LA-UR-14-23160

Approved for public release; distribution is unlimited.

Title: A Patch to MCNPS5 for Multiplication Inference: Description and User
Guide

Author(s): Solomon, Clell J. Jr.

Intended for: Report

Issued: 2014-05-05

e
)
» Los Alamos

MATIONAL LABORATORY
EST.1543

Disclaimer:

Los Alamos National Laboratory, an affirmative action/equal opportunity employer,is operated by the Los Alamos National

Security, LLC for the National NuclearSecurity Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396.
By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to

publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes.

Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the

U.S. Departmentof Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish;
as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

A Patch to MCNPS for Multiplication Inference:
Description and User Guide

Clell J. (CJ) Solomon

11 Aug. 2011

Abstract

A patch to MCNPS has been written to allow generation of multiple neutrons from a spontaneous-
fission event and generate list-mode output. This report documents the implementation and
usage of this patch.

1 Introduction

A patch to MCNP5?2 (RSICC version 1.60) has been written to facilitate multiplication inference
simulations. The patch is commonly referred to as the “multiplication patch.” The patch is meant
to assist in analog simulation of multiplication experiments, and the user must take precaution to
ensure that default variance reduction is turned off. The patch implements two features:

1. a source that correlates spontaneous-fission neutrons in time

2. atally modifier that writes a “list-mode” formatted file of capture events in specified cells *

Each feature is implemented independently in the source.F90 (MCNP’s user defined source) and
tallyx.F90 (MCNP’s user defined tally modification), respectively.

In the implementation, a requirement that no other MCNP routines could be modified was en-
forced. Thus, to make the patch work consistently with both OpenMP threading and OpenMPI
parallelism, the tallyx.F90 routine is required to open a separate file for each MPI task and write

*The list mode formatted file is a text file consisting of two columns, the first for the cell in which a capture event
occurs and the second for the time at which the capture event occurs.

to the file in “omp critical” sections. The source was tested extensively to ensure that identical
list-mode output is produced for serial runs, threading-only runs, mpi-only runs, and mpi-threaded
runs.

2 Modified Source Routines

2.1 Source Implementation Description

The correlated fission source is implemented in the source.F90 file, a listing of which is available
in Appendix A. The source.F90 file is a source file which allows for a user-defined source to be
compiled into MCNP. When MCNP executes, if no SDEF or KSRC cards are found, the user-defined
source routine is executed to produce the source particle (lack of a user-defined source routine for
this situation results in an “expire”).

Inputs to the user-defined source for the multiplication patch are specified by use of MCNP’s RDUM
card. The RDUM card allows a list of arbitrary floating-point (real) values to be read in from the
input file and stored in memory globally available throughout the problem. The source routine,
reads entries from the RDUM card and interprets them, following the prescription in the following
subsection, to produce the correlated source. Currently, the position sampling is restricted to one
of three possibilities: spherical, cylindrical, and Cartesian.

The source routine effectively redefines the value of NPS to be the number of starting reactions.
For example, given a Pu-240 source emitting 2.15 neutrons per spontaneous fission, an NPS value
of 10 would emit 21.5 neutrons on average. The user of the multiplication patch must think not in
terms of the number of emitted particles, but rather in terms of the number of starting spontaneous-
fission reactions. Similarly, all tallies, because they are normalized to NPS, should be thought of as
normalized to the number of starting reactions.

2.2 Basic Usage

The source.F90 routine obtains information from the RDUM card. The general form of the entries
on the RDUNM card is:

RDUM CELL ZAID NPS E-DIST T-DIST POS-SAMPLING-METHOD POSITION-SAMPLING-INFO
All entries are required. As an example, consider the RDUM input line

C CELL ZAID NPS E-DIST T-DIST POS-SAMPLING-METHOD POSITION-SAMPLING-INFO
RDUM 1000 94240 1le6 3 9 1 0.0 0.0 0.0 4

which indicates that 10° fission events (not particles) will be started in cell 1000 by spontaneous
fission of Pu-240. The energies of the fission neutrons will be sampled from distribution 3, and
the starting times of the particles will be sampled from distribution 9. Here, a position sampling
method of 1 indicates spherical sampling concentric about (x,y,z) = (0.0,0.0,0.0) with a radius
sampled from distribution 4. The possible values of the position sampling method and required
position sampling information are summarized in Table 1.

Table 1: Summary of position sampling methods and required inputs

Sampling Method Description Sampling Information
Spherical POS-X POS-Y POS-Z R-DIST-#
2 Cylindrical POS-X POS-Y POS-Z AXS-U AXS-V AXS-W R-DIST-# EXT-DIST-#
Cartesian XXX-DIST-# YYY-DIST-# ZZZ-DIST-#

Table 1 illustrates the required input for spherical, cylindrical, and Cartesian source sampling.
For spherical sampling, four parameters are required: the x, y, and z coordinates of the sphere
center and a distribution number corresponding to the radial sampling distribution. For cylindrical
sampling, eight parameters are required: the x, y, and z locations of the cylinder base, the u, v, and
w components of the vector pointing along the cylinder axis, the distribution number corresponding
to the radial sampling distribution, and the distribution number corresponding to the extent (axial)
sampling distribution. For Cartesian sampling, only three parameters are required: the distribution
numbers corresponding to the sampling distribution of x, y, and z.

2.3 Multiple Starting Reaction Types

Multiple entries are allowed on the RDUM card. Consider for example

C CELL ZAID NPS E-DIST T-DIST POS-SAMPLING-METHOD POSITION-SAMPLING-INFO
RDUM 1000 94240 1le6 3 9 1 0.0 0.0 0.0 4
2000 99999 1e5 2 9 1 0.0 0.0 0.0 5

Here, two different reactions are possible: 1. spontaneous fission of Pu-240 (indicated by the 94240
ZAID) and 2. a single neutron emission (indicated by the 99999 faux-ZAID and explained below).
The ZAlID/reaction-type is the first thing sampled by the source.F90 routine. The reaction-type
is sampled in proportion to its NPS value given on the RDUM card. For the example give, the
spontaneous-fission reaction of Pu-240 will be sampled with a probability of 10-in-11 and the
single neutron emission with a probability of 1-in-11.

After the reaction is sampled, a position will attempt to be sampled and tested to determine if it
is in the specified cell for that reaction type. If not, the sampled position is rejected and another
position is sampled. The process will repeat until a position within the correct cell is sampled or

the maximum rejection limit is reached. The default maximum rejection limit is 10*, but can be
modified by the first entry of the IDUM card to whatever the user desires.

Once a starting position is found, the number of particles to start is obtained from the ZAID number
provided. The ZAID must be one of the 39 spontaneously fissioning isotopes listed in Table 2 or
99999, which indicates emission of a single particle by, for example, an (@, n) reaction. The
number of spontaneous fission neutrons is sampled from the v value and the v-width. The v-width
is obtained either from the Lestone or Terrel data depending on the Sth entry of the PHYS:N card,
1.e., 0 or 1 = Lestone and 2 = Terrel.

The NPS card must contain the sum of the individual reaction NPS values. In the example
above, the NPS card should be the following

NPS 1.1e6

Failing to have the correct value on the NPS card is a fatal error in sequential or OpenMP builds.
However, because of the MPI design of MCNP, the total number of histories is not available to
the slaves and therefore this requirement cannot be verified. Thus, for an MPI build of MCNP,
a warning message is issued to the user to verify that the NPS card entry equals the sum of the
individual reaction NPSs.

