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A Patch to MCNP5 for Multiplication Inference:
Description and User Guide

Clell J. (CJ) Solomon

11 Aug. 2011

Abstract

A patch to MCNP5 has been written to allow generation of multiple neutrons from a spontaneous-
fission event and generate list-mode output. This report documents the implementation and
usage of this patch.

1 Introduction

A patch to MCNP52 (RSICC version 1.60) has been written to facilitate multiplication inference
simulations. The patch is commonly referred to as the “multiplication patch.” The patch is meant
to assist in analog simulation of multiplication experiments, and the user must take precaution to
ensure that default variance reduction is turned off. The patch implements two features:

1. a source that correlates spontaneous-fission neutrons in time

2. a tally modifier that writes a “list-mode” formatted file of capture events in specified cells ∗

Each feature is implemented independently in the source.F90 (MCNP’s user defined source) and
tallyx.F90 (MCNP’s user defined tally modification), respectively.

In the implementation, a requirement that no other MCNP routines could be modified was en-
forced. Thus, to make the patch work consistently with both OpenMP threading and OpenMPI
parallelism, the tallyx.F90 routine is required to open a separate file for each MPI task and write

∗The list mode formatted file is a text file consisting of two columns, the first for the cell in which a capture event
occurs and the second for the time at which the capture event occurs.
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to the file in “omp critical” sections. The source was tested extensively to ensure that identical
list-mode output is produced for serial runs, threading-only runs, mpi-only runs, and mpi-threaded
runs.

2 Modified Source Routines

2.1 Source Implementation Description

The correlated fission source is implemented in the source.F90 file, a listing of which is available
in Appendix A. The source.F90 file is a source file which allows for a user-defined source to be
compiled into MCNP. When MCNP executes, if no SDEF or KSRC cards are found, the user-defined
source routine is executed to produce the source particle (lack of a user-defined source routine for
this situation results in an “expire”).

Inputs to the user-defined source for the multiplication patch are specified by use of MCNP’s RDUM
card. The RDUM card allows a list of arbitrary floating-point (real) values to be read in from the
input file and stored in memory globally available throughout the problem. The source routine,
reads entries from the RDUM card and interprets them, following the prescription in the following
subsection, to produce the correlated source. Currently, the position sampling is restricted to one
of three possibilities: spherical, cylindrical, and Cartesian.

The source routine effectively redefines the value of NPS to be the number of starting reactions.
For example, given a Pu-240 source emitting 2.15 neutrons per spontaneous fission, an NPS value
of 10 would emit 21.5 neutrons on average. The user of the multiplication patch must think not in
terms of the number of emitted particles, but rather in terms of the number of starting spontaneous-
fission reactions. Similarly, all tallies, because they are normalized to NPS, should be thought of as
normalized to the number of starting reactions.

2.2 Basic Usage

The source.F90 routine obtains information from the RDUM card. The general form of the entries
on the RDUM card is:

RDUM CELL ZAID NPS E-DIST T-DIST POS-SAMPLING-METHOD POSITION-SAMPLING-INFO

All entries are required. As an example, consider the RDUM input line

c CELL ZAID NPS E-DIST T-DIST POS-SAMPLING-METHOD POSITION-SAMPLING-INFO

RDUM 1000 94240 1e6 3 9 1 0.0 0.0 0.0 4
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which indicates that 106 fission events (not particles) will be started in cell 1000 by spontaneous
fission of Pu-240. The energies of the fission neutrons will be sampled from distribution 3, and
the starting times of the particles will be sampled from distribution 9. Here, a position sampling
method of 1 indicates spherical sampling concentric about (x, y, z) = (0.0, 0.0, 0.0) with a radius
sampled from distribution 4. The possible values of the position sampling method and required
position sampling information are summarized in Table 1.

Table 1: Summary of position sampling methods and required inputs

Sampling Method Description Sampling Information

1 Spherical POS-X POS-Y POS-Z R-DIST-#

2 Cylindrical POS-X POS-Y POS-Z AXS-U AXS-V AXS-W R-DIST-# EXT-DIST-#

3 Cartesian XXX-DIST-# YYY-DIST-# ZZZ-DIST-#

Table 1 illustrates the required input for spherical, cylindrical, and Cartesian source sampling.
For spherical sampling, four parameters are required: the x, y, and z coordinates of the sphere
center and a distribution number corresponding to the radial sampling distribution. For cylindrical
sampling, eight parameters are required: the x, y, and z locations of the cylinder base, the u, v, and
w components of the vector pointing along the cylinder axis, the distribution number corresponding
to the radial sampling distribution, and the distribution number corresponding to the extent (axial)
sampling distribution. For Cartesian sampling, only three parameters are required: the distribution
numbers corresponding to the sampling distribution of x, y, and z.

2.3 Multiple Starting Reaction Types

Multiple entries are allowed on the RDUM card. Consider for example

c CELL ZAID NPS E-DIST T-DIST POS-SAMPLING-METHOD POSITION-SAMPLING-INFO

RDUM 1000 94240 1e6 3 9 1 0.0 0.0 0.0 4

2000 99999 1e5 2 9 1 0.0 0.0 0.0 5

Here, two different reactions are possible: 1. spontaneous fission of Pu-240 (indicated by the 94240
ZAID) and 2. a single neutron emission (indicated by the 99999 faux-ZAID and explained below).
The ZAID/reaction-type is the first thing sampled by the source.F90 routine. The reaction-type
is sampled in proportion to its NPS value given on the RDUM card. For the example give, the
spontaneous-fission reaction of Pu-240 will be sampled with a probability of 10-in-11 and the
single neutron emission with a probability of 1-in-11.

After the reaction is sampled, a position will attempt to be sampled and tested to determine if it
is in the specified cell for that reaction type. If not, the sampled position is rejected and another
position is sampled. The process will repeat until a position within the correct cell is sampled or
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the maximum rejection limit is reached. The default maximum rejection limit is 104, but can be
modified by the first entry of the IDUM card to whatever the user desires.

Once a starting position is found, the number of particles to start is obtained from the ZAID number
provided. The ZAID must be one of the 39 spontaneously fissioning isotopes listed in Table 2 or
99999, which indicates emission of a single particle by, for example, an (α, n) reaction. The
number of spontaneous fission neutrons is sampled from the ν̄ value and the ν-width. The ν-width
is obtained either from the Lestone or Terrel data depending on the 5th entry of the PHYS:N card,
i.e., 0 or 1 = Lestone and 2 = Terrel.

The NPS card must contain the sum of the individual reaction NPS values. In the example
above, the NPS card should be the following

NPS 1.1e6

Failing to have the correct value on the NPS card is a fatal error in sequential or OpenMP builds.
However, because of the MPI design of MCNP, the total number of histories is not available to
the slaves and therefore this requirement cannot be verified. Thus, for an MPI build of MCNP,
a warning message is issued to the user to verify that the NPS card entry equals the sum of the
individual reaction NPSs.

2.4 Other Input Options

Two exceptions exist to the input options described above. First, if the ZAID is negative, then the
built-in ν values (given in Table 2) are ignored and the entry immediately following the ZAID is
used for the ν. Second, if the position sampling method is negative, the absolute value of the po-
sition sampling method is used for the sampling method, and the entry immediately following the
position sampling method is a transformation number corresponding to a TR card that transforms
the source location sampled by the position sampling information. For example, the input

c CELL ZAID NU NPS E-DIST T-DIST POS-SAMPLING-METHOD TR POS-SAMPLING-INFO

RDUM 3001 -92238 2.38 1e4 1 2 -3 7 3 4 5

indicates spontaneous fission of U-238 with a user specified ν of 2.36. 104 starting fission reactions
will executed. The sampling method is Cartesian (indicated by 3 = | − 3|) where the x, y, and z
locations of the initiating fission reaction are sampled from distributions 3, 4, and 5, respectively,
and then transformed by transformation 7. After the transformation, the particle is expected to be
contained in cell 3001, and, if it is not, the sampling is rejected and resampled. The user will get
a warning that transformation 7 is not used for anything if transformation 7 is only used to
define the source via the RDUM card. This warning can be safely ignored.
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Table 2: Available spontaneously fissioning ZAIDS and corresponding ν̄’s

ZAID ν̄ ZAID ν̄ ZAID ν̄ ZAID ν̄

90230 2.14 92238 2.01 94244 2.30 99253 3.93

91231 1.93 94238 2.22 96244 2.69 98254 3.89

90232 2.14 94239 2.16 96246 3.18 99254 3.95

92232 1.71 94240 2.16 96248 3.11 100254 3.96

92233 1.76 96240 2.39 98248 3.34 99255 3.97

92234 1.81 94241 2.25 97249 3.60 100255 3.73

92235 1.86 95241 2.27 98249 3.41 100256 4.01

92236 1.91 94242 2.15 96250 3.31 100257 3.85

94236 2.13 96242 2.52 98250 3.53 100258 4.03

93237 2.05 95243 2.42 98252 3.76

2.5 Starting Reactions Versus Starting Particles

WARNING! WARNING! WARNING!
For this version of the multiplication patch, the starting events ARE NOT individual neutrons
but instead fission events. Therefore, the value entered on the NPS card should be the number
of source fission reactions not source neutrons as has been the case historically. For example, if
one wishes to calculate the correct NPS number for 1 g of Pu-240 and a count time of 300 s,
historically it would have been

1 g × 1040 n/g/s × 300 s = 3.12 × 105 n.

However, with this new implementation the correct value is

1 g × 1040 n/g/s
2.16 n/fission

× 300 s = 1.44444 × 105 fissions,

where 2.16 is the ν̄ value for Pu-240 from Table 2.

