

LA-UR-14-22860

Approved for public release; distribution is unlimited.

Title: Radiological Characterization Technical Report on Californium-252  
Sealed Source Transuranic Debris Waste for the Off-Site Source  
Recovery Project at Los Alamos National Laboratory

Author(s): Feldman, Alexander

Intended for: Report

Issued: 2014-04-24



Disclaimer:

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes.

Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

**OSR-TD-020**

**Radiological Characterization Technical Report  
on Californium-252 Sealed Source Transuranic Debris Waste  
for the Off-Site Source Recovery Project  
at Los Alamos National Laboratory**

**Revision 0**

**March 21, 2014**

---

Cristy Abeyta: OSRP Team Leader

**APPROVED FOR ISSUE**



### **RECORD OF REVISION**

| <b>Revision<br/>Number</b> | <b>Date<br/>Approved</b> | <b>Description of Revision</b> |
|----------------------------|--------------------------|--------------------------------|
| 0                          | 03/21/2014               | Initial issue.                 |

## CONTENTS

|                                                                                                |    |
|------------------------------------------------------------------------------------------------|----|
| Abstract.....                                                                                  | 6  |
| 1      Introduction.....                                                                       | 5  |
| 2      Background.....                                                                         | 7  |
| 2.1     Californium-252 Production .....                                                       | 7  |
| 2.2     Californium-252 Source Descriptions .....                                              | 7  |
| 3      Technical Approach.....                                                                 | 8  |
| 4      Development of Representative Radionuclide Distributions.....                           | 10 |
| 5      Determination of the Quantity of Nuclear Material in Sealed Sources .....               | 16 |
| 6      Characterization of Cf-252 Sources in Waste Drums.....                                  | 27 |
| 7      Uncertainty Analysis.....                                                               | 30 |
| 7.1     Manufacturer's Source Material Uncertainty .....                                       | 30 |
| 7.2     Californium Isotopic Distribution Uncertainty .....                                    | 30 |
| 7.3     Uncertainty in Other Radionuclide Impurity Levels .....                                | 31 |
| 7.4     Uncertainty in the Decay Time from the REDC Production Date to the Shipping Date ..... | 32 |
| 7.5     Total Uncertainty .....                                                                | 33 |
| 7.6     Uncertainty for Derived Parameters .....                                               | 33 |
| References.....                                                                                | 35 |

## FIGURES

|             |                                                                                                               |    |
|-------------|---------------------------------------------------------------------------------------------------------------|----|
| Figure 2-1. | Californium-252 production scheme by neutron capture. ....                                                    | 7  |
| Figure 4-1. | Example of AK information on impurity levels in the $^{252}\text{Cf}$ product. ....                           | 11 |
| Figure 4-2. | Example of mass spectrometry measurements taken to determine isotopic distribution in the Cf-252 product..... | 12 |
| Figure 4-3. | Projected Cf-252 compositions for Campaign 69 based on REDC physics calculations. ....                        | 13 |
| Figure 5-1. | Example of a calibration document certificate. ....                                                           | 19 |
| Figure 5-2. | Example of a sealed source certificate.....                                                                   | 20 |
| Figure 5-3. | Example of an information sheet for a source certificate (Page 1).....                                        | 21 |
| Figure 5-4. | Example of an information sheet for a source certificate (Page 2).....                                        | 22 |
| Figure 5-5. | Example of a manufacturer's sales catalogue (Page 1) .....                                                    | 23 |
| Figure 5-6. | Example of a manufacturer's sales catalogue (Page 2) .....                                                    | 24 |
| Figure 5-7. | Example of a source test report.....                                                                          | 25 |
| Figure 5-8. | Example of a source shipping record.....                                                                      | 26 |
| Figure 6-1. | Example of the Source Inputs Datasheet .....                                                                  | 27 |
| Figure 6-2. | Example of the Characterization Spreadsheet Report. ....                                                      | 29 |