2.4 Other Input Options

Two exceptions exist to the input options described above. First, if the ZAID is negative, then the
built-in v values (given in Table 2) are ignored and the entry immediately following the ZAID is
used for the v. Second, if the position sampling method is negative, the absolute value of the po-
sition sampling method is used for the sampling method, and the entry immediately following the
position sampling method is a transformation number corresponding to a TR card that transforms
the source location sampled by the position sampling information. For example, the input

C CELL ZAID NU NPS E-DIST T-DIST POS-SAMPLING-METHOD TR POS-SAMPLING-INFO
RDUM 3001 -92238 2.38 1le4 1 2 -3 7 3 4 5

indicates spontaneous fission of U-238 with a user specified v of 2.36. 10* starting fission reactions
will executed. The sampling method is Cartesian (indicated by 3 = | — 3|) where the x, y, and z
locations of the initiating fission reaction are sampled from distributions 3, 4, and 5, respectively,
and then transformed by transformation 7. After the transformation, the particle is expected to be
contained in cell 3001, and, if it is not, the sampling is rejected and resampled. The user will get
a warning that transformation 7 is not used for anything if transformation 7 is only used to
define the source via the RDUM card. This warning can be safely ignored.

4

Table 2: Available spontaneously fissioning ZAIDS and corresponding ¥’s

ZAID v ZAID v ZAID v ZAID v

90230 2.14 92238 2.01 94244 2.30 99253 3.93
91231 1.93 94238 222 96244 2.69 98254 3.89
90232 2.14 94239 2.16 96246 3.18 99254 3.95
92232 1.71 94240 2.16 96248 3.11 100254 3.96
92233 1.76 96240 2.39 98248 3.34 99255 3.97
92234 1.81 94241 2.25 97249 3.60 100255 3.73
92235 1.86 95241 2.27 98249 3.41 100256 4.01
92236 1.91 94242 2.15 96250 3.31 100257 3.85
94236 2.13 96242 2.52 98250 3.53 100258 4.03
93237 2.05 95243 242 98252 3.76

2.5 Starting Reactions Versus Starting Particles

WARNING! WARNING! WARNING!

For this version of the multiplication patch, the starting events ARE NOT individual neutrons
but instead fission events. Therefore, the value entered on the NPS card should be the number
of source fission reactions not source neutrons as has been the case historically. For example, if
one wishes to calculate the correct NPS number for 1 g of Pu-240 and a count time of 300 s,
historically it would have been

1 g x 1040 n/g/s x 300 s = 3.12 X 10° n.

However, with this new implementation the correct value is

1 g x 1040 n/g/s

x 300 s = 1.44444 x 10’ fissi
2.16 n/fission s ss10ms,

where 2.16 is the ¥ value for Pu-240 from Table 2.
It is important to note that all tallies will be normalized to this NPS value, i.e., the number of

fissions rather than the number of source particles. Multiplying the tallies by the appropriate ¥
should correctly reproduce the tallies per source particle.

WARNING! WARNING! WARNING!

3 List-Mode Tally Modifications
3.1 Tally Implementation Description

The list-mode tally output is implemented in the tallyx.F90 file, a listing of which is available
in Appendix B. The tallyx.F90 file in MCNP’s source provides a user defined tally binning.
The tallyx routine is called after determining all the other binning of a tally contribution and just
before the score of the resulting bin is incremented. The tallyx routine can use (if provided) user
bins given on the FU card.

For the multiplication patch, the tallyx routine controls writing of the list-mode output and ef-
fectively implements a capture tally (the number of captures in a tally cell per source particle)
modification of a type-4 tally. The necessary FU user inputs for the type-4 tally are outlined in
the following subsection. The list-mode output is a two-column text file, where the first column is
the cell in which a capture event occurs, and the second column is the time at which the capture
event occurs. This output format is useful for later post-processing by external tools (e.g. the “con-
vert.pl” utility ') to infer multiplications. When MCNP5 calls tallyx.F90 it passes in the current
tally value. The tallyx.F90 routine completely ignores the incoming value and sets the tally
score value to zero. It then determines if the tally is contributed at a collision, with what nuclide,
and if it is captured. If a capture occurs, then the tally score is set to unity. This process essentially
replicates an absorption tally.

To provide the list-mode capability while adhering to the mandate not to alter any MCNP base
files, two instances of programming acrobatics were required. First, because track-length tallies
are performed before a neutron actually knows what event it is undergoing, the collision mechanics
have to be performed twice. In the first pass within the tallyx routine, the random number state
is cached, the collision mechanics are followed to determine if a capture results, and the random
number state is restored. Conveniently, the collision mechanics directly follow the track-length
tally contributions, so this random-number acrobatics does not alter the flow of the code. Second,
to allow MPI execution, each MPI task has to write its own list-mode file. This, in the first pass
through tallyx an MPI task will determine whether or not it has opened its list-mode file, and
if not do so. Then on subsequent calls to tallyx the list-mode writes will be appended to that
already open file for that MPI task.

3.2 Basic Usage

The tallyx.F90 routine handles the list-mode output and tally by modification of a type 4 tally.
The user specifies the collision nuclide of interest by supplying its ZAID on the FU tally modifier
card corresponding to the type 4 tally. For example, a capture estimator for He-3 would be specified
for the F14 tally as

Fl4:n 1001
FU14 2003

Additionally, the capture resulting from a specific reaction type can be tallied. The user must
append the ZAID on the FU card with a ‘. and the MT number of the desired capture reaction,
generally 102-117. Because this tally is handled with the FU card, an FM card must also be
supplied to prevent MCNP5’s purging the necessary cross sections. The effects of the FM card are
ignored. For example, if one wishes to specify the (n, p) reaction (MT=103) in He-3 the correct
input would be

Fl14:n 1001
FU14 2003.103 $ assuming material 1 has He-3 in it the FM card prevents
FM14 1 1 163 $ purging the (n,p) reaction data from the cross sections

In addition to providing the list-mode output, the values produced by the FU modification should
replicate the results of a standard type 4 tally modified by an FM card. For example, the tally
results of the total absorption density tally normally specified by

F4:n 1001
FM4 -1 1 -2

should be the same as the tally results produced by

Fl4:n 1001
FU4 2003

provided material 1 is completely composed of He-3.

3.3 Tally Normalization

By default, tallies are normalized to the value given on the NPS card. Therefore, all tallies are nor-
malized per starting reaction NOT per starting particle. If the user desires the normalization
per starting particle, then the tally results should be multiplied by the expected number of starting
reactions (the value on the NPS card) and divided by the expected number of particles emitted from
those reactions.

For isotope i, the expected number of emitted neutrons (S '), is

(8); = mejt, (D

7

where m; is the mass of the ith isotope, e; is the number of neutrons emitted per unit mass and time,
and 7 is the time of emission. The number of expected spontaneous reactions (R); producing the

(§); neutrons is given by
m;e;t
(R); = . (2)

i

where v; is the expected number of neutrons emitted per spontaneous reaction (this value could be
unity).

The adjusted normalization value to normalize per particle is then given by

® 5

Sy sy,

= : 3)
S e,

The value above is the expected value of 1/v weighted against the neutron emission rate from each
reaction type.

3.4 List-Mode File(s)

More than one list-mode tally can be specified in a problem by having multiple instances of FU
cards modifying different type 4 tallies. For a sequential or OpenMP build of MCNP, a list-mode
output file will be created with the name ‘Imout ####°, where #### is the tally number preceded
by the appropriate number of zeros. For example, list-mode tally 14 would produce the list-mode
output file Imout_0014.