It is important to note that all tallies will be normalized to this NPS value, i.e., the number of
fissions rather than the number of source particles. Multiplying the tallies by the appropriate ν̄
should correctly reproduce the tallies per source particle.

WARNING! WARNING! WARNING!
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3 List-Mode Tally Modifications

3.1 Tally Implementation Description

The list-mode tally output is implemented in the tallyx.F90 file, a listing of which is available
in Appendix B. The tallyx.F90 file in MCNP’s source provides a user defined tally binning.
The tallyx routine is called after determining all the other binning of a tally contribution and just
before the score of the resulting bin is incremented. The tallyx routine can use (if provided) user
bins given on the FU card.

For the multiplication patch, the tallyx routine controls writing of the list-mode output and ef-
fectively implements a capture tally (the number of captures in a tally cell per source particle)
modification of a type-4 tally. The necessary FU user inputs for the type-4 tally are outlined in
the following subsection. The list-mode output is a two-column text file, where the first column is
the cell in which a capture event occurs, and the second column is the time at which the capture
event occurs. This output format is useful for later post-processing by external tools (e.g. the “con-
vert.pl” utility1) to infer multiplications. When MCNP5 calls tallyx.F90 it passes in the current
tally value. The tallyx.F90 routine completely ignores the incoming value and sets the tally
score value to zero. It then determines if the tally is contributed at a collision, with what nuclide,
and if it is captured. If a capture occurs, then the tally score is set to unity. This process essentially
replicates an absorption tally.

To provide the list-mode capability while adhering to the mandate not to alter any MCNP base
files, two instances of programming acrobatics were required. First, because track-length tallies
are performed before a neutron actually knows what event it is undergoing, the collision mechanics
have to be performed twice. In the first pass within the tallyx routine, the random number state
is cached, the collision mechanics are followed to determine if a capture results, and the random
number state is restored. Conveniently, the collision mechanics directly follow the track-length
tally contributions, so this random-number acrobatics does not alter the flow of the code. Second,
to allow MPI execution, each MPI task has to write its own list-mode file. This, in the first pass
through tallyx an MPI task will determine whether or not it has opened its list-mode file, and
if not do so. Then on subsequent calls to tallyx the list-mode writes will be appended to that
already open file for that MPI task.

3.2 Basic Usage

The tallyx.F90 routine handles the list-mode output and tally by modification of a type 4 tally.
The user specifies the collision nuclide of interest by supplying its ZAID on the FU tally modifier
card corresponding to the type 4 tally. For example, a capture estimator for He-3 would be specified
for the F14 tally as
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F14:n 1001

FU14 2003

Additionally, the capture resulting from a specific reaction type can be tallied. The user must
append the ZAID on the FU card with a ‘.’ and the MT number of the desired capture reaction,
generally 102–117. Because this tally is handled with the FU card, an FM card must also be
supplied to prevent MCNP5’s purging the necessary cross sections. The effects of the FM card are
ignored. For example, if one wishes to specify the (n, p) reaction (MT=103) in He-3 the correct
input would be

F14:n 1001

FU14 2003.103 $ assuming material 1 has He-3 in it the FM card prevents

FM14 1 1 103 $ purging the (n,p) reaction data from the cross sections

In addition to providing the list-mode output, the values produced by the FU modification should
replicate the results of a standard type 4 tally modified by an FM card. For example, the tally
results of the total absorption density tally normally specified by

F4:n 1001

FM4 -1 1 -2

should be the same as the tally results produced by

F14:n 1001

FU4 2003

provided material 1 is completely composed of He-3.

3.3 Tally Normalization

By default, tallies are normalized to the value given on the NPS card. Therefore, all tallies are nor-
malized per starting reaction NOT per starting particle. If the user desires the normalization
per starting particle, then the tally results should be multiplied by the expected number of starting
reactions (the value on the NPS card) and divided by the expected number of particles emitted from
those reactions.

For isotope i, the expected number of emitted neutrons 〈S 〉i is

〈S 〉i = mieit, (1)
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where mi is the mass of the ith isotope, ei is the number of neutrons emitted per unit mass and time,
and t is the time of emission. The number of expected spontaneous reactions 〈R〉i producing the
〈S 〉i neutrons is given by

〈R〉i =
mieit
νi

(2)

where νi is the expected number of neutrons emitted per spontaneous reaction (this value could be
unity).

The adjusted normalization value to normalize per particle is then given by

〈R〉
〈S 〉

=

∑
i

〈R〉i∑
i

〈S 〉i

=

∑
i

mieit
νi∑

i

mieit

=

t
∑

i

miei

νi

t
∑

i

miei

=

∑
i

miei

νi∑
i

miei

. (3)

The value above is the expected value of 1/ν weighted against the neutron emission rate from each
reaction type.

3.4 List-Mode File(s)

More than one list-mode tally can be specified in a problem by having multiple instances of FU
cards modifying different type 4 tallies. For a sequential or OpenMP build of MCNP, a list-mode
output file will be created with the name ‘lmout ####’, where #### is the tally number preceded
by the appropriate number of zeros. For example, list-mode tally 14 would produce the list-mode
output file lmout 0014.

A MPI parallel build of MCNP creates a list-mode output file for each MPI slave task for each
list-mode tally. For example, if a four task MPI job is started containing list-mode tally 34, then
the files lmout 0034 0001, lmout 0034 0002, and lmout 0034 0003 will be created. The first set
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of integers corresponds to the tally number, but the second set corresponds to the MPI slave task
writing to the file. Each slave task must write its own separate file to prevent simultaneous IO to
each of the files.

The user should concatenate all the files containing the same tally number into a single file. This
can be quickly accomplished on a Linux or Unix system with the following command:

cat lmout_0034_* > lmout_0034

The number of lines in the concatenated lmout file should be the same as the number of lines in
the lmout if the problem were run sequentially.

By default the lmout files are APPENDED, NOT OVERWRITTEN. The user should take
care to appropriately remove or rename list-mode files between runs in the same directory.

References
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A source.F90
!+ $Id : s o u r c e . F90 , v 1 . 3 2 0 1 3 /0 2 /2 1 2 3 : 4 1 : 0 7 csolomon Exp $
! C o p y r i g h t LANS / LANL /DOE − s e e f i l e COPYRIGHT INFO

s u b r o u t i n e s o u r c e
! dummy s u b r o u t i n e . a b o r t s j o b i f s o u r c e s u b r o u t i n e i s m i s s i n g .
! i f n s r =0 , s u b r o u t i n e s o u r c e must be f u r n i s h e d by t h e u s e r .
! a t e n t r a n c e , a random s e t o f uuu , vvv ,www has been d e f i n e d . t h e
! f o l l o w i n g v a r i a b l e s must be d e f i n e d w i t h i n t h e s u b r o u t i n e :
! xxx , yyy , z z z , i c l , j s u , erg , wgt , tme and p o s s i b l y i p t , uuu , vvv ,www.
! s u b r o u t i n e s r c d x may a l s o be needed .
use m c n p g l o b a l
use mcnp debug

# i f d e f MULT
use even t log mod , only : BANK N XN F
use e rp rn t mod , only : e r p r n t
i m p l i c i t none

i n t e g e r ( i4knd ) : : i b
r e a l ( dknd ) : : f i
l o g i c a l , s ave : : s s o u r c e s e t u p = . f a l s e .
l o g i c a l : : s d o e x p i r e = . f a l s e .

i n t e g e r , parameter : : s n u m s f z a i d s = 39

i n t e g e r , parameter , dimension ( s n u m s f z a i d s ) : : s s f z a i d s = &
& ( / 90230 , &
& 91231 , & ! r e f LA−8869−MS
& 90232 , &
& 92232 , &
& 92233 , &
& 92234 , &
& 92235 , &
& 92236 , &
& 94236 , &
& 93237 , &
& 92238 , &
& 94238 , &
& 94239 , &
& 94240 , &
& 96240 , &
& 94241 , &
& 95241 , &
& 94242 , &
& 96242 , &
& 95243 , &
& 94244 , &
& 96244 , &
& 96246 , &
& 96248 , &
& 98248 , &
& 97249 , &
& 98249 , &
& 96250 , &
& 98250 , &
& 98252 , &
& 99253 , &
& 98254 , &
& 99254 , &
& 100254 , &
& 99255 , &
& 100255 , &
& 100256 , &
& 100257 , &
& 100258 / )
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r e a l ( dknd ) , parameter , dimension ( s n u m s f z a i d s ) : : s s f n u b a r = &
& ( / 2 . 1 4 dknd , &
& 1 . 9 3 dknd , & ! r e f LA−8869−MS
& 2 . 1 4 dknd , &
& 1 . 7 1 dknd , &
& 1 . 7 6 dknd , &
& 1 . 8 1 dknd , &
& 1 . 8 6 dknd , &
& 1 . 9 1 dknd , &
& 2 . 1 3 dknd , &
& 2 . 0 5 dknd , &
& 2 . 0 1 dknd , &
& 2 . 2 2 dknd , &
& 2 . 1 6 dknd , &
& 2 . 1 6 dknd , &
& 2 . 3 9 dknd , &
& 2 . 2 5 dknd , &
& 2 . 2 7 dknd , &
& 2 . 1 5 dknd , &
& 2 . 5 2 dknd , &
& 2 . 4 2 dknd , &
& 2 . 3 0 dknd , &
& 2 . 6 9 dknd , &
& 3 . 1 8 dknd , &
& 3 . 1 1 dknd , &
& 3 . 3 4 dknd , &
& 3 . 6 0 dknd , &
& 3 . 4 1 dknd , &
& 3 . 3 1 dknd , &
& 3 . 5 3 dknd , &
& 3 . 7 6 dknd , &
& 3 . 9 3 dknd , &
& 3 . 8 9 dknd , &
& 3 . 9 5 dknd , &
& 3 . 9 6 dknd , &
& 3 . 9 7 dknd , &
& 3 . 7 3 dknd , &
& 4 . 0 1 dknd , &
& 3 . 8 5 dknd , &
& 4 . 0 3 dknd / )