## TABLES

|            |                                                                                                                  |    |
|------------|------------------------------------------------------------------------------------------------------------------|----|
| Table 3-1. | Radionuclides Required to Be Reported.....                                                                       | 9  |
| Table 4-1. | Background Information on the Californium and Curium Decay Isotopes for the Cf-252 Source Material.....          | 10 |
| Table 4-2. | Californium Isotopic Data from Processing Campaigns .....                                                        | 14 |
| Table 4-3. | Average Activity Distribution of the Californium Isotopes in Cf-252 Source Material .....                        | 14 |
| Table 4-4. | Cesium-137 Contribution from Spontaneous Fission.....                                                            | 15 |
| Table 6-1. | Reported “Less than” Values for the Upper-Bound Activities of Decay Products of Cf-252 in a Drum of Sources..... | 28 |
| Table 7-1. | Summary of Uncertainty Elements for Cf-252 Sources .....                                                         | 30 |
| Table 7-2. | Uncertainties in the Isotopic Distribution for Cf-252 Source Material .....                                      | 31 |
| Table 7-3. | Summary of the Treatment of Uncertainties in the Impurity Levels .....                                           | 31 |
| Table 7-4. | Uncertainty in Each Radionuclide as a Function of the Uncertainty in the Decay Time .....                        | 32 |
| Table 7-5. | Summary of the Total Uncertainty Derivation .....                                                                | 33 |
| Table 7-6. | Total Uncertainties for Derived Parameters .....                                                                 | 34 |

## ACRONYMS

|       |                                                |
|-------|------------------------------------------------|
| AK    | Acceptable Knowledge                           |
| DOE   | Department of Energy                           |
| DOT   | Department of Transportation                   |
| FGE   | Fissile Gram Equivalent                        |
| HFIR  | High Flux Isotope Reactor                      |
| ID    | Identification                                 |
| MCNP  | Monte Carlo N-Particle (Code)                  |
| NMMSS | Nuclear Materials Management Safeguards System |
| NRC   | Nuclear Regulatory Commission                  |
| ORNL  | Oak Ridge National Laboratory                  |
| OSRP  | Off-Site Source Recovery Program               |
| REDC  | Radiochemical Engineering Development Center   |
| SFC   | Special Form Capsule                           |
| SRS   | Savannah River Site                            |
| TRU   | Transuranic                                    |
| US    | United States                                  |
| WAC   | Waste Acceptance Criteria                      |
| WIPP  | Waste Isolation Pilot Plant                    |



## ABSTRACT

This document describes the development and approach for the radiological characterization of Cf-252 sealed sources for shipment to the Waste Isolation Pilot Plant. The report combines information on the nuclear material content of each individual source (mass or activity and date of manufacture) with information and data on the radionuclide distributions within the originating nuclear material. This approach allows for complete and accurate characterization of the waste container without the need to take additional measurements.

The radionuclide uncertainties, developed from acceptable knowledge (AK) information regarding the source material, are applied to the summed activities in the drum. The AK information used in the characterization of Cf-252 sealed sources has been qualified by the peer review process, which has been reviewed and accepted by the Environmental Protection Agency.

---

## 1 INTRODUCTION

Sealed sources are manufactured for a variety of uses, including nuclear batteries, smoke detectors, neutron flux generators, and threshold detectors, and for numerous applications. Over the years, a significant number of these sealed sources that were manufactured for a wide range of applications have ceased to be used and have been declared to be excess. Under Public Law 99-240, titled the "Low-Level Waste Policy Amendments Act of 1985" (Reference 1), Congress assigned to the United States (US) Department of Energy (DOE) the responsibility for the management and disposal of "Greater-than-Class C" waste as defined in the Nuclear Regulatory Commission's (NRC's) 10 CFR Part 61 regulations (Reference 2), which includes actinide sealed sources. In response to Public Law 99-240, DOE established the Off-Site Source Recovery Project (OSRP) for the specific purposes of recovering, managing, and disposing of excess or unwanted actinide sealed sources. This report addresses the radiological characterization of Cf-252 sealed sources. In the early production period of Cf-252, small quantities of the source material were produced at both the Savannah River Site and Oak Ridge National Laboratory (ORNL). As the program matured, larger quantities were produced at ORNL in the High Flux Isotope Reactor (HFIR) and purified in the Radiochemical Engineering Development Center (REDC) at ORNL. This material was offered for sale to commercial entities or other DOE laboratories where the sealed sources were fabricated. The Cf-252 sealed sources were intended to be used as neutron sources for medical applications, activation analysis, and other neutron applications. The sealed sources addressed in this report were declared to be excess and are no longer useful. Further details on this waste stream are provided in Reference 3.