A MPI parallel build of MCNP creates a list-mode output file for each MPI slave task for each
list-mode tally. For example, if a four task MPI job is started containing list-mode tally 34, then
the files Imout_0034_0001, Imout_0034_0002, and Imout_0034_0003 will be created. The first set

8

of integers corresponds to the tally number, but the second set corresponds to the MPI slave task
writing to the file. Each slave task must write its own separate file to prevent simultaneous 10 to
each of the files.

The user should concatenate all the files containing the same tally number into a single file. This
can be quickly accomplished on a Linux or Unix system with the following command:

cat lmout_0034_* > Imout_0034

The number of lines in the concatenated Imout file should be the same as the number of lines in
the Imout if the problem were run sequentially.

By default the Imout files are APPENDED, NOT OVERWRITTEN. The user should take
care to appropriately remove or rename list-mode files between runs in the same directory.

References

[1] B. Temple. User’s Manual for the convert.pl PERL Script. Technical Report LA-UR-09—
05257, Los Alamos National Laboratory, 2009.

[2] X-5 Monte Carlo Team. MCNP-A General Monte Carlo N-Particle Transport Code, Version
5. Technical Report LA-UR-03-1987, Los Alamos National Laboratory, 2003.

A source.F90

I+ $1d: source.F90,v 1.3 2013/02/21 23:41:07 csolomon Exp §
! Copyright LANS/LANL/DOE — see file COPYRIGHT_INFO

subroutine source
! dummy subroutine. aborts job if source subroutine is missing.
! if nsr=0, subroutine source must be furnished by the user.
! at entrance, a random set of uuu,vvv,www has been defined. the
! following variables must be defined within the subroutine:
! xxx,yyy,zzz,icl ,jsu,erg,wgt,tme and possibly ipt,uuu,vvv,www.
! subroutine srcdx may also be needed.
use mcnp-_global
use mcnp-debug
#ifdef MULT
use event_log_-mod, only: BANK_.N_XN_F
use erprnt-mod, only: erprnt
implicit none

integer (i4knd) :: ib

real (dknd) :: fi

logical , save :: s_source_setup = .false.
logical :: s_do_expire = .false.

integer , parameter :: s_num._sf_zaids = 39

integer , parameter, dimension(s_num_sf_zaids) :: s_sf_zaids = &
& (/ 90230,
91231,
90232,
92232,
92233,
92234,
92235,
92236,
94236,
93237,
92238,
94238,
94239,
94240,
96240,
94241,
95241,
94242,
96242,
95243,
94244,
96244,
96246,
96248,
98248,
97249,
98249,
96250,
98250,
98252,
99253,
98254,
99254,
100254,
99255,
100255,
100256,
100257,
100258 /

! ref LA-8869-MS

R R R R R R R R R R R R R R R R R R RRRRRRIRRRRIRPRIRRRRIRRRR
- RRRRRRRRRRRRRRRRRRER

10

real (dknd), parameter, dimension(s_num_sf_zaids) :: s_sf_nubar = &
& (/ 2.14 _dknd,
1.93 _dknd ,
.14 _dknd ,
.71 _dknd ,
.76 _dknd ,
.81 _dknd ,
.86 _dknd ,
.91 _dknd ,
.13 _dknd ,
.05 _dknd ,
.01 _dknd ,
.22 _dknd ,
.16 _dknd ,
.16 _dknd ,
.39 _dknd ,
.25 _dknd ,
.27 _dknd ,
.15 _dknd ,
.52 _dknd ,
.42 _dknd ,
.30 _dknd ,
.69 _dknd ,
.18 _dknd ,
.11 _dknd,
.34 _dknd ,
.60 _dknd ,
.41 _dknd ,
.31 _dknd,
.53 _dknd ,
.76 _dknd ,
.93 _dknd ,
.89 _dknd ,
.95 _dknd ,
.96 _dknd ,
.97 _dknd ,
.73 _dknd ,
.01 _dknd ,
.85 _dknd ,
.03 _dknd /

! ref LA-8869-MS

R R R R R R R R R R R R R R R R R R R RRRRRRIRRIRIRIRRRRIRIRIRIRR
PULELULULULULULLWWYWWWWWWWRERRRPRPVPVPDPRRRRPODNDMNDN — — — —— N
R R R R R R R R R R R R R R R R R R R RRRIRRRRIRIRRIRIRRRRRRRR

integer , parameter :: s_pos_info_max_length = 8

integer , parameter :: s_num_pos_methods = 3
integer , parameter, dimension(s_num_pos_methods) :: s_pos_info_lengths = (/4,8,3/)

integer (i4knd), save :: s_nrxn, s_max._reject

integer (i4knd), allocatable , dimension(:), save :: s_cell, s_zaid, s_pos_method, s_edist,
s_tdist , s_nps, s_trans

real (dknd), allocatable, dimension(:), save :: s_prob, s_user_nubar

real (dknd), allocatable, dimension(:,:), save :: s_pos_info

integer (i4knd) :: s_ib, s_entry, s_itmp, s_itmp2, s_method, s_npar
real (dknd) :: s_fi, s_.dtmp, s_tmp_erg, s_tmp_uuu, S_tmp_-vvv, S_tmp_-wWww
character (len=120) :: s_stmp

real (dknd), dimension(3) :: s_uvw

real (dknd) :: s_rnd

integer , external :: namchg

!$OMP CRITICAL (SETUP_SOURCE)
if (.not. s_source_setup)then
call parseRdum ()

if((.not. s_do_expire) .and. idum(l) < O)then
call expirx (0, ’source’, ’ maximum.rejection._number_cannot_be._less_than._zero’)

11

elseif (idum(l) == 0)then
s-max._reject = 10000
else
s-max_reject = idum(1)
endif

if((.not. s_do_expire) .and. kpt(2) /= 0)then
call expirx (0, ’source’,’ multiplication._patch_requires._.”mode_.n”_exclusively’)
endif

if((.not. s_do_expire) .and. mcal /= 0)then
call expirx (0, ’source’,’multiplication_patch_does_not_work_with_multigroup’)

endif

if((.not. s_do_expire) .and. wcl(l) /= 0.)then

call expirx (0, source’,’multiplication_patch_.requires._analog.calculation’)
endif
s_source_setup = .true.
endif

!$OMP END CRITICAL (SETUP_SOURCE)

xxx = 0_dknd
yyy = 0_dknd
zzz = 0_dknd
erg = 14_dknd
jsu = 0_dknd
wgt = 1_dknd
tme = 0_dknd

if (s_do_expire) return
s-rnd = rang ()
do s_itmp=1, s_nrxn
if (s_rnd < s_prob(s_itmp))exit
enddo
icl = namchg(l,s_cell (s_itmp))

call samplePos ()

if (s_zaid(s-itmp) == 99999)then

s_npar = 1
else
if (s_zaid(s.itmp) < O)then
s_npar = s_acenus(s_user_nubar(s_itmp))
else
do s_itmp2=1, s_num_sf_zaids
if(s_zaid(s-itmp) == s_sf_zaids (s_-itmp2))exit
enddo
s_npar = s_acenus(s-sf_nubar (s_itmp2))
endif
endif

if (s_.npar == 0)then
nter = 14

paxtc(1,1,1) paxtc(l,1,ipt)—one
paxtc(2,1,1) = paxtc(2,1,ipt)—wgt
paxtc(3,1,1) = paxtc(3,1,ipt)—wgtxerg