i n t e g e r , parameter : : s p o s i n f o m a x l e n g t h = 8

i n t e g e r , parameter : : s num pos methods = 3
i n t e g e r , parameter , dimension ( s num pos methods ) : : s p o s i n f o l e n g t h s = ( / 4 , 8 , 3 / )

i n t e g e r ( i4knd ) , s ave : : s n r x n , s m a x r e j e c t
i n t e g e r ( i4knd ) , a l l o c a t a b l e , dimension ( : ) , s ave : : s c e l l , s z a i d , s pos me thod , s e d i s t ,

s t d i s t , s nps , s t r a n s
r e a l ( dknd ) , a l l o c a t a b l e , dimension ( : ) , s ave : : s p r o b , s u s e r n u b a r
r e a l ( dknd ) , a l l o c a t a b l e , dimension ( : , : ) , s ave : : s p o s i n f o

i n t e g e r ( i4knd ) : : s i b , s e n t r y , s i t m p , s i tmp2 , s method , s n p a r
r e a l ( dknd ) : : s f i , s dtmp , s t m p e r g , s tmp uuu , s tmp vvv , s tmp www
c h a r a c t e r ( l e n =120) : : s s t m p
r e a l ( dknd ) , dimension ( 3 ) : : s uvw

r e a l ( dknd ) : : s r n d

i n t e g e r , e x t e r n a l : : namchg

!$OMP CRITICAL ( SETUP SOURCE )
i f ( . n o t . s s o u r c e s e t u p ) then

c a l l parseRdum ( )

i f ( ( . n o t . s d o e x p i r e ) . and . idum ( 1 ) < 0 ) then
c a l l e x p i r x ( 0 , ’ s o u r c e ’ , ’maximum r e j e c t i o n number c a n n o t be l e s s t h a n z e r o ’ )
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e l s e i f ( idum ( 1 ) == 0 ) then
s m a x r e j e c t = 10000

e l s e
s m a x r e j e c t = idum ( 1 )

e n d i f

i f ( ( . n o t . s d o e x p i r e ) . and . k p t ( 2 ) /= 0 ) then
c a l l e x p i r x ( 0 , ’ s o u r c e ’ , ’ m u l t i p l i c a t i o n p a t c h r e q u i r e s ”mode n ” e x c l u s i v e l y ’ )

e n d i f

i f ( ( . n o t . s d o e x p i r e ) . and . mcal /= 0 ) then
c a l l e x p i r x ( 0 , ’ s o u r c e ’ , ’ m u l t i p l i c a t i o n p a t c h does n o t work wi th m u l t i g r o u p ’ )

e n d i f

i f ( ( . n o t . s d o e x p i r e ) . and . wc1 ( 1 ) /= 0 . ) then
c a l l e x p i r x ( 0 , ’ s o u r c e ’ , ’ m u l t i p l i c a t i o n p a t c h r e q u i r e s a n a l o g c a l c u l a t i o n ’ )

e n d i f

s s o u r c e s e t u p = . t r u e .
e n d i f
!$OMP END CRITICAL ( SETUP SOURCE )

xxx = 0 dknd
yyy = 0 dknd
zzz = 0 dknd
e r g = 14 dknd
j s u = 0 dknd
wgt = 1 dknd
tme = 0 dknd

i f ( s d o e x p i r e ) re turn

s r n d = r ang ( )
do s i t m p =1 , s n r x n

i f ( s r n d < s p r o b ( s i t m p ) ) e x i t
enddo

i c l = namchg ( 1 , s c e l l ( s i t m p ) )

c a l l samplePos ( )

i f ( s z a i d ( s i t m p ) == 99999 ) then
s n p a r = 1

e l s e
i f ( s z a i d ( s i t m p ) < 0 ) then

s n p a r = s a c e n u s ( s u s e r n u b a r ( s i t m p ) )
e l s e

do s i t m p 2 =1 , s n u m s f z a i d s
i f ( s z a i d ( s i t m p ) == s s f z a i d s ( s i t m p 2 ) ) e x i t

enddo
s n p a r = s a c e n u s ( s s f n u b a r ( s i t m p 2 ) )

e n d i f
e n d i f

i f ( s n p a r == 0 ) then
n t e r = 14

p a x t c ( 1 , 1 , 1 ) = p a x t c ( 1 , 1 , i p t )−one
p a x t c ( 2 , 1 , 1 ) = p a x t c ( 2 , 1 , i p t )−wgt
p a x t c ( 3 , 1 , 1 ) = p a x t c ( 3 , 1 , i p t )−wgt∗ e r g
p a x t c ( 4 , n t e r , 1 ) = p a x t c ( 4 , n t e r , i p t )−one
p a x t c ( 5 , n t e r , 1 ) = p a x t c ( 5 , n t e r , i p t )−wgt
p a x t c ( 6 , n t e r , 1 ) = p a x t c ( 6 , n t e r , i p t )−wgt∗ e r g
pwb ( kpwb+ i p t , 2 , i c l ) = pwb ( kpwb+ i p t , 2 , i c l )−wgt
pac ( kpac+ i p t , 1 , i c l ) = pac ( kpac+ i p t , 1 , i c l )−one
pac ( kpac+ i p t , 2 , i c l ) = pac ( kpac+ i p t , 2 , i c l )−one

s m u l t c ( 4 ) = s m u l t c ( 4 )−wgt
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r l t t c ( 3 , 2 ) = r l t t c ( 3 , 2 )−wgt
e l s e

c a l l smpsrc ( tme , s t d i s t ( s i t m p ) , s i b , s f i )

s tmp uuu = uuu
s tmp vvv = vvv
s tmp www = www

f i m l ( 1 ) = f im ( 1 , i c l )

npa = 1
do s i t m p 2 =1 , s n p a r −1

c a l l smpsrc ( erg , s e d i s t ( s i t m p ) , s i b , s f i )
v e l = s l i t e ∗ s q r t ( e r g ∗ ( e r g+two∗ g p t ( 1 ) ) ) / ( e r g+g p t ( 1 ) )
c a l l i s o s ( s uvw , l e v )
uuu = s uvw ( 1 )
vvv = s uvw ( 2 )
www = s uvw ( 3 )

c a l l b a n k i t ( BANK N XN F )

p a x t c ( 1 , 1 , 1 ) = p a x t c ( 1 , 1 , i p t )+one
p a x t c ( 2 , 1 , 1 ) = p a x t c ( 2 , 1 , i p t )+wgt
p a x t c ( 3 , 1 , 1 ) = p a x t c ( 3 , 1 , i p t )+wgt∗ e r g
pwb ( kpwb+ i p t , 2 , i c l ) = pwb ( kpwb+ i p t , 2 , i c l )+wgt
pac ( kpac+ i p t , 1 , i c l ) = pac ( kpac+ i p t , 1 , i c l )+one
pac ( kpac+ i p t , 2 , i c l ) = pac ( kpac+ i p t , 2 , i c l )+one
s m u l t c ( 4 ) = s m u l t c ( 4 ) +wgt
r l t t c ( 3 , 2 ) = r l t t c ( 3 , 2 ) +wgt

enddo
npa = 0

uuu = s tmp uuu
vvv = s tmp vvv
www = s tmp www
c a l l smpsrc ( erg , s e d i s t ( s i t m p ) , s i b , s f i )

e n d i f

re turn
c o n t a i n s

s u b r o u t i n e parseRdum ( )
i m p l i c i t none

i n t e g e r ( i4knd ) : : i
l o g i c a l : : s d o n e
r e a l ( dknd ) : : s t 1

! SETUP PASS 1
s d o n e = . f a l s e .
s d o e x p i r e = . f a l s e .
s i t m p = 1 ! rdum c o u n t e r
s e n t r y = 1
do whi l e ( . n o t . s d o n e )

s e l e c t case ( s e n t r y )
case ( 1 ) ! l o o k f o r a c e l l

i f ( rdum ( s i t m p ) /= 0 dknd ) then
s n r x n = s n r x n + 1

e l s e
w r i t e ( s s tmp , ’ ( a , i 4 ) ’ ) ’ e x p e c t e d c e l l e n t r y a t rdum e n t r y ’ , s i t m p

e n d i f
s e n t r y = s e n t r y + 1
s i t m p = s i t m p + 1

case ( 2 ) ! l o o k f o r a z a i d or 99999=( alpha , n )
i f ( rdum ( s i t m p ) == 0 dknd ) then

s n r x n = 0
w r i t e ( s s tmp , ’ ( a , i 4 ) ’ ) ’ e x p e c t e d z a i d e n t r y a t rdum e n t r y ’ , s i t m p
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e n d i f
s e n t r y = s e n t r y + 1
i f ( rdum ( s i t m p ) < 0 ) then ! u s e r s u p p l i e d nu−w i d t h

s i t m p = s i t m p + 2
e l s e

s i t m p = s i t m p + 1 ! known ZAID
e n d i f

case ( 3 ) ! l o o k f o r e x p e c t e d number o f e v e n t s
i f ( rdum ( s i t m p ) == 0 dknd ) then

s n r x n = 0
w r i t e ( s s tmp , ’ ( a , i 4 ) ’ ) ’ e x p e c t e d number o f e v e n t s a t rdum e n t r y ’ , s i t m p