Because no facility other than the Waste Isolation Pilot Plant (WIPP) currently offers safe and secure permanent disposal capabilities, it is intended that the actinide-bearing sealed sources be disposed of as transuranic (TRU) waste at WIPP. As such, the sealed source waste packages must meet the WIPP waste acceptance criteria (WAC) (Reference 4). These criteria include the



requirement for the radiological characterization of waste packages to identify the quantities and types of radionuclides in the package before they are disposed of. The effort described in this report provides the radiological characterization of actinide (Cf-252) sealed source waste packages needed to be in compliance with the WIPP WAC.

## 2 BACKGROUND

### 2.1 Californium-252 Production

In 1959, Savannah River Site (SRS) became involved in the production of transplutonium elements caused by the irradiation of Pu-239. A Cf-252 source fabrication was initiated in the 1960s at SRS as part of a market evaluation. The demand for Cf-252 sources resulted in the need to increase the production of the source material. Ultimately, the californium production program was transferred to the REDC at ORNL. The Cf-252 is produced from Pu-239 by 13 successive neutron captures, as shown in Figure 2-1.

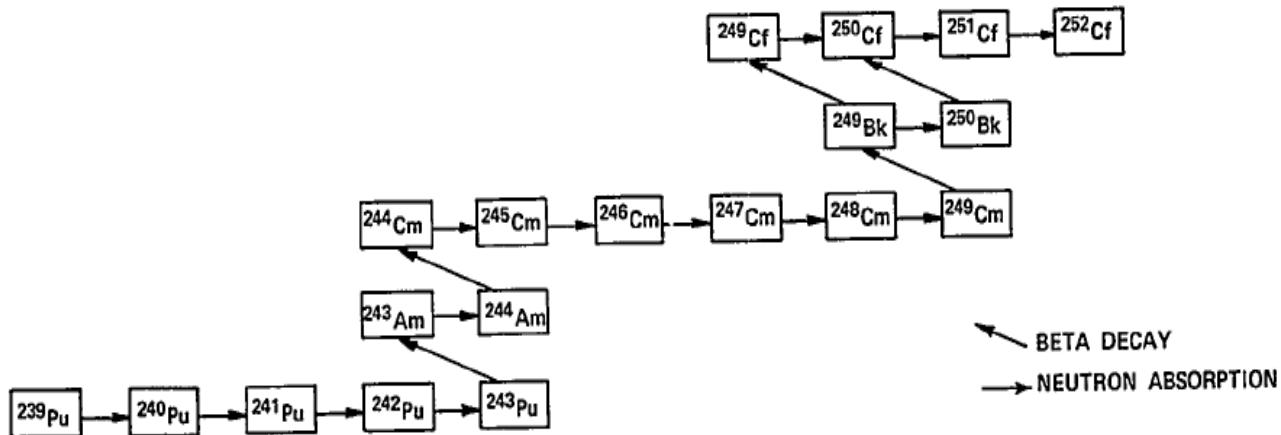



Figure 2-1. Californium-252 production scheme by neutron capture.

At ORNL, the Cf-252 is produced from the irradiation of heavier actinides (curium and americium), which are separated from the californium and recycled back to the reactor to produce more californium. The average isotopic mass continues to increase with the recycling. Curium-244 ultimately becomes the primary actinide, along with large quantities of Cm-246 and lesser quantities of americium. The heavier feed material reduces the irradiation times to less than a year. The irradiations are completed exclusively in the HFIR, with the final separations and purifications occurring in the REDC.

### 2.2 Californium-252 Source Descriptions

The sizes and configurations of the Cf-252 sources vary with the application or intended use of the source. Neutron sources are offered by ORNL and commercial suppliers in sizes ranging from 1  $\mu$ Ci up to 50  $\mu$ Ci in the form of fission foils. Some source designs are licensed to contain up to 50 mg of Cf-252 (27 Ci). A few sources have been fabricated with a single encapsulation, but the large majority is double encapsulated.