paxtc (4,nter ,1) = paxtc(4,nter ,ipt)—one
paxtc(5,nter ,1) = paxtc(5,nter ,ipt)—wgt

paxtc (6,nter ,1) = paxtc(6,nter ,ipt)—wgtxerg
pwb (kpwb+ipt ,2,icl) = pwb(kpwb+ipt ,2,icl)-wgt
pac (kpac+ipt ,1,icl) = pac(kpac+ipt,l,icl)—one
pac (kpac+ipt ,2,icl) = pac(kpac+ipt,2,icl)—one

smultc (4) = smultc (4)-wgt

12

rlttc (3,2) = rlttc (3,2)-wgt
else
call smpsrc(tme, s_tdist(s_-itmp), s-ib, s_fi)

s_tmp_uuu = uuu
s_tmp_vvv = VvV
S_tMp_WWW = www

fiml (1) = fim(1,icl)

npa = 1
do s_itmp2=1, s_npar—1
call smpsrc(erg, s_edist(s_itmp), s_ib, s_fi)
vel = slitexsqrt(erg=(erg+twoxgpt(1)))/(erg+gpt(1l))
call isos(s_.uvw, lev)
uuu s_.uvw (1)
vvv = s_uvw (2)
www = s_uvw (3)

call bankit (BANK N_XN_F)

paxtc(l,1,1) = paxtc(l,1,ipt)+one
paxtc(2,1,1) paxtc(2,1,ipt)+wgt
paxtc(3,1,1) = paxtc(3,1,ipt)+wgtxerg
pwb(kpwb+ipt ,2,icl) = pwb(kpwb+ipt ,2,icl)+wgt
pac (kpac+ipt ,1,icl) = pac(kpac+ipt,l,icl)+one
pac (kpac+ipt ,2,icl) = pac(kpac+ipt,2,icl)+one
smultc (4) = smultc (4)+wgt

rlttc (3,2) = rlttc (3,2)+wgt

enddo
npa = 0
uuu = s_tmp-_uuu
VVV = s_tmp_vvv
WWW = S_tmp_-wWww
call smpsrc(erg, s_edist(s_itmp), s_ib, s_fi)
endif
return
contains

subroutine parseRdum ()
implicit none

integer (i4knd) :: i
logical :: s_done
real (dknd) :: s_tl

! SETUP PASS 1
s_.done = .false.
s-do_expire = .false.
s_itmp =1 ! rdum counter
s_entry = 1
do while(.not. s_done)

select case(s_entry)

case (1) ! look for a cell
if (rdum(s_itmp) /= O_dknd)then

s_nrxn = s_nrxn + 1
else
write (s_stmp,’(a,i4)’) ’“expected_cell_entry._at_rdum_entry.’, s_itmp
endif
s_entry = s_entry + 1
s_itmp = s_itmp + 1

case (2) ! look for a zaid or 99999=(alpha ,n)
if (rdum(s_itmp) == 0_dknd)then
s.nrxn = 0
write(s_stmp,’(a,i4)’) ’expected.zaid_entry._at.rdum.entry.’, s_itmp

13

endif

s_entry = s_entry + 1

if (rdum(s-itmp) < O)then ! user supplied nu—width
s_itmp = s_itmp + 2

else
s_itmp = s_itmp + 1 ! known ZAID

endif

case (3) !/ look for expected number of events
if (rdum(s_-itmp) == 0_-dknd)then

s_.nrxn = 0
write (s_stmp,’(a,i4)’) “expected_number_of_events_at_rdum.entry.’, s_itmp
endif
s_entry = s_entry + 1
s_itmp = s_itmp + 1
case (4) ! look for an energy distribution

if (rdum(s_itmp) == 0_dknd)then
s_-nrxn = 0

write (s_stmp,’(a,i4)’) ’expected.energy._distribution._number_at_rdum.entry.’, s_itmp
endif
s_entry = s_entry + 1

s_itmp = s_itmp + 1

case (5) ! look for a time distribution
if (rdum(s_itmp) == 0_dknd)then

s.nrxn = 0
write (s_stmp,’(a,i4)’) “expected._time_distribution_number_at_rdum_entry.’, s_itmp
endif
s_entry = s_entry + 1
s_itmp = s_itmp + 1
case (6) ! look for a position sampling method
! 1 = spherical 2 = cylindrical
! 3 = box 4 = rejection
s_method = int(nint(rdum(s_itmp)) ,idknd)
if (abs(s_-method) > s_num_pos_methods .or. s_method == 0)then
s_.nrxn = 0
write (s_stmp,’(a,i4)’) ’expected.position.sampling_method.+/-.(1-3)_at.rdum_entry.’,
s_itmp
endif
s_entry = s_entry + 1
if (s_method < 0)then
s_itmp = s_itmp + 2 !/ transformation applied
else
s_itmp = s_itmp + 1 !/ no transformation
endif

case (7) ! look for position sampling info
s_entry = 1
s_itmp = s_itmp + s_pos_info_lengths(abs(s-method))

end select

if (s.nrxn == 0)then

s_-do_expire = .true.
s-done = .true.
elseif (rdum(s_itmp) == O_dknd .and. s_entry == 1)then
s_done = .true.
endif
enddo

if (s_.do_expire)then
call expirx (0, source’, trim(s_stmp))
return

endif

allocate(s_cell(s_nrxn), &

14

s_zaid (s-nrxn),&

s_pos_method (s_nrxn),&

s_edist(s_nrxn),&

s_tdist(s_nrxn),&

s_nps(s_-nrxn),&

s_prob(s_nrxn),&

s_trans (s_nrxn),&

s_user_nubar(s_nrxn),&
s_pos_info(s_nrxn,s_pos_info_max_length))

PRRRrRrRRRR

s_.cell =0
s_zaid = 0
s_pos_method = 0
s_edist = 0

s_tdist = 0
s_trans = 0
s_nps = 0

s_prob = 0_dknd
s-user_nubar = 0_dknd
s_pos_info = 0_dknd

! READ PASS 2

s_nrxn = 0

s_.done = .false.
s_do_expire = .false.
s_itmp =1 ! rdum counter
s_entry = 1

do while(.not. s_done)
select case(s_entry)
case (1) !/ look for a cell
s_nrxn = s_nrxn+1l
s_cell(s_nrxn) = int(nint(rdum(s_itmp)), i4knd)

do icl = 1, mxa
if (ncl(icl) == s_cell(s_nrxn)) exit
enddo

if (icl > mxa)then

write (s_stmp,’(a,i4,a)’) ’specified.cell.’, s_cell(s-nrxn), ’.not_found.in.cell_cards’
s.nrxn = 0

endif

s_entry = s_entry + 1

s_itmp = s_itmp + 1

case (2) !/ look for a zaid or 99999=(alpha,n)
s_zaid (s_nrxn) = int(nint(rdum(s_itmp)), id4knd)
if (s_zaid(s_nrxn) < O0_dknd)then
s_user_nubar (s_nrxn) = rdum(s-itmp+1)
if (s_user_nubar(s_nrxn) <= 0_dknd)then

write (s_stmp,’(a,i4,a)’) ’nu_width_for_ZAID.’, abs(s-zaid(s_nrxn)), ’_must_exceed.0’
s_.nrxn = 0
endif
s_itmp = s_itmp + 2
else
do i=1, s_num_sf_zaids
if (s_zaid(s_nrxn) == s_sf_zaids (i)) exit
enddo
if(i > s_.num_sf_zaids .and. s_zaid(s_nrxn) /= 99999) then
write (s_stmp,’(a,i6)’) ’‘unknown._zaid.’, s_zaid(s_nrxn)
s_.nrxn = 0
endif
s-itmp = s_itmp + 1
endif
s_entry = s_entry + 1

case (3) !/ look for expected number of events
s_.nps(s_nrxn) = int(nint(rdum(s_itmp)), idknd)