e n d i f
s e n t r y = s e n t r y + 1
s i t m p = s i t m p + 1

case ( 4 ) ! l o o k f o r an e ne rg y d i s t r i b u t i o n
i f ( rdum ( s i t m p ) == 0 dknd ) then

s n r x n = 0
w r i t e ( s s tmp , ’ ( a , i 4 ) ’ ) ’ e x p e c t e d e ne rg y d i s t r i b u t i o n number a t rdum e n t r y ’ , s i t m p

e n d i f
s e n t r y = s e n t r y + 1
s i t m p = s i t m p + 1

case ( 5 ) ! l o o k f o r a t i m e d i s t r i b u t i o n
i f ( rdum ( s i t m p ) == 0 dknd ) then

s n r x n = 0
w r i t e ( s s tmp , ’ ( a , i 4 ) ’ ) ’ e x p e c t e d t ime d i s t r i b u t i o n number a t rdum e n t r y ’ , s i t m p

e n d i f
s e n t r y = s e n t r y + 1
s i t m p = s i t m p + 1

case ( 6 ) ! l o o k f o r a p o s i t i o n s a m p l i n g method
! 1 = s p h e r i c a l 2 = c y l i n d r i c a l
! 3 = box 4 = r e j e c t i o n

s method = i n t ( n i n t ( rdum ( s i t m p ) ) , i 4knd )
i f ( abs ( s method ) > s num pos methods . o r . s method == 0 ) then

s n r x n = 0
w r i t e ( s s tmp , ’ ( a , i 4 ) ’ ) ’ e x p e c t e d p o s i t i o n s a m p l in g method +/− (1 −3) a t rdum e n t r y ’ ,

s i t m p
e n d i f
s e n t r y = s e n t r y + 1
i f ( s method < 0 ) then

s i t m p = s i t m p + 2 ! t r a n s f o r m a t i o n a p p l i e d
e l s e

s i t m p = s i t m p + 1 ! no t r a n s f o r m a t i o n
e n d i f

case ( 7 ) ! l o o k f o r p o s i t i o n s a m p l i n g i n f o
s e n t r y = 1
s i t m p = s i t m p + s p o s i n f o l e n g t h s ( abs ( s method ) )

end s e l e c t

i f ( s n r x n == 0 ) then
s d o e x p i r e = . t r u e .
s d o n e = . t r u e .

e l s e i f ( rdum ( s i t m p ) == 0 dknd . and . s e n t r y == 1 ) then
s d o n e = . t r u e .

e n d i f
enddo

i f ( s d o e x p i r e ) then
c a l l e x p i r x ( 0 , ’ s o u r c e ’ , t r i m ( s s t m p ) )
re turn

e n d i f

a l l o c a t e ( s c e l l ( s n r x n ) , &
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& s z a i d ( s n r x n ) ,&
& s p o s m e t h o d ( s n r x n ) ,&
& s e d i s t ( s n r x n ) ,&
& s t d i s t ( s n r x n ) ,&
& s n p s ( s n r x n ) ,&
& s p r o b ( s n r x n ) ,&
& s t r a n s ( s n r x n ) ,&
& s u s e r n u b a r ( s n r x n ) ,&
& s p o s i n f o ( s n r x n , s p o s i n f o m a x l e n g t h ) )

s c e l l = 0
s z a i d = 0
s p o s m e t h o d = 0
s e d i s t = 0
s t d i s t = 0
s t r a n s = 0
s n p s = 0
s p r o b = 0 dknd
s u s e r n u b a r = 0 dknd
s p o s i n f o = 0 dknd

! READ PASS 2
s n r x n = 0
s d o n e = . f a l s e .
s d o e x p i r e = . f a l s e .
s i t m p = 1 ! rdum c o u n t e r
s e n t r y = 1
do whi l e ( . n o t . s d o n e )

s e l e c t case ( s e n t r y )
case ( 1 ) ! l o o k f o r a c e l l

s n r x n = s n r x n +1
s c e l l ( s n r x n ) = i n t ( n i n t ( rdum ( s i t m p ) ) , i 4knd )

do i c l = 1 , mxa
i f ( n c l ( i c l ) == s c e l l ( s n r x n ) ) e x i t

enddo

i f ( i c l > mxa ) then
w r i t e ( s s tmp , ’ ( a , i4 , a ) ’ ) ’ s p e c i f i e d c e l l ’ , s c e l l ( s n r x n ) , ’ n o t found i n c e l l c a r d s ’
s n r x n = 0

e n d i f

s e n t r y = s e n t r y + 1
s i t m p = s i t m p + 1

case ( 2 ) ! l o o k f o r a z a i d or 99999=( alpha , n )
s z a i d ( s n r x n ) = i n t ( n i n t ( rdum ( s i t m p ) ) , i 4knd )
i f ( s z a i d ( s n r x n ) < 0 dknd ) then

s u s e r n u b a r ( s n r x n ) = rdum ( s i t m p +1)
i f ( s u s e r n u b a r ( s n r x n ) <= 0 dknd ) then

w r i t e ( s s tmp , ’ ( a , i4 , a ) ’ ) ’ nu wid th f o r ZAID ’ , abs ( s z a i d ( s n r x n ) ) , ’ must exceed 0 ’
s n r x n = 0

e n d i f
s i t m p = s i t m p + 2

e l s e
do i =1 , s n u m s f z a i d s

i f ( s z a i d ( s n r x n ) == s s f z a i d s ( i ) ) e x i t
enddo
i f ( i > s n u m s f z a i d s . and . s z a i d ( s n r x n ) /= 99999) then

w r i t e ( s s tmp , ’ ( a , i 6 ) ’ ) ’ unknown z a i d ’ , s z a i d ( s n r x n )
s n r x n = 0

e n d i f
s i t m p = s i t m p + 1

e n d i f
s e n t r y = s e n t r y + 1

case ( 3 ) ! l o o k f o r e x p e c t e d number o f e v e n t s
s n p s ( s n r x n ) = i n t ( n i n t ( rdum ( s i t m p ) ) , i 4knd )
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i f ( s n p s ( s n r x n ) <= 0 ) then
w r i t e ( s s tmp , ’ ( a , i10 , a ) ’ ) ’ number o f e v e n t s ’ , s n p s ( s n r x n ) , ’ must exceed 0 ’
s n r x n = 0

e n d i f
s e n t r y = s e n t r y + 1
s i t m p = s i t m p + 1

case ( 4 ) ! l o o k f o r an e ne rg y d i s t r i b u t i o n
s e d i s t ( s n r x n ) = i n t ( n i n t ( rdum ( s i t m p ) ) , i 4knd )

do i =1 , msd
i f ( s e d i s t ( s n r x n ) == ksd ( 1 , i ) ) e x i t

enddo
i f ( i > msd ) then

w r i t e ( s s tmp , ’ ( a , i4 , a ) ’ ) ’ d i s t r i b u t i o n number ’ , s e d i s t ( s n r x n ) , ’ n o t found ’
s n r x n = 0

e l s e
s e d i s t ( s n r x n ) = i

e n d i f
s e n t r y = s e n t r y + 1
s i t m p = s i t m p + 1

case ( 5 ) ! l o o k f o r a t i m e d i s t r i b u t i o n
s t d i s t ( s n r x n ) = i n t ( n i n t ( rdum ( s i t m p ) ) , i 4knd )

do i =1 , msd
i f ( s t d i s t ( s n r x n ) == ksd ( 1 , i ) ) e x i t

enddo
i f ( i > msd ) then

w r i t e ( s s tmp , ’ ( a , i4 , a ) ’ ) ’ d i s t r i b u t i o n number ’ , s t d i s t ( s n r x n ) , ’ n o t found ’
s n r x n = 0

e l s e
s t d i s t ( s n r x n ) = i

e n d i f
s e n t r y = s e n t r y + 1
s i t m p = s i t m p + 1

case ( 6 ) ! l o o k f o r a p o s i t i o n s a m p l i n g method
! 1 = s p h e r i c a l 2 = c y l i n d r i c a l
! 3 = box 4 = r e j e c t i o n

s p o s m e t h o d ( s n r x n ) = i n t ( n i n t ( rdum ( s i t m p ) ) , i 4knd )
s e n t r y = s e n t r y + 1
s i t m p = s i t m p + 1
i f ( s p o s m e t h o d ( s n r x n ) < 0 ) then

s p o s m e t h o d ( s n r x n ) = abs ( s p o s m e t h o d ( s n r x n ) )
s t r a n s ( s n r x n ) = i n t ( n i n t ( rdum ( s i t m p ) ) , i 4knd )
do s i t m p 2 =1 , mxtr

i f ( − t r f ( 1 , s i t m p 2 ) == s t r a n s ( s n r x n ) ) e x i t
enddo
i f ( s i t m p 2 > mxtr ) then

w r i t e ( s s tmp , ’ ( a , i4 , a ) ’ ) ’ t r a n s f o r m a t i o n number ’ , s t r a n s ( s n r x n ) , ’ n o t found ’
s n r x n = 0

e l s e
s t r a n s ( s n r x n ) = s i t m p 2

e n d i f
s i t m p = s i t m p + 1

e n d i f

case ( 7 ) ! l o o k f o r p o s i t i o n s a m p l i n g i n f o
s p o s i n f o ( s n r x n , 1 : s p o s i n f o l e n g t h s ( s p o s m e t h o d ( s n r x n ) ) ) = &