### 3 TECHNICAL APPROACH

The approach proposed for the radiological characterization of Cf-252 sealed source waste is to use the extensive documentation and information on the nuclear material content of each source (mass or activity of material used) and information and data on the radionuclide distributions within the nuclear material. This information allows for complete characterization without the need to take additional measurements.

The WIPP WAC (Reference 4) requires that, as a minimum, the masses and activities of the following 10 radionuclides (if present) be reported:

|        |        |
|--------|--------|
| Am-241 | U-233  |
| Pu-238 | U-234  |
| Pu-239 | U-238  |
| Pu-240 | Sr-90  |
| Pu-242 | Cs-137 |

In addition to the above 10 radionuclides, other radionuclides are required to be reported that, in the aggregate, constitute not less than 95% of the total radiological hazard based on the  $A_2$  values given in US Department of Transportation (DOT) packaging regulations, 49 CFR, *Transportation*, Part 173, *Shippers—General Requirements for Shipments and Packagings*, Section 435, Tables A1 and A2, Values for Radionuclides (Reference 5). Also, the “Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC)” (Reference 6) requires that 95% of the decay heat be accounted for in the report of the radionuclides in a package, plus any radionuclide that contributes >1% of the total.

The relative concentrations of the radionuclides in the source material were evaluated by the REDC at ORNL to determine the reporting requirement for parameters, such as fissile gram equivalent (FGE), decay heat, and radiological hazard (Reference 7). The californium isotopes undergo alpha decay, producing a curium isotope as a decay product. At the end of each production campaign at the REDC, all TRU isotopes of californium and curium were analyzed and reported before material was shipped. The evaluation showed that Cf-250 and Cf-252 are also required to be reported for WIPP disposal because of their contribution to the radiological hazard and decay heat. Californium-249 and Cf-251 are required to be reported because of their contribution to FGE. Table 3-1 lists the radionuclides required to be reported for material disposal at WIPP.

**Table 3-1. Radionuclides Required to Be Reported for WIPP Disposal**

|        |
|--------|
| Sr-90  |
| Cs-137 |
| Cm-245 |
| Cm-246 |
| Cm-247 |
| Cm-248 |
| Cf-249 |
| Cf-251 |
| Cf-250 |
| Cf-252 |

The characterization approach involves four steps.

1. Determine the primary radionuclide and the quantity of the primary radionuclide in the source based on acceptable knowledge (AK) information and data specific to the individual sources.
2. Apply the specific radionuclide impurity distribution that has been developed from AK information for the identified primary radionuclide material in the source.
3. Perform the decay correction of the source material from the time of manufacture to the time of shipment for disposal.
4. Summarize the radionuclide content of all sources loaded into the special form capsule (SFC) and ultimately into a 55-gallon drum.

The AK information used in the characterization of Cf-252 sealed sources has been qualified by the peer review process (Reference 8), which has been reviewed and accepted by the Environmental Protection Agency (EPA). The uncertainties developed from AK information regarding the source materials are applied to the summed activities in the drum.

Three specific pieces of AK information are required as input for the radiological characterization of sealed source waste:

- the type of source (identification of the primary radionuclide),
- the radionuclide content of the source (in curies or grams), and
- the date of manufacture.

## 4 DEVELOPMENT OF REPRESENTATIVE RADIONUCLIDE DISTRIBUTIONS

This section presents the derivation and quantification of the WIPP-required radionuclide distributions that will be applied to the primary radionuclide. The Cf-252 source material is typically 71–89 wt% Cf-252, with the remainder of the material containing other californium isotopes. Trace impurities of other radionuclides fall below detectable limits because of the multiple separation and purification processes. Other impurity radionuclides in the recovered sources result from the decay of californium isotopes to their curium daughters. In addition, the fission products of Cs-137 and Sr-90 are produced from the spontaneous fissioning of both the californium isotopes and their curium daughters.

Specific information on the associated curium decay daughters of the californium isotopes are provided in Table 4-1, along with the identification of isotopes that are TRU radionuclides that spontaneously fission.