15

if (s_nps(s-nrxn) <= 0)then
write (s_stmp,’(a,il0,a)’) ’number_of_.events.’, s_nps(s_nrxn), ’.must.exceed.0’

s.nrxn = 0
endif
s_entry = s_entry + 1
s_itmp = s_itmp + 1

case (4) ! look for an energy distribution
s_edist(s_nrxn) = int(nint(rdum(s-itmp)), i4knd)

do i=1, msd
if(s_edist(s_nrxn) == ksd(1,i)) exit
enddo

if(i > msd)then
write (s_stmp,’(a,i4,a)’) ’distribution._number.’, s_edist(s_nrxn), ’.not.found’

s.nrxn = 0
else

s_edist(s_nrxn) = i
endif
s_entry = s_entry + 1

s_itmp = s_itmp + 1

case (5) ! look for a time distribution
s_tdist(s-nrxn) = int(nint(rdum(s-itmp)), id4knd)

do i=1, msd
if (s_tdist(s_nrxn) == ksd(1,i)) exit
enddo

if(i > msd)then
write (s_stmp,’(a,i4,a)’) ’distribution.number.’, s_tdist(s-nrxn), ’.not.found’
s_.nrxn = 0

else
s_tdist(s_nrxn) = i
endif
s_entry = s_entry + 1
s_itmp = s_itmp + 1
case (6) ! look for a position sampling method
! 1 = spherical 2 = cylindrical
! 3 = box 4 = rejection
s_pos_method(s_nrxn) = int(nint(rdum(s-itmp)), i4knd)
s_entry = s_entry + 1
s_itmp = s_itmp + 1
if (s_pos_method(s_nrxn) < O)then
s_pos_method (s_nrxn) = abs(s_pos_method(s_nrxn))

s_trans(s_nrxn) = int(nint(rdum(s_-itmp)), id4knd)
do s_itmp2=1, mxtr

if (—trf(l,s_itmp2) == s_trans(s_nrxn))exit

enddo

if (s_itmp2 > mxtr)then
write (s_stmp,’(a,i4,a)’) ’“transformation._number.’, s_trans(s_-nrxn), ’_not_found’
s_.nrxn = 0

else
s_trans(s_nrxn) = s_itmp2

endif

s-itmp = s_itmp + 1

endif

case (7) ! look for position sampling info

s_pos_info(s_nrxn,l:s_pos_info_lengths (s_pos_method(s_nrxn))) = &
& rdum(s_itmp:s_itmp + s_pos_info_lengths(s_pos_method(s_nrxn))-1)
s_entry = 1

s_itmp = s_itmp + s_pos_info_lengths(s_pos_method(s_nrxn))

select case (s_pos_method(s-nrxn))
case (1) ! spherical
do i=1, msd ! check radial distribution
if (s_pos_info(s_nrxn ,4) == ksd(l,i)) exit

16

enddo
if(i > msd)then
write (s_stmp, ’(a,i4,a)’) ’spherical_source_distribution._number.’, int(nint(
s_pos_info(s_nrxn ,4)),idknd), ’_not_found’
s_nrxn = 0
else
s_pos_info(s_nrxn ,4) = i
endif

case (2) ! cylindrical
do i=1, msd ! check radial distribution

if (s_pos_info(s_nrxn,7) == ksd(l,i)) exit
enddo
if(i > msd)then
write (s_stmp, ’(a,i4,a)’) ’cylindrical_source_distribution_number.’, int(nint(
s_pos-info(s_nrxn,7)),i4knd), ’_not_found’
s_nrxn = 0
else
s_pos-info(s_nrxn,7) =i
endif

do i=1, msd ! check extent distribution

if (s_.pos_info(s_nrxn,8) == ksd(1,i)) exit
enddo
if (i > msd)then
write (s_stmp, ’(a,i4,a)’) ’cylindrical_source_distribution_number.’, int(nint(

s_pos_info(s_nrxn ,8)),i4knd), ’_not_found’
s_nrxn = 0

else
s_pos_info(s_nrxn,8) =i
endif
s_-tl = 0d0
do i=4.,6
s_tl = s_tl + s_pos_info(s_nrxn,i)=x2
enddo

s_tl = dsqrt(s-tl)
if(s_.tl < 1d-6)then
write (s_stmp,’(a,esl2.4,a,esl2.4,a,es12.4,2)") &
& ’cylinder.axis-(’, s-_pos-info(s_-nrxn,4), ’,’, s_pos_info(s_nrxn,5), *,’,
s_pos-info(s_nrxn,6), ’).unnormalizable’
s_nrxn = 0
else
s_pos_info(s_-nrxn ,4:6) = s_pos_info(s_nrxn ,4:6) / s_tl
endif

case (3) ! cartesian
do i=1, msd ! check x distribution

if (s_pos-info(s_nrxn,l) == ksd(1l,i)) exit
enddo
if(i > msd)then
write (s_stmp, ’(a,i4,a)’) ’cartesian._source._distribution._number.’, int(nint(
s_pos-info(s_nrxn,1)),i4knd), ’_not_found’
s_nrxn = 0
else
s_pos-info(s_nrxn,l) =i
endif

do i=1, msd !/ check y distribution

if (s_pos_info(s_-nrxn,2) == ksd(1,i)) exit
enddo
if(i > msd)then
write (s_stmp, ’(a,i4,a)’) ’cartesian_source_distribution._number.’, int(nint(

s_pos_info(s_nrxn,2)),i4knd), ’_not_found’
s_nrxn = 0
else
s_pos_info(s_nrxn,2) =i
endif

17

do i=1, msd ! check z distribution

if (s_pos-info(s-nrxn,3) == ksd(1,i)) exit
enddo
if(i > msd)then
write (s_stmp, ’(a,i4 ,a)’) ’cartesian_source._distribution._number.’, int(nint(
s_pos-info(s_nrxn,3)),i4knd), ’_not_found’
s_nrxn = 0
else
s_pos-info(s_nrxn,3) =i
endif

case (4) ! rejection
do i=1, msd ! check x distribution

if (s_pos_info(s_nrxn,l) == ksd(l,i)) exit
enddo
if(i > msd)then
write (s_stmp, ’(a,i4,a)’) ’rejection.source_distribution._.number.’, int(nint(
s_pos-info(s_-nrxn,1)),i4knd), ’_not_found’
s_.nrxn = 0
else
s_pos_info(s_nrxn,l) =i
endif

do i=1, msd ! check y distribution

if (s_pos-info(s-nrxn,2) == ksd(l,i)) exit
enddo
if(i > msd)then
write (s_stmp, ’(a,i4,a)’) ’rejection._source._distribution._.number.’, int(nint(
s_pos-info(s_nrxn,2)),i4knd), ’_not_-found’
s_nrxn = 0
else
s_pos-info(s_nrxn,2) =i
endif

do i=1, msd ! check z distribution

if (s_pos_info(s_nrxn,3) == ksd(1,i)) exit
enddo
if(i > msd)then
write (s_stmp,’(a,i4,a)’) ’rejection_source_distribution._number.’, int(nint(

s_pos-info (s_nrxn,3)),i4knd), ’.not.found’
s_nrxn = 0
else
s_pos_info(s_nrxn,3) =i
endif
end select

end select

if (s_.nrxn == 0)then

s_-do_expire = .true.
s_.done = .true.
elseif (rdum(s_itmp) == O_dknd .and. s_entry == 1)then
s_done = .true.
endif
enddo

do i=1, s_nrxn
s_prob(i) = real(s_nps(i), dknd) / real(sum(s_nps), dknd)

enddo
do i=s_nrxn, 2, -1

s_prob (i) = sum(s_-prob(l:i))
enddo

if (mcnp_opt_mpi)then
if (mynum == 1)then
call erprnt(1,3,0,0,0,0,0,0,”ensure_nps.equals._sum_of_histories_for_each_reaction””)