& rdum ( s i t m p : s i t m p + s p o s i n f o l e n g t h s ( s p o s m e t h o d ( s n r x n ) ) −1)
s e n t r y = 1
s i t m p = s i t m p + s p o s i n f o l e n g t h s ( s p o s m e t h o d ( s n r x n ) )

s e l e c t case ( s p o s m e t h o d ( s n r x n ) )
case ( 1 ) ! s p h e r i c a l

do i =1 , msd ! check r a d i a l d i s t r i b u t i o n
i f ( s p o s i n f o ( s n r x n , 4 ) == ksd ( 1 , i ) ) e x i t
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enddo
i f ( i > msd ) then

w r i t e ( s s tmp , ’ ( a , i4 , a ) ’ ) ’ s p h e r i c a l s o u r c e d i s t r i b u t i o n number ’ , i n t ( n i n t (
s p o s i n f o ( s n r x n , 4 ) ) , i 4knd ) , ’ n o t found ’

s n r x n = 0
e l s e

s p o s i n f o ( s n r x n , 4 ) = i
e n d i f

case ( 2 ) ! c y l i n d r i c a l
do i =1 , msd ! check r a d i a l d i s t r i b u t i o n

i f ( s p o s i n f o ( s n r x n , 7 ) == ksd ( 1 , i ) ) e x i t
enddo
i f ( i > msd ) then

w r i t e ( s s tmp , ’ ( a , i4 , a ) ’ ) ’ c y l i n d r i c a l s o u r c e d i s t r i b u t i o n number ’ , i n t ( n i n t (
s p o s i n f o ( s n r x n , 7 ) ) , i 4knd ) , ’ n o t found ’

s n r x n = 0
e l s e

s p o s i n f o ( s n r x n , 7 ) = i
e n d i f

do i =1 , msd ! check e x t e n t d i s t r i b u t i o n
i f ( s p o s i n f o ( s n r x n , 8 ) == ksd ( 1 , i ) ) e x i t

enddo
i f ( i > msd ) then

w r i t e ( s s tmp , ’ ( a , i4 , a ) ’ ) ’ c y l i n d r i c a l s o u r c e d i s t r i b u t i o n number ’ , i n t ( n i n t (
s p o s i n f o ( s n r x n , 8 ) ) , i 4knd ) , ’ n o t found ’

s n r x n = 0
e l s e

s p o s i n f o ( s n r x n , 8 ) = i
e n d i f

s t 1 = 0d0
do i =4 ,6

s t 1 = s t 1 + s p o s i n f o ( s n r x n , i ) ∗∗2
enddo
s t 1 = d s q r t ( s t 1 )
i f ( s t 1 < 1d−6 ) then

w r i t e ( s s tmp , ’ ( a , es12 . 4 , a , es12 . 4 , a , es12 . 4 , a ) ’ ) &
& ’ c y l i n d e r a x i s ( ’ , s p o s i n f o ( s n r x n , 4 ) , ’ , ’ , s p o s i n f o ( s n r x n , 5 ) , ’ , ’ ,

s p o s i n f o ( s n r x n , 6 ) , ’ ) u n n o r m a l i z a b l e ’
s n r x n = 0

e l s e
s p o s i n f o ( s n r x n , 4 : 6 ) = s p o s i n f o ( s n r x n , 4 : 6 ) / s t 1

e n d i f

case ( 3 ) ! c a r t e s i a n
do i =1 , msd ! check x d i s t r i b u t i o n

i f ( s p o s i n f o ( s n r x n , 1 ) == ksd ( 1 , i ) ) e x i t
enddo
i f ( i > msd ) then

w r i t e ( s s tmp , ’ ( a , i4 , a ) ’ ) ’ c a r t e s i a n s o u r c e d i s t r i b u t i o n number ’ , i n t ( n i n t (
s p o s i n f o ( s n r x n , 1 ) ) , i 4knd ) , ’ n o t found ’

s n r x n = 0
e l s e

s p o s i n f o ( s n r x n , 1 ) = i
e n d i f

do i =1 , msd ! check y d i s t r i b u t i o n
i f ( s p o s i n f o ( s n r x n , 2 ) == ksd ( 1 , i ) ) e x i t

enddo
i f ( i > msd ) then

w r i t e ( s s tmp , ’ ( a , i4 , a ) ’ ) ’ c a r t e s i a n s o u r c e d i s t r i b u t i o n number ’ , i n t ( n i n t (
s p o s i n f o ( s n r x n , 2 ) ) , i 4knd ) , ’ n o t found ’

s n r x n = 0
e l s e

s p o s i n f o ( s n r x n , 2 ) = i
e n d i f
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do i =1 , msd ! check z d i s t r i b u t i o n
i f ( s p o s i n f o ( s n r x n , 3 ) == ksd ( 1 , i ) ) e x i t

enddo
i f ( i > msd ) then

w r i t e ( s s tmp , ’ ( a , i4 , a ) ’ ) ’ c a r t e s i a n s o u r c e d i s t r i b u t i o n number ’ , i n t ( n i n t (
s p o s i n f o ( s n r x n , 3 ) ) , i 4knd ) , ’ n o t found ’

s n r x n = 0
e l s e

s p o s i n f o ( s n r x n , 3 ) = i
e n d i f

case ( 4 ) ! r e j e c t i o n
do i =1 , msd ! check x d i s t r i b u t i o n

i f ( s p o s i n f o ( s n r x n , 1 ) == ksd ( 1 , i ) ) e x i t
enddo
i f ( i > msd ) then

w r i t e ( s s tmp , ’ ( a , i4 , a ) ’ ) ’ r e j e c t i o n s o u r c e d i s t r i b u t i o n number ’ , i n t ( n i n t (
s p o s i n f o ( s n r x n , 1 ) ) , i 4knd ) , ’ n o t found ’

s n r x n = 0
e l s e

s p o s i n f o ( s n r x n , 1 ) = i
e n d i f

do i =1 , msd ! check y d i s t r i b u t i o n
i f ( s p o s i n f o ( s n r x n , 2 ) == ksd ( 1 , i ) ) e x i t

enddo
i f ( i > msd ) then

w r i t e ( s s tmp , ’ ( a , i4 , a ) ’ ) ’ r e j e c t i o n s o u r c e d i s t r i b u t i o n number ’ , i n t ( n i n t (
s p o s i n f o ( s n r x n , 2 ) ) , i 4knd ) , ’ n o t found ’

s n r x n = 0
e l s e

s p o s i n f o ( s n r x n , 2 ) = i
e n d i f

do i =1 , msd ! check z d i s t r i b u t i o n
i f ( s p o s i n f o ( s n r x n , 3 ) == ksd ( 1 , i ) ) e x i t

enddo
i f ( i > msd ) then

w r i t e ( s s tmp , ’ ( a , i4 , a ) ’ ) ’ r e j e c t i o n s o u r c e d i s t r i b u t i o n number ’ , i n t ( n i n t (
s p o s i n f o ( s n r x n , 3 ) ) , i 4knd ) , ’ n o t found ’

s n r x n = 0
e l s e

s p o s i n f o ( s n r x n , 3 ) = i
e n d i f

end s e l e c t

end s e l e c t

i f ( s n r x n == 0 ) then
s d o e x p i r e = . t r u e .
s d o n e = . t r u e .

e l s e i f ( rdum ( s i t m p ) == 0 dknd . and . s e n t r y == 1) then
s d o n e = . t r u e .

e n d i f
enddo

do i =1 , s n r x n
s p r o b ( i ) = r e a l ( s n p s ( i ) , dknd ) / r e a l ( sum ( s n p s ) , dknd )

enddo

do i =s n r x n , 2 , −1
s p r o b ( i ) = sum ( s p r o b ( 1 : i ) )

enddo

i f ( mcnp opt mpi ) then
i f ( mynum == 1) then

c a l l e r p r n t ( 1 , 3 , 0 , 0 , 0 , 0 , 0 , 0 , ’ ” e n s u r e nps e q u a l s sum of h i s t o r i e s f o r each r e a c t i o n ” ’ )
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e n d i f
e l s e

i f ( ( . n o t . s d o e x p i r e ) . and . sum ( s n p s ) /= npp ) then
s d o e x p i r e = . t r u e .
w r i t e ( s s tmp , ’ ( a ) ’ ) ’ sum of numbers o f h i s t o r i e s f o r each r e a c t i o n must e q u a l nps ’

e n d i f
e n d i f

! do i =1 , s n r x n
! p r i n t ∗ , i
! p r i n t ∗ , ’ s c e l l = ’ , s c e l l ( i )
! p r i n t ∗ , ’ s z a i d = ’ , s z a i d ( i )
! p r i n t ∗ , ’ s n p s = ’ , s n p s ( i )
! p r i n t ∗ , ’ s e d i s t = ’ , s e d i s t ( i )
! p r i n t ∗ , ’ s t d i s t = ’ , s t d i s t ( i )
! p r i n t ∗ , ’ s p o s m e t h o d = ’ , s p o s m e t h o d ( i )
! p r i n t ∗ , ’ s p r o b = ’ , s p r o b ( i )
! p r i n t ∗ , ’ s u s e r n u b a r = ’ , s u s e r n u b a r ( i )
! p r i n t ∗ , ’ s t r a n s = ’ , s t r a n s ( i )
! p r i n t ∗ , ’ s p o s i n f o = ’ , s p o s i n f o ( i , 1 : s p o s i n f o m a x l e n g t h )
! enddo

i f ( s d o e x p i r e ) then
c a l l e x p i r x ( 0 , ’ s o u r c e ’ , t r i m ( s s t m p ) )

e n d i f

re turn
end s u b r o u t i n e parseRdum

s u b r o u t i n e samplePos ( )
i m p l i c i t none

r e a l ( dknd ) : : s r a d , s e x t , s zu , s zv , s zw , s ph , s xp , s yp , s t 1 , s t 2 , &
& xx , yy , zz
r e a l ( dknd ) , dimension ( 3 ) : : s d i r