**Table 4-1. Background Information on the Californium and Curium Decay Isotopes for the Cf-252 Source Material**

| Radionuclide | Half-Life, yrs | TRU Radionuclide | Spontaneous Fission | Daughter | Half-Life, yrs | TRU Radionuclide | Spontaneous Fission |
|--------------|----------------|------------------|---------------------|----------|----------------|------------------|---------------------|
| Cf-249       | 350.6          | Yes              | Yes                 | Cm-245   | 8500           | Yes              | Yes                 |
| Cf-250       | 13.08          | No               | Yes                 | Cm-246   | 4750           | Yes              | Yes                 |
| Cf-251       | 900            | Yes              | No                  | Cm-247   | 1.56E+07       | Yes              | No                  |
| Cf-252       | 2.639          | No               | Yes                 | Cm-248   | 3.39E+05       | Yes              | Yes                 |

The californium radionuclide distributions and associated uncertainties were developed from AK information on the radiological contents of the source materials used in the manufacture of the sources. Californium-252 source material initially was produced and purified at SRS. This production activity was transferred to the ORNL REDC in 1986; from there, materials are distributed to source manufacturers. The source material was sampled and analyzed for radionuclide content to meet source material purity requirements. Twenty-two batch analyses were retrieved from the REDC process records and were used to develop an average californium isotope distribution in the materials. The variability in the isotopic distributions was used to develop the uncertainties in the source content and radionuclide distribution. Figure 4-1 provides an example of the AK information on the Cf-252 product showing nondetectable quantities of curium impurities.