18

endif
else
if((.not. s_do_expire)
s_do_expire .true .
write(s_stmp, ' (a)’)

.and. sum(s_nps) /= npp)then

"sum.of_numbers_of_histories _for_each_reaction_must_equal._nps’

endif
endif
! do i=1, s_nrxn
! print *, i
! print =, ’s_cell = ’, s_cell(i)
! print %, ’s_zaid = ’, s_zaid(i)
! print *, ’'s_nps = ', s_nps(i)
! print %, ’s_edist = ’, s_edist(i)
! print %, ’'s_tdist = ’, s_tdist(i)
! print x, ’'s_pos_method = ', s_pos_-method(i)
! print %, 's_prob = ', s_prob(i)
! print x, ’s_user_nubar = ', s_user_nubar(i)
! print %, ’s_trans = ', s_trans(i)
! print %, ’'s_pos_info = ', s_pos_info(i,l:s_pos_info_max_length)
! enddo
if (s_do_expire)then
call expirx (0, ’source’, trim(s_stmp))
endif
return

end subroutine parseRdum

subroutine samplePos ()
implicit none

real (dknd) s_.rad , s_ext, s_zu, s_zv, s_zw, s_ph, s_xp, s_yp, s-tl, s_t2, &
& xx, yy, zz
real (dknd), dimension (3) s_dir
integer s-i, s.j
logical s_do_expire , s_done
integer , parameter s_.max_reject = 10000
s_do_expire = .false.
select case(s_pos_method(s_itmp))
case(l) ! sphere
s_i =1
s_j =1
do while(s_i /= 0 .and. s_j <= s_max._reject)
call smpsrc(s_rad, int(nint(s_-pos_info(s_itmp ,4)), i4knd), s_ib, s_fi)

call isos(s_dir ,0)

xxx = s_pos_info(s_itmp,1) + s_dir(l)=s_rad

yyy = s_pos_info (s_itmp ,2) + s_dir(2)=s_rad

zzz = s_pos_info(s_itmp ,3) + s_dir(3)=*s_rad

if (s_trans(s_itmp) /= 0)then
XX = XXX
Yy = Yyyy
72z = 7227
xxx = trf(S5,s_trans(s_itmp))*xx + trf(6,s_trans(s_itmp))=*yy + &
& trf (7,s_trans (s-itmp))*zz + trf(15,s_trans (s_itmp))
yyy = trf(8,s_trans(s_itmp))*xx + trf(9,s_trans(s_.itmp))=*yy + &
& trf (10,s_trans (s-itmp))*zz + trf(16,s_trans (s_itmp))
zzz = trf(l1,s_trans(s-itmp))*xx + trf(12,s_trans(s-itmp))*yy + &
& trf (13,s_trans (s-itmp))*zz + trf(17,s_trans (s_itmp))

endif

call chkcel(icl ,2,s_i)
S_j s_j + 1

19

enddo
case(2) !/ cylinder

s.i =1

s_j =1

do while(s_i /= 0 .and. s_j <= s_max_reject)
call smpsrc(s_rad ,int(nint(s_pos_info(s_itmp ,7)), id4knd), s_ib, s_fi)
call smpsrc(s_ext,int(nint(s_pos_info(s_itmp ,8)), i4knd), s_.ib, s_fi)

s_zu = s_pos_info (s_itmp ,4)=*s_ext
s_zv = s_pos_info (s-itmp ,5)*s_ext
s_.zw = s_pos_info (s_itmp ,6)*s_ext

s_-ph = rang () *2.%pie

s_.xp = s_rad=cos(s_ph)

s_.yp = s-_rad=sin(s_ph)

s_-tl = sqrt(s_-pos-info (s-itmp ,4)=**2+s_pos_info (s-itmp ,5) *xx2)

xxXx = s_pos-info (s_itmp ,1)
yyy = s_pos_info (s_itmp ,2)
zzz = s_pos_info (s_itmp ,3)

if(s_tl1/=0.) then
s_t2 = 1./s_tl
XXX = XXX+s-t2*(s_pos_info (s_itmp ,4)*s_pos_info (s_itmp ,6)*s_xp—s_pos_info (s_itmp ,5)=*
s_yp)+s-zu
yyy = yyy+s-t2«(s_pos_info (s_itmp ,5)*s_pos_info (s_itmp ,6)*s_xp+s_pos_info (s_itmp ,4)=*
S_.yp)+s_-zv

227 = 2ZZ—S_-t]l *S_Xp+S_zW
else

XXX = XXX+S_Xp

YYy = Yyy+s-yp

7227 = ZZZ+S_IW
endif

if (s_trans(s-itmp) /= 0)then

XX = XXX
Yy = Yyyy
7z = 7277
xxx = trf(S5,s_trans(s-itmp))*xx + trf(6,s_trans(s-itmp))=*yy + &
& trf(7,s_trans (s_itmp))*zz + trf(15,s_trans(s_-itmp))
yyy = trf(8,s_trans(s-itmp))*xx + trf(9,s_trans(s-itmp))=*yy + &
& trf (10,s_trans (s_itmp))*zz + trf(16,s_trans(s_itmp))
zzz = trf(l11,s_trans(s-itmp))*xx + trf(12,s_trans(s_-itmp))*yy + &
& trf (13,s_trans (s_itmp))*zz + trf(17,s_trans(s_itmp))

endif

call chkcel(icl ,2,s_1)
s.j = s-j +1
enddo

case(3) ! box
s_i =1
s_j =1
do while(s_i /= 0 .and. s_j <= s_max_reject)
call smpsrc(xxx,int(nint(s-pos-info(s_itmp,1)), id4knd), s_ib, s_fi)
call smpsrc(yyy,int(nint(s_pos_info(s_itmp ,2)), idknd), s_ib, s_fi)
call smpsrc(zzz,int(nint(s_-pos-info (s_itmp ,3)), id4knd), s_ib, s_fi)

if (s_trans(s_-itmp) /= 0)then

XX = XXX
Yy = Yyyy

7z = 7272

xxx = trf(S5,s_trans(s-itmp))*xx + trf(6,s_trans(s-itmp))=*yy + &
& trf(7,s_trans (s_itmp))*zz + trf(15,s_trans(s_itmp))

yyy = trf(8,s_trans(s-itmp))*xx + trf(9,s_trans(s-itmp))=*yy + &
& trf (10,s_trans (s_itmp))*zz + trf(16,s_trans(s_itmp))

20

7727 =
&
endif

call chkcel

s_j = s_j +
enddo
end select

if ((.not. s_do_e

(icl,2,s_i)
1
xpire) .and. s_i

write (s_stmp,’(a,i6)’) &

& ’failed . to_sample._a.starting._position.in.cell.’,

call
endif

expirx (0

,’source’ ,s_stmp)

end subroutine samplePos

function
implicit none

s_acenus (tn)