i n t e g e r : : s i , s j
l o g i c a l : : s d o e x p i r e , s d o n e
i n t e g e r , parameter : : s m a x r e j e c t = 10000

s d o e x p i r e = . f a l s e .
s e l e c t case ( s p o s m e t h o d ( s i t m p ) )

case ( 1 ) ! s p h e r e

s i = 1
s j = 1
do whi l e ( s i /= 0 . and . s j <= s m a x r e j e c t )

c a l l smpsrc ( s r a d , i n t ( n i n t ( s p o s i n f o ( s i t m p , 4 ) ) , i 4knd ) , s i b , s f i )
c a l l i s o s ( s d i r , 0 )
xxx = s p o s i n f o ( s i t m p , 1 ) + s d i r ( 1 ) ∗ s r a d
yyy = s p o s i n f o ( s i t m p , 2 ) + s d i r ( 2 ) ∗ s r a d
zzz = s p o s i n f o ( s i t m p , 3 ) + s d i r ( 3 ) ∗ s r a d

i f ( s t r a n s ( s i t m p ) /= 0 ) then
xx = xxx
yy = yyy
zz = zzz

xxx = t r f ( 5 , s t r a n s ( s i t m p ) ) ∗xx + t r f ( 6 , s t r a n s ( s i t m p ) ) ∗yy + &
& t r f ( 7 , s t r a n s ( s i t m p ) ) ∗ zz + t r f ( 1 5 , s t r a n s ( s i t m p ) )
yyy = t r f ( 8 , s t r a n s ( s i t m p ) ) ∗xx + t r f ( 9 , s t r a n s ( s i t m p ) ) ∗yy + &
& t r f ( 1 0 , s t r a n s ( s i t m p ) ) ∗ zz + t r f ( 1 6 , s t r a n s ( s i t m p ) )
zzz = t r f ( 1 1 , s t r a n s ( s i t m p ) ) ∗xx + t r f ( 1 2 , s t r a n s ( s i t m p ) ) ∗yy + &
& t r f ( 1 3 , s t r a n s ( s i t m p ) ) ∗ zz + t r f ( 1 7 , s t r a n s ( s i t m p ) )

e n d i f

c a l l c h k c e l ( i c l , 2 , s i )
s j = s j + 1
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enddo

case ( 2 ) ! c y l i n d e r

s i = 1
s j = 1
do whi l e ( s i /= 0 . and . s j <= s m a x r e j e c t )

c a l l smpsrc ( s r a d , i n t ( n i n t ( s p o s i n f o ( s i t m p , 7 ) ) , i 4knd ) , s i b , s f i )
c a l l smpsrc ( s e x t , i n t ( n i n t ( s p o s i n f o ( s i t m p , 8 ) ) , i 4knd ) , s i b , s f i )

s z u = s p o s i n f o ( s i t m p , 4 ) ∗ s e x t
s z v = s p o s i n f o ( s i t m p , 5 ) ∗ s e x t
s zw = s p o s i n f o ( s i t m p , 6 ) ∗ s e x t
s p h = r ang ( ) ∗2 .∗ p i e
s x p = s r a d ∗ cos ( s p h )
s y p = s r a d ∗ s i n ( s p h )
s t 1 = s q r t ( s p o s i n f o ( s i t m p , 4 ) ∗∗2+ s p o s i n f o ( s i t m p , 5 ) ∗∗2 )

xxx = s p o s i n f o ( s i t m p , 1 )
yyy = s p o s i n f o ( s i t m p , 2 )
zzz = s p o s i n f o ( s i t m p , 3 )
i f ( s t 1 / = 0 . ) then

s t 2 = 1 . / s t 1
xxx = xxx+ s t 2 ∗ ( s p o s i n f o ( s i t m p , 4 ) ∗ s p o s i n f o ( s i t m p , 6 ) ∗ s xp − s p o s i n f o ( s i t m p , 5 ) ∗

s y p )+ s z u
yyy = yyy+ s t 2 ∗ ( s p o s i n f o ( s i t m p , 5 ) ∗ s p o s i n f o ( s i t m p , 6 ) ∗ s x p+ s p o s i n f o ( s i t m p , 4 ) ∗

s y p )+ s z v
zzz = zzz− s t 1 ∗ s x p+s zw

e l s e
xxx = xxx+s x p
yyy = yyy+s y p
zzz = zzz+s zw

e n d i f

i f ( s t r a n s ( s i t m p ) /= 0 ) then
xx = xxx
yy = yyy
zz = zzz

xxx = t r f ( 5 , s t r a n s ( s i t m p ) ) ∗xx + t r f ( 6 , s t r a n s ( s i t m p ) ) ∗yy + &
& t r f ( 7 , s t r a n s ( s i t m p ) ) ∗ zz + t r f ( 1 5 , s t r a n s ( s i t m p ) )
yyy = t r f ( 8 , s t r a n s ( s i t m p ) ) ∗xx + t r f ( 9 , s t r a n s ( s i t m p ) ) ∗yy + &
& t r f ( 1 0 , s t r a n s ( s i t m p ) ) ∗ zz + t r f ( 1 6 , s t r a n s ( s i t m p ) )
zzz = t r f ( 1 1 , s t r a n s ( s i t m p ) ) ∗xx + t r f ( 1 2 , s t r a n s ( s i t m p ) ) ∗yy + &
& t r f ( 1 3 , s t r a n s ( s i t m p ) ) ∗ zz + t r f ( 1 7 , s t r a n s ( s i t m p ) )

e n d i f

c a l l c h k c e l ( i c l , 2 , s i )
s j = s j + 1

enddo

case ( 3 ) ! box
s i = 1
s j = 1
do whi l e ( s i /= 0 . and . s j <= s m a x r e j e c t )

c a l l smpsrc ( xxx , i n t ( n i n t ( s p o s i n f o ( s i t m p , 1 ) ) , i 4knd ) , s i b , s f i )
c a l l smpsrc ( yyy , i n t ( n i n t ( s p o s i n f o ( s i t m p , 2 ) ) , i 4knd ) , s i b , s f i )
c a l l smpsrc ( zzz , i n t ( n i n t ( s p o s i n f o ( s i t m p , 3 ) ) , i 4knd ) , s i b , s f i )

i f ( s t r a n s ( s i t m p ) /= 0 ) then
xx = xxx
yy = yyy
zz = zzz

xxx = t r f ( 5 , s t r a n s ( s i t m p ) ) ∗xx + t r f ( 6 , s t r a n s ( s i t m p ) ) ∗yy + &
& t r f ( 7 , s t r a n s ( s i t m p ) ) ∗ zz + t r f ( 1 5 , s t r a n s ( s i t m p ) )
yyy = t r f ( 8 , s t r a n s ( s i t m p ) ) ∗xx + t r f ( 9 , s t r a n s ( s i t m p ) ) ∗yy + &
& t r f ( 1 0 , s t r a n s ( s i t m p ) ) ∗ zz + t r f ( 1 6 , s t r a n s ( s i t m p ) )
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zzz = t r f ( 1 1 , s t r a n s ( s i t m p ) ) ∗xx + t r f ( 1 2 , s t r a n s ( s i t m p ) ) ∗yy + &
& t r f ( 1 3 , s t r a n s ( s i t m p ) ) ∗ zz + t r f ( 1 7 , s t r a n s ( s i t m p ) )

e n d i f

c a l l c h k c e l ( i c l , 2 , s i )
s j = s j + 1

enddo

end s e l e c t

i f ( ( . n o t . s d o e x p i r e ) . and . s i /= 0 ) then
w r i t e ( s s tmp , ’ ( a , i 6 ) ’ ) &
& ’ f a i l e d t o sample a s t a r t i n g p o s i t i o n i n c e l l ’ , s c e l l ( s i t m p )

c a l l e x p i r x ( 0 , ’ s o u r c e ’ , s s t m p )
e n d i f

end s u b r o u t i n e samplePos

f u n c t i o n s a c e n u s ( t n )
i m p l i c i t none

r e a l ( dknd ) : : s a c e n u s ! # o f n e u t r o n s e m i t t e d from t h i s f i s s i o n .
r e a l ( dknd ) , i n t e n t ( in ) : : t n ! v a l u e o f nubar f o r f i s s i o n a b l e i s o t o p e .
i n t e g e r , parameter : : nb = 30 ! number o f v a l u e s i n t h e nu−bar s h i f t t a b l e .
i n t e g e r : : i , j , id , i l , iu , i s , mn , na , nn
r e a l ( dknd ) : : a , b , x1 , x2 , vb , w, w2

r e a l ( dknd ) , parameter : : t v ( nb ) = & ! v a l u e s o f ( t n +0 . 5 ) / w i d t h n u .
& ( / 1 .9857 d0 , 2 .0022 d0 , 2 .0192 d0 , 2 .0369 d0 , 2 .0552 d0 , 2 .0743 d0 , 2 .0943 d0 , &
& 2.1151 d0 , 2 .1369 d0 , 2 .1599 d0 , 2 .1841 d0 , 2 .2097 d0 , 2 .2369 d0 , 2 .2659 d0 , &
& 2.2971 d0 , 2 .3307 d0 , 2 .3673 d0 , 2 .4075 d0 , 2 .4521 d0 , 2 .5023 d0 , 2 .5600 d0 , &
& 2.6281 d0 , 2 .7114 d0 , 2 .8199 d0 , 2 .9785 d0 , 3 .2980 d0 , 3 .3597 d0 , 3 .4379 d0 , &
& 3.5455 d0 , 3 .7227 d0 / )

