979; Bornert, 1996).

Additionally, the scope of this work has been restricted to understanding the relationship between mi-

crostructure and thermal expansion behavior. This relationship is an important first step towards under-

standing and modeling the ratcheting observed in TATB-based composites during repeated temperature

cycles. Ongoing work to extend the self-consistent modeling scheme to account for relaxation of internal

strain energy by asymmetric intergranular slip will enable future mesoscale modeling of thermal ratchet

growth.
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