/= 0)then

s_cell (s_itmp)

trf (11,s_trans (s-itmp))*xx + trf(12,s_trans(s_itmp))*yy + &
trf (13,s_trans (s-itmp))*zz + trf(17,s_trans (s_itmp))

real (dknd) s_acenus [# of neutrons emitted from this fission.

real (dknd), intent(in) tn ! value of nubar for fissionable isotope.

integer , parameter nb = 30 ! number of values in the nu—bar shift table.

integer i,j,id,il ,iu,is ,mn,na,nn

real (dknd) a,b,x1,x2,vb,w,w2

real (dknd), parameter tv(nb) = & ! values of (tn+0.5)/width_nu.
& (/ 1.9857d0, 2.0022d0, 2.0192d0, 2.0369d0, 2.0552d0, 2.0743d0, 2.0943d0, &
& 2.1151d0, 2.1369d0, 2.1599d0, 2.1841d0, 2.2097d0, 2.2369d0, 2.2659d0, &
& 2.2971d0, 2.3307d0, 2.3673d0, 2.4075d0, 2.4521d0, 2.5023d0, 2.5600d0, &
& 2.6281d0, 2.7114d0, 2.8199d0, 2.9785d0, 3.2980d0, 3.3597d0, 3.4379d0, &
& 3.5455d0, 3.7227d0 /)

real (dknd), parameter bs(nb) =& ! nu shift values for Gaussian multiplicity sampling.
& (/ 0.0255d0, 0.0245d0, 0.0235d0, 0.0225d0, 0.0215d0, 0.0205d0, 0.0195d0, &
& 0.0185d0, 0.0175d0, 0.0165d0, 0.0155d0, 0.0145d0, 0.0135d0, 0.0125d0, &
& 0.0115d0, 0.0105d0, 0.0095d0, 0.0085d0, 0.0075d0, 0.0065d0, 0.0055d0, &
& 0.0045d0, 0.0035d0, 0.0025d0, 0.0015d0, 0.0005d0, 0.0004d0, 0.0003d0, &
& 0.0002d0, 0.0001d0 /)

id = s_zaid(s_itmp) ! zaid number for collision isotope.

iu = 1; is =1 ! iu = upper do—loop index and is = do—loop stride.

if (id==92235) then
iu = 2

elseif (id==94239) then
iu = 3
is =2

endif

if (width_nu==zero) then

if (ifisnu==0

multiplicit

! select fissionable

select case(
case(92233)
w = 1.070d0
case(92235)
w = 1.088d0
case(92238)
w= 1.116d0
case(94239)
w = 1.140d0
case(94241)
w = 1.150d0
case default
na = id —(id
w = 0.00733

end select

.or.

y moments.
isotope
id)

/1000) 1000 !/
8d0x*(na+1.)-0.64d0

ifisnu==1) then

! use reevaluation fitting first

21

get the atomic weight of the fissioning

three factorial

id to be sampled for number of fission neutrons.

isotope id.

elseif (ifisnu==2) then ! sample using the terrell width values.
! select fissionable isotope id to be sampled for number of fission neutrons.
select case(id)
case(92235)
! ignore energy—dependent (1.25 and 4.8 mev) widths because of large errors (0.06).
w = 1.072d0 ! + or — 0.021 (80 kev)
case(92238)
w = 1.23d0 ! + or — 0.08 (1.5 mev)
case(94239)
w = 1.14d0 !+ or - 0.07 (80 kev)
case(94240)
w= 1.109d0 !/ + or — 0.012
case(92233)
w = 1.041d0 ! + or — 0.041 (80 kev)
case(94236)
w = 1.11d0 !+ or - 0.11
case(94238)
w= 1.115d0 ! + or — 0.023
case(94242)
w = 1.069d0 ! + or — 0.035
case(96242)
w = 1.053d0 ! + or - 0.013
case(96244)
w = 1.036d0 ! + or — 0.018
case(98252)
w = 1.207d0 ! + or — 0.012
case default
w = 1.079d0 ! + or — 0.007
end select

endif

else
! use user input width for Gaussian sampling for all fissionable isotopes (b=0).
w = width_nu

endif

! use Gaussian sampling for fission neutron multiplicity .
do
x1 = twoxrang ()—one
X2 = x1#x2+rang () **2
if (x2<=one) exit
enddo
x1 = xlssqrt(—twoxlog(x2)/x2)

! find value for nu—bar shift b for non—truncated Gaussian sampling.
b = zero ! amount subtracted from nu—bar (tn) for more accurate nu-bar.
vb = (tn+half)/w
if (vb<=tv (1)) then
! being below the table will cause a slight over prediction of nu—bar.
b = bs(1)
elseif (vb<=tv(nb)) then
do i = 2,nb-1
if (vb<=tv (i)) exit
enddo
b = bs(i—-1)+(bs(i)=bs(i—1))*(vb=tv(i—1))/(tv(i)—tv(i-1))
endif

! set the number of neutrons selected from this distribution.

nn = max(0,int (x1sw+tn-b+half)) [set negative number of neutrons to zero.
s_acenus = nn

! if(nn==0) then ! terminate 0 fission neutrons to loss to fission.

! nter = 14

! endif

return
end function s_acenus

#else

22

implicit real(dknd) (a-h,o0-z)
call expirx (0, ’source’,’you_need_a_source_subroutine.’)
return

#endif

end subroutine source

23

B tallyx.F90

'+ $Id: tallyx .F90,v 1.1.1.1 2011/02/24 20:24:56 csolomon Exp $
! Copyright LANS/LANL/DOE — see file COPYRIGHT_INFO

subroutine tallyx (t,ib)
! dummy for user—supplied tallyx subroutine.
!' t is the input and output tally score value.
! ib controls scoring. see the user’s manual.
use mcnp-global
use mcnp.-debug

#ifdef MULT
implicit none
character(len=5), parameter :: t_filebase = "lmout”
character (len=256), save :: t_filename
integer , dimension(9), save :: t_tal_ids = 0
integer , allocatable , dimension(:), save :: t_last_cell
real (dknd), allocatable , dimension(:), save :: t_last_time
real (dknd), allocatable , dimension(:), save :: t_last_tal
logical , save :: t_threads_allocated = .false.

real (dknd) :: t
integer (i4dknd) :: ib

integer (i8knd) :: t_seed, t_count
integer (i8knd) :: t_i, t_zaid, t_itmp, t_id, t_unit
real (dknd) :: t_.dtmp, t_score

! backup variables

integer (i4knd) :: t_jsu, t_ntyn, t_iex , t_iexp , t_mtp
logical :: t_capture
real (dknd), extermnal :: getxs

!$OMP CRITICAL (SETUP_TALLY)
do t_id=1, size(t_tal_ids)
if (t_tal_ids(t_.id) == 0) exit
if(t_tal_ids(t_.id) == jptal(l,ital))exit
enddo
if(t.id > size(t_tal_ids))then
call expirx (0, tallyx’,’too_many.list._.mode_tallies ’)
endif

if (t_tal_ids(t_id) == 0)then
t_tal_ids (t_id) = jptal(l,ital)
t_unit = 990 + t_id
if (mcnp_opt_mpi)then
write (t_filename ,’(a,a,i4.4,a,i4.4)’) t_filebase, *_’, jptal(l,ital),
open(unit=t_unit, file=trim(t_filename), position="append’)

else
write(t_filename , (a,a,i4.4)’) t_filebase, ’_’, jptal(l,ital)
open(unit=t_unit, file=trim(t_filename), position="append’)
endif

if (.not. t_threads_allocated)then
allocate(t_last_cell(ntasks), &
& t_last_time (ntasks), &
& t_last_tal (ntasks))
t_last_cell =0
t_-last_time = 0_dknd
t_threads_allocated = .true.
endif

if (jptal(2,ital) /= 4)then
call expirx (0, tallyx’