r e a l ( dknd ) , parameter : : bs ( nb ) = & ! nu s h i f t v a l u e s f o r Gauss ian m u l t i p l i c i t y s am p l i n g .
& ( / 0 .0255 d0 , 0 .0245 d0 , 0 .0235 d0 , 0 .0225 d0 , 0 .0215 d0 , 0 .0205 d0 , 0 .0195 d0 , &
& 0.0185 d0 , 0 .0175 d0 , 0 .0165 d0 , 0 .0155 d0 , 0 .0145 d0 , 0 .0135 d0 , 0 .0125 d0 , &
& 0.0115 d0 , 0 .0105 d0 , 0 .0095 d0 , 0 .0085 d0 , 0 .0075 d0 , 0 .0065 d0 , 0 .0055 d0 , &
& 0.0045 d0 , 0 .0035 d0 , 0 .0025 d0 , 0 .0015 d0 , 0 .0005 d0 , 0 .0004 d0 , 0 .0003 d0 , &
& 0.0002 d0 , 0 .0001 d0 / )

i d = s z a i d ( s i t m p ) ! z a i d number f o r c o l l i s i o n i s o t o p e .
i u = 1 ; i s = 1 ! i u = upper do− l oop i n d e x and i s = do− l oop s t r i d e .
i f ( i d ==92235 ) then

i u = 2
e l s e i f ( i d ==94239 ) then

i u = 3
i s = 2

e n d i f

i f ( w i d t h n u==z e r o ) then
i f ( i f i s n u ==0 . o r . i f i s n u ==1 ) then ! use r e e v a l u a t i o n f i t t i n g f i r s t t h r e e f a c t o r i a l

m u l t i p l i c i t y moments .
! s e l e c t f i s s i o n a b l e i s o t o p e i d t o be sampled f o r number o f f i s s i o n n e u t r o n s .
s e l e c t case ( i d )
case ( 92233 )

w = 1 .070 d0
case ( 92235 )

w = 1 .088 d0
case ( 92238 )

w = 1 .116 d0
case ( 94239 )

w = 1 .140 d0
case ( 94241 )

w = 1 .150 d0
case d e f a u l t

na = id −( i d / 1 0 0 0 ) ∗1000 ! g e t t h e a t om ic w e i g h t o f t h e f i s s i o n i n g i s o t o p e i d .
w = 0 .007338 d0 ∗ ( na + 1 . ) −0.64 d0

end s e l e c t
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e l s e i f ( i f i s n u ==2 ) then ! sample u s i n g t h e t e r r e l l w i d t h v a l u e s .
! s e l e c t f i s s i o n a b l e i s o t o p e i d t o be sampled f o r number o f f i s s i o n n e u t r o n s .
s e l e c t case ( i d )
case ( 92235 )

! i g n o r e energy −d e p e n d e n t ( 1 . 2 5 and 4 . 8 mev ) w i d t h s because o f l a r g e e r r o r s ( 0 . 0 6 ) .
w = 1 .072 d0 ! + or − 0 .021 (80 kev )

case ( 92238 )
w = 1 . 2 3 d0 ! + or − 0 . 0 8 ( 1 . 5 mev )

case ( 94239 )
w = 1 . 1 4 d0 ! + or − 0 . 0 7 (80 kev )

case ( 94240 )
w = 1 .109 d0 ! + or − 0 .012

case ( 92233 )
w = 1 .041 d0 ! + or − 0 .041 (80 kev )

case ( 94236 )
w = 1 . 1 1 d0 ! + or − 0 . 1 1

case ( 94238 )
w = 1 .115 d0 ! + or − 0 .023

case ( 94242 )
w = 1 .069 d0 ! + or − 0 .035

case ( 96242 )
w = 1 .053 d0 ! + or − 0 .013

case ( 96244 )
w = 1 .036 d0 ! + or − 0 .018

case ( 98252 )
w = 1 .207 d0 ! + or − 0 .012

case d e f a u l t
w = 1 .079 d0 ! + or − 0 .007

end s e l e c t
e n d i f

e l s e
! use u s e r i n p u t w i d t h f o r Gauss ian s am p l i n g f o r a l l f i s s i o n a b l e i s o t o p e s ( b=0) .
w = w i d t h n u

e n d i f

! use Gauss ian sa m p l i n g f o r f i s s i o n n e u t r o n m u l t i p l i c i t y .
do

x1 = two∗ r ang ( )−one
x2 = x1∗∗2+ r ang ( ) ∗∗2
i f ( x2<=one ) e x i t

enddo
x1 = x1∗ s q r t (− two∗ l o g ( x2 ) / x2 )

! f i n d v a l u e f o r nu−bar s h i f t b f o r non− t r u n c a t e d Gauss ian s a m p l i n g .
b = z e r o ! amount s u b t r a c t e d from nu−bar ( t n ) f o r more a c c u r a t e nu−bar .
vb = ( t n+ h a l f ) /w
i f ( vb<= t v ( 1 ) ) then

! b e i n g below t h e t a b l e w i l l cause a s l i g h t over p r e d i c t i o n o f nu−bar .
b = bs ( 1 )

e l s e i f ( vb<= t v ( nb ) ) then
do i = 2 , nb−1

i f ( vb<= t v ( i ) ) e x i t
enddo
b = bs ( i −1) +( bs ( i )−bs ( i −1) ) ∗ ( vb− t v ( i −1) ) / ( t v ( i )− t v ( i −1) )

e n d i f

! s e t t h e number o f n e u t r o n s s e l e c t e d from t h i s d i s t r i b u t i o n .
nn = max ( 0 , i n t ( x1∗w+ tn −b+ h a l f ) ) ! s e t n e g a t i v e number o f n e u t r o n s t o z e r o .
s a c e n u s = nn

! i f ( nn==0 ) t h e n ! t e r m i n a t e 0 f i s s i o n n e u t r o n s t o l o s s t o f i s s i o n .
! n t e r = 14
! e n d i f

re turn
end f u n c t i o n s a c e n u s

# e l s e
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i m p l i c i t r e a l ( dknd ) ( a−h , o−z )

c a l l e x p i r x ( 0 , ’ s o u r c e ’ , ’ you need a s o u r c e s u b r o u t i n e . ’ )
re turn

# e n d i f

end s u b r o u t i n e s o u r c e
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B tallyx.F90

!+ $Id : t a l l y x . F90 , v 1 . 1 . 1 . 1 2 0 1 1 /0 2 /2 4 2 0 : 2 4 : 5 6 csolomon Exp $
! C o p y r i g h t LANS / LANL /DOE − s e e f i l e COPYRIGHT INFO

s u b r o u t i n e t a l l y x ( t , i b )
! dummy f o r user − s u p p l i e d t a l l y x s u b r o u t i n e .
! t i s t h e i n p u t and o u t p u t t a l l y s c o r e v a l u e .
! i b c o n t r o l s s c o r i n g . s e e t h e user ’ s manual .
use m c n p g l o b a l
use mcnp debug

# i f d e f MULT
i m p l i c i t none
c h a r a c t e r ( l e n =5) , parameter : : t f i l e b a s e = ” lmout ”
c h a r a c t e r ( l e n =256) , s ave : : t f i l e n a m e
i n t e g e r , dimension ( 9 ) , s ave : : t t a l i d s = 0
i n t e g e r , a l l o c a t a b l e , dimension ( : ) , s ave : : t l a s t c e l l
r e a l ( dknd ) , a l l o c a t a b l e , dimension ( : ) , s ave : : t l a s t t i m e
r e a l ( dknd ) , a l l o c a t a b l e , dimension ( : ) , s ave : : t l a s t t a l
l o g i c a l , s ave : : t t h r e a d s a l l o c a t e d = . f a l s e .

r e a l ( dknd ) : : t
i n t e g e r ( i4knd ) : : i b

i n t e g e r ( i8knd ) : : t s e e d , t c o u n t
i n t e g e r ( i8knd ) : : t i , t z a i d , t i t m p , t i d , t u n i t

r e a l ( dknd ) : : t d tmp , t s c o r e

! backup v a r i a b l e s
i n t e g e r ( i4knd ) : : t j s u , t n t y n , t i e x , t i e x p , t m t p

l o g i c a l : : t c a p t u r e

r e a l ( dknd ) , e x t e r n a l : : g e t x s

!$OMP CRITICAL ( SETUP TALLY )
do t i d =1 , s i z e ( t t a l i d s )

i f ( t t a l i d s ( t i d ) == 0 ) e x i t
i f ( t t a l i d s ( t i d ) == j p t a l ( 1 , i t a l ) ) e x i t

enddo
i f ( t i d > s i z e ( t t a l i d s ) ) then

c a l l e x p i r x ( 0 , ’ t a l l y x ’ , ’ t o o many l i s t mode t a l l i e s ’ )
e n d i f

i f ( t t a l i d s ( t i d ) == 0 ) then
t t a l i d s ( t i d ) = j p t a l ( 1 , i t a l )
t u n i t = 990 + t i d
i f ( mcnp opt mpi ) then

w r i t e ( t f i l e n a m e , ’ ( a , a , i 4 . 4 , a , i 4 . 4 ) ’ ) t f i l e b a s e , ’ ’ , j p t a l ( 1 , i t a l ) , ’ ’ , mynum
open ( u n i t= t u n i t , f i l e = t r i m ( t f i l e n a m e ) , p o s i t i o n = ’ append ’ )

e l s e
w r i t e ( t f i l e n a m e , ’ ( a , a , i 4 . 4 ) ’ ) t f i l e b a s e , ’ ’ , j p t a l ( 1 , i t a l )
open ( u n i t= t u n i t , f i l e = t r i m ( t f i l e n a m e ) , p o s i t i o n = ’ append ’ )

e n d i f

i f ( . n o t . t t h r e a d s a l l o c a t e d ) then
a l l o c a t e ( t l a s t c e l l ( n t a s k s ) , &