24

5

,"multiplication_patch_only_works_with_f4_tally)

5

mynum

endif

if (
call
endif
else
t_unit
endif

iptal (3,1,ital)
expirx (0, tallyx

5

990 + t_id

-1)then
,’no_.collision.nuclide .found_on_FU_card’)

/$OMP END CRITICAL (SETUP_TALLY)

t_score
if (pmf

call RN_query (

= zero
== min(pmf,

dls

t_jsu = jsu

t_ntyn = ntyn

t_iex = iex

t_iexp = iexp

t-mtp = mtp

call t_colidn

if (t_capture)then

iptal (3,4,ital)-1

t_zaid = nxs(2,iex)
do ibu=1,
if (t_zaid == int(

))then
seed=t_seed , c

ount=t_count)

tds (iptal (3,1,ital)+ibu),

t-dtmp = tds(iptal(3,1,ital)+ibu) — int(
if (dabs(t_.dtmp) < 1d-6)then

t_score
if (icl /=
& .or.

ital /=

t / pmf
t_last_cel

I (ktask+1)

!$OMP CRITICAL (WRITE_LIST_-MODE)
write (t_unit,’(i8,2x,f20.5)") ncl(icl), tme+pmf/vel
!$OMP END CRITICAL (WRITE_LIST_-MODE)

t_last_cell (ktask+1) =

icl

.or.
t_last_tal (ktask+1))then

tme+pmf/vel /=

t-last_time (ktask+1) = tme+pmf/vel

i4knd))then

tds(iptal(3,1,ital)+ibu), i4knd)

tme+pmf/vel /=

t_last_tal (ktask+1) = ital
endif
exit
else
t.itmp = int(nint(t_-dtmp), id4knd)
do while(t_itmp == 0 .or.
t-dtmp = 10d0 * t_dtmp
t_itmp = int(nint(t_dtmp), idknd)
enddo
if (rang () <= getxs(t_itmp)/getxs(101))then
t_score =t / pmf
if (icl /= t_last_cell (ktask+1) .or.
& .or. ital /= t_last_tal (ktask+1))then

!$OMP CRITICAL (WRITE_LIST_-MODE)
write (t_unit ,’(i8,2x,f20.5)") ncl(icl), tme+pmf/vel
!$OMP END CRITICAL (WRITE_LIST_MODE)

t_last_cell (ktask+1) =

icl

t_last_time (ktask+1) = tme+pmf/vel

t-last_tal (ktask+1) =

endif
exit
endif
endif
endif
enddo
endif
jsu = t_jsu
ntyn = t_ntyn
iex = t_iex
iexp = t_iexp
mtp = t_mtp

ital

25

t_last_time (ktask+1) &

dabs(t_dtmp — nint(t_-dtmp)) > 1d-6)

t_last_time (ktask+1) &

co

su

call RN_init_particle(npstc)

do t_i=1, t_count
t.dtmp = rang ()
enddo
endif

t = t_score
return

ntains

broutine t_colidn

! calculate the collision of a neutron with a nucleus.

use mcnp_global

use event_-log_-mod, only
use mcnp.-debug

use ral_mod

use kadjoint_mod, only

implicit
real (dknd)

implicit real(dknd) (a-h,
integer (i4knd) (i-n)
vr(3), uvw(3)

integer :: id_old

eventp ,

do_any_kadjoint ,

0-27)

! save the incoming direction.
uold (1) = uuu

EVENTP_COLLISION, BANK_-N_XN_F

kadjoint_banking

uold (2) = vvv
uold (3) = www
jsu =0
ntyn = 0
! if(mcal==2) go to 290
sf = wtfasv
mk = mat(icl)
if (mk==0) call expirx(l,’colidn’, collision_in.void.”)
m = jmd(mk)
ml = m

call ra_ncheck(ncheck, ¢

if (ncheck<0) then
if(c>totm) go to 245

if (npq(mk)==1) go to

else

! sample the nuclide, using

if (npg(mk)==1) go to
¢ = rang () *totm

endif
do m = ml,jmd (mk+1)-2
¢ = c—rtc(krtc+5,Ime(1,m))=+fme (m)

if(¢<0.) go to 20

enddo

20
i
i

i
i
i

!
!
!
!
!

mtp = 2

continue
ex = Ime(1,m)
exp = m

mpan ipan(icl)+m-ml
if(mcal==1) go to 300
et = Imt(m)

f(erg>esa(iet)) iet =
f(rtc(krtc+11,iex)>=0.

sk sk sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok ok sk sk skosk

if(kpt(2)/=0) then
if(gwt(icl)/=-1.e6)
if((jxs(12,iex)/=0
if(tme<tco(2))

)

20

20

0
) et

then
.and.
then

the cumulative

=0

make photons

npikmt==0)

total cross section.

sk sk sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk skosk sk ok

.or. totgpl/=0.) then

26

call acegam
endif
if(kdb/=0) return
endif
endif
endif

./ sk 3k 3k sk sk ok sk 3kok skok 3kok sk ok 3kosk sk ok 3k ok 3k ok sk ok kok ok C(lpture 3k 3k 3k sk sk sk skosk skok sk sk skok sk sk sk sk sk sk sk sk skok sk sk sk sk ok sk
! calculate fission separately in the kcode case.
if(nsr==71) then
call colidk
endif
el = eg0
if(kdb/=0) return
pan(kpan+1,1,mpan) = pan(kpan+1,1,mpan)+1.
pan(kpan+1,2,mpan) = pan(kpan+1,2,mpan)+wgt

e e LSS

! sample analog capture if required.
if (wel(1)==0. .or. erg<=emcf(1l)) then
tl = rtc(krtc+3,iex)+rtc (krtc+8,iex)
r = rang ()*rtc(krtc+5,iex)
if (tl<r)then

t_capture = .false.
else
t_capture = .true.
endif
! i =3
! if(r>=rtc(krtc+3,iex)) i =4
! pan(kpan+1,i,mpan) = pan(kpan+1,i,mpan)+wgt
! nter = 2%i+6
! if(krflg/=0) call eventp(EVENTP_COLLISION)
! if(iptr/=0) call ptrak(4)
! if(nsr==71) then
! rittc(2,1) = rlttc(2,1)+wgtxtme
! rittc(2,2) = rittc(2,2)+wgt
! if(i==4) rittc(4,1) = rittc(4,1)+wgtxtme
! sumktc (2) = sumktc(2)+wgtxrtc(krtc+10,iex)«rtc(krtc+8,iex)/tl
! endif
endif
return

end subroutine t_colidn

#else
implicit real(dknd) (a-h,o-z)

/
! print a warning the first time this dummy tallyx is called.
if (jtlx == 0)call errprn(l,jtlx ,0,zero,zero,’.’, . &

& ’a_tallyx._subroutine_is_ordinarily -needed_with_fu_cards.’)
return

#endif

end subroutine tallyx

27

	Introduction
	Modified Source Routines
	Source Implementation Description
	Basic Usage
	Multiple Starting Reaction Types
	Other Input Options
	Starting Reactions Versus Starting Particles

	List-Mode Tally Modifications
	Tally Implementation Description
	Basic Usage
	Tally Normalization
	List-Mode File(s)

	source.F90
	tallyx.F90