& t l a s t t i m e ( n t a s k s ) , &
& t l a s t t a l ( n t a s k s ) )

t l a s t c e l l = 0
t l a s t t i m e = 0 dknd
t t h r e a d s a l l o c a t e d = . t r u e .

e n d i f

i f ( j p t a l ( 2 , i t a l ) /= 4 ) then
c a l l e x p i r x ( 0 , ’ t a l l y x ’ , ’ m u l t i p l i c a t i o n p a t c h on ly works wi th f4 t a l l y ’ )

24



e n d i f

i f ( i p t a l ( 3 , 1 , i t a l ) == −1 ) then
c a l l e x p i r x ( 0 , ’ t a l l y x ’ , ’ no c o l l i s i o n n u c l i d e found on FU c a r d ’ )

e n d i f
e l s e

t u n i t = 990 + t i d
e n d i f
!$OMP END CRITICAL ( SETUP TALLY )

t s c o r e = z e r o
i f ( pmf == min ( pmf , d l s ) ) then

c a l l RN query ( seed= t s e e d , c o u n t= t c o u n t )

t j s u = j s u
t n t y n = n tyn
t i e x = i e x
t i e x p = i e x p
t m t p = mtp
c a l l t c o l i d n

i f ( t c a p t u r e ) then
t z a i d = nxs ( 2 , i e x )
do i b u =1 , i p t a l ( 3 , 4 , i t a l )−1

i f ( t z a i d == i n t ( t d s ( i p t a l ( 3 , 1 , i t a l )+ i b u ) , i 4knd ) ) then
t d t m p = t d s ( i p t a l ( 3 , 1 , i t a l )+ i b u ) − i n t ( t d s ( i p t a l ( 3 , 1 , i t a l )+ i b u ) , i 4knd )
i f ( dabs ( t d t m p ) < 1d−6 ) then

t s c o r e = t / pmf
i f ( i c l /= t l a s t c e l l ( k t a s k +1) . o r . tme+pmf / v e l /= t l a s t t i m e ( k t a s k +1) &

& . o r . i t a l /= t l a s t t a l ( k t a s k +1) ) then
!$OMP CRITICAL ( WRITE LIST MODE )
w r i t e ( t u n i t , ’ ( i8 , 2 x , f20 . 5 ) ’ ) n c l ( i c l ) , tme+pmf / v e l
!$OMP END CRITICAL ( WRITE LIST MODE )
t l a s t c e l l ( k t a s k +1) = i c l
t l a s t t i m e ( k t a s k +1) = tme+pmf / v e l
t l a s t t a l ( k t a s k +1) = i t a l

e n d i f
e x i t

e l s e
t i t m p = i n t ( n i n t ( t d t m p ) , i4knd )
do whi l e ( t i t m p == 0 . o r . dabs ( t d t m p − n i n t ( t d t m p ) ) > 1d−6 )

t d t m p = 10 d0 ∗ t d t m p
t i t m p = i n t ( n i n t ( t d t m p ) , i4knd )

enddo

i f ( r ang ( ) <= g e t x s ( t i t m p ) / g e t x s ( 1 0 1 ) ) then
t s c o r e = t / pmf
i f ( i c l /= t l a s t c e l l ( k t a s k +1) . o r . tme+pmf / v e l /= t l a s t t i m e ( k t a s k +1) &

& . o r . i t a l /= t l a s t t a l ( k t a s k +1) ) then
!$OMP CRITICAL ( WRITE LIST MODE )
w r i t e ( t u n i t , ’ ( i8 , 2 x , f20 . 5 ) ’ ) n c l ( i c l ) , tme+pmf / v e l
!$OMP END CRITICAL ( WRITE LIST MODE )
t l a s t c e l l ( k t a s k +1) = i c l
t l a s t t i m e ( k t a s k +1) = tme+pmf / v e l
t l a s t t a l ( k t a s k +1) = i t a l

e n d i f
e x i t

e n d i f
e n d i f

e n d i f
enddo

e n d i f

j s u = t j s u
n tyn = t n t y n
i e x = t i e x
i e x p = t i e x p
mtp = t m t p
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c a l l R N i n i t p a r t i c l e ( n p s t c )
do t i =1 , t c o u n t

t d t m p = r ang ( )
enddo

e n d i f

t = t s c o r e
re turn

c o n t a i n s

s u b r o u t i n e t c o l i d n
! c a l c u l a t e t h e c o l l i s i o n o f a n e u t r o n w i t h a n u c l e u s .

use m c n p g l o b a l
use even t log mod , only : even tp , EVENTP COLLISION , BANK N XN F
use mcnp debug
use ra1 mod
use k a d j o i n t m o d , only : d o a n y k a d j o i n t , k a d j o i n t b a n k i n g

i m p l i c i t r e a l ( dknd ) ( a−h , o−z )
i m p l i c i t i n t e g e r ( i4knd ) ( i −n )
r e a l ( dknd ) : : v r ( 3 ) , uvw ( 3 )

i n t e g e r : : i d o l d

! save t h e incoming d i r e c t i o n .
uo ld ( 1 ) = uuu
uo ld ( 2 ) = vvv
uo ld ( 3 ) = www
j s u = 0
n tyn = 0

! i f ( mcal==2 ) go t o 290
s f = w t f a s v
mk = mat ( i c l )
i f ( mk==0 ) c a l l e x p i r x ( 1 , ’ c o l i d n ’ , ’ c o l l i s i o n i n vo id . ’ )

m = jmd (mk)
m1 = m

c a l l r a n c h e c k ( ncheck , c )
i f ( ncheck <0 ) then

! i f ( c> t o tm ) go t o 245
i f ( npq (mk) ==1 ) go to 20

e l s e
! sample t h e n u c l i d e , u s i n g t h e c u m u l a t i v e t o t a l c r o s s s e c t i o n .
i f ( npq (mk) ==1 ) go to 20
c = r ang ( ) ∗ to tm

e n d i f
do m = m1 , jmd (mk+1)−2

c = c− r t c ( k r t c +5 , lme ( 1 ,m) ) ∗ fme (m)
i f ( c <0. ) go to 20

enddo
20 c o n t in u e

i e x = lme ( 1 ,m)
i e x p = m
mtp = 2

! mpan = i pan ( i c l )+m−m1
! i f ( mcal==1 ) go t o 300

i e t = lmt (m)
i f ( erg >e s a ( i e t ) ) i e t = 0
i f ( r t c ( k r t c +11 , i e x ) >=0. ) i e t = 0

! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ make p h o t o n s ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

! i f ( k p t ( 2 ) /=0 ) t h e n
! i f ( gwt ( i c l ) /= −1 . e6 ) t h e n
! i f ( ( j x s ( 1 2 , i e x ) /=0 . and . n p i k mt==0) . or . t o t g p 1 / = 0 . ) t h e n
! i f ( tme< t c o ( 2 ) ) t h e n
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! c a l l acegam
! e n d i f
! i f ( kdb /=0 ) r e t u r n
! e n d i f
! e n d i f
! e n d i f

! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ c a p t u r e ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

! c a l c u l a t e f i s s i o n s e p a r a t e l y i n t h e kcode case .
! i f ( n s r==71 ) t h e n
! c a l l c o l i d k
! e n d i f
! e l = eg0
! i f ( kdb /=0 ) r e t u r n
! pan ( kpan +1 ,1 , mpan ) = pan ( kpan +1 ,1 , mpan ) +1.
! pan ( kpan +1 ,2 , mpan ) = pan ( kpan +1 ,2 , mpan )+wgt

! sample ana log c a p t u r e i f r e q u i r e d .
i f ( wc1 ( 1 ) ==0. . o r . erg<=emcf ( 1 ) ) then

t 1 = r t c ( k r t c +3 , i e x )+ r t c ( k r t c +8 , i e x )
r = r ang ( ) ∗ r t c ( k r t c +5 , i e x )
i f ( t1 < r ) then

t c a p t u r e = . f a l s e .
e l s e

t c a p t u r e = . t r u e .
e n d i f

! i = 3
! i f ( r>= r t c ( k r t c +3 , i e x ) ) i = 4
! pan ( kpan+1 , i , mpan ) = pan ( kpan+1 , i , mpan )+wgt
! n t e r = 2∗ i+6
! i f ( k r f l g /=0 ) c a l l e v e n t p ( EVENTP COLLISION )
! i f ( i p t r /=0 ) c a l l p t r a k ( 4 )
! i f ( n s r==71 ) t h e n
! r l t t c ( 2 , 1 ) = r l t t c ( 2 , 1 )+wgt ∗ tme
! r l t t c ( 2 , 2 ) = r l t t c ( 2 , 2 )+wgt
! i f ( i==4 ) r l t t c ( 4 , 1 ) = r l t t c ( 4 , 1 )+wgt ∗ tme
! sumktc ( 2 ) = sumktc ( 2 )+wgt ∗ r t c ( k r t c +10 , i e x ) ∗ r t c ( k r t c +8 , i e x ) / t 1
! e n d i f

e n d i f
re turn

end s u b r o u t i n e t c o l i d n

# e l s e
i m p l i c i t r e a l ( dknd ) ( a−h , o−z )

!
! p r i n t a warning t h e f i r s t t i m e t h i s dummy t a l l y x i s c a l l e d .
i f ( j t l x == 0) c a l l e r r p r n ( 1 , j t l x , 0 , ze ro , ze ro , ’ ’ , ’ ’ ,&

& ’ a t a l l y x s u b r o u t i n e i s o r d i n a r i l y needed wi th fu c a r d s . ’ )
re turn

# e n d i f
end s u b r o u t i n e t a l l y x
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