## 69CX-4 Material Balances

| Material Balances                         | (69CX-4)<br>Crn-244,g | %<br>Feed     | %<br>output  | 09/12/94<br>Es-253,ug | %<br>Feed    | %<br>output  | Cf-252,mg    | %<br>Feed   | %<br>output  | Bk-249,mg    | %<br>Feed    | %<br>output  |
|-------------------------------------------|-----------------------|---------------|--------------|-----------------------|--------------|--------------|--------------|-------------|--------------|--------------|--------------|--------------|
| <b>69CX-4 Feed</b>                        |                       |               |              |                       |              |              |              |             |              |              |              |              |
| CXAF-056                                  | 0.043                 | 100%          |              | 1213                  | 100%         |              | 110          | 100%        |              | 38           | 100%         |              |
| <b>69CX-4 Cut Balance</b>                 |                       |               |              |                       |              |              |              |             |              |              |              |              |
| <b>Run Cuts</b>                           |                       |               |              |                       |              |              |              |             |              |              |              |              |
| <b>Raffinate Cuts</b>                     |                       |               |              |                       |              |              |              |             |              |              |              |              |
| CXLR-308                                  | 8.9E-06               |               |              | 0.085                 |              |              | 0.005        |             |              |              |              |              |
| CXLR-309                                  | 1.1E-04               |               |              | 14.0                  |              |              | 0.751        |             |              |              |              |              |
| CXLR-310                                  | 2.3E-04               |               |              | 19.4                  |              |              | 1.62         |             |              |              |              |              |
| CXER-272                                  | 9.5E-07               |               |              | 0.031                 |              |              | 0.001        |             |              |              |              |              |
| CXER-273                                  | 3.7E-07               |               |              | 0.132                 |              |              | 0.006        |             |              |              |              |              |
| CXER-274                                  | 1.7E-06               |               |              | 0.209                 |              |              | 0.005        |             |              |              |              |              |
| <b>Total</b>                              | <b>13.5E-04</b>       | <b>0.8%</b>   | <b>17%</b>   | <b>33.9</b>           | <b>2.5%</b>  | <b>2.4%</b>  | <b>2.39</b>  | <b>2.2%</b> | <b>2.1%</b>  | <b>0.635</b> | <b>1.7%</b>  | <b>1.9%</b>  |
| <b>Fm Product</b>                         |                       |               |              |                       |              |              |              |             |              |              |              |              |
| CXF-092                                   | 5.2E-06               | 0.01%         | 0.03%        | 105                   | 0.09%        | 0.07%        | 0.007        | 0.007%      | 0.007%       |              |              |              |
| <b>Es Product</b>                         |                       |               |              |                       |              |              |              |             |              |              |              |              |
| CXES-208                                  |                       |               |              | 4.48                  |              |              | 0.004        |             |              |              |              |              |
| CXES-209                                  |                       |               |              | 821.9                 |              |              | 0.006        |             |              |              |              |              |
| CXES-210                                  |                       |               |              | 521.6                 |              |              | 0.013        |             |              |              |              |              |
| <b>Total</b>                              | <b>834.9</b>          | <b>111%</b>   | <b>93.9%</b> |                       | <b>0.028</b> | <b>0.02%</b> | <b>0.02%</b> |             |              |              |              |              |
| <b>Cf Product</b>                         |                       |               |              |                       |              |              |              |             |              |              |              |              |
| CXCF-524                                  |                       |               |              | 50.8                  |              |              | 3.94         |             |              | 0.008        |              |              |
| CXCF-525                                  |                       |               |              |                       |              |              | 75.6         |             |              | 0.041        |              |              |
| CXCF-526                                  |                       |               |              |                       |              |              | 20.4         |             |              | 0.357        |              |              |
| CXCF-527                                  |                       |               |              |                       |              |              | 8.56         |             |              | 2.53         |              |              |
| <b>Total</b>                              | <b>50.8</b>           | <b>4.2%</b>   | <b>3.5%</b>  |                       | <b>109</b>   | <b>98.8%</b> | <b>96.5%</b> |             | <b>2.94</b>  | <b>7.5%</b>  | <b>8.7%</b>  |              |
| <b>Bk Cuts</b>                            |                       |               |              |                       |              |              |              |             |              |              |              |              |
| CXBK-216                                  |                       |               |              |                       |              |              | 1.21         |             |              | 29.3         |              |              |
| CXBK-217                                  | 4.5E-05               |               |              | 0.808                 |              |              | 0.204        |             |              | 0.675        |              |              |
| CXBK-218                                  | 6.5E-04               |               |              | 0.208                 |              |              | 0.034        |             |              | 0.133        |              |              |
| <b>Total</b>                              | <b>6.9E-04</b>        | <b>1.6%</b>   | <b>3.3%</b>  | <b>1.02</b>           | <b>0.08%</b> | <b>0.07%</b> | <b>0.445</b> | <b>1.3%</b> | <b>1.3%</b>  | <b>30.1</b>  | <b>79.7%</b> | <b>89.4%</b> |
| <b>Cm Cut</b>                             |                       |               |              |                       |              |              |              |             |              |              |              |              |
| CXCM-166                                  | 0.020                 | 45.5%         | 94.9%        |                       |              |              | 0.039        | 0.04%       | 0.03%        |              |              |              |
| <b>Pipette Leach</b>                      |                       |               |              |                       |              |              |              |             |              |              |              |              |
| CXSF-235                                  | 4.7E-06               | 0.01%         | 0.02%        | 0.726                 | 0.05%        | 0.05%        | 0.015        | 0.01%       | 0.01%        |              |              |              |
| <b>Total</b>                              | <b>0.021</b>          | <b>47.9%</b>  | <b>100%</b>  | <b>1435</b>           | <b>118%</b>  | <b>100%</b>  | <b>112</b>   | <b>102%</b> | <b>100%</b>  | <b>33.6</b>  | <b>89.2%</b> | <b>100%</b>  |
| <b>69CX-4 Run Balance</b>                 |                       |               |              |                       |              |              |              |             |              |              |              |              |
| <b>Feed</b>                               |                       |               |              |                       |              |              |              |             |              |              |              |              |
| CXAF-056                                  | 0.043                 | 100%          |              | 1213                  | 100%         |              | 110          | 100%        |              | 37.7         | 100%         |              |
| <b>Rework</b>                             |                       |               |              |                       |              |              |              |             |              |              |              |              |
| PVC-619                                   | 0.036                 |               |              | 242                   |              |              | 1.50         |             |              |              |              |              |
| PVC-620                                   | 0.020                 |               |              | 2.44                  |              |              | 0.124        |             |              |              |              |              |
| <b>Total</b>                              | <b>0.056</b>          | <b>123.7%</b> | <b>98.2%</b> | <b>244</b>            | <b>20.1%</b> | <b>14.5%</b> | <b>1.63</b>  | <b>15%</b>  | <b>14%</b>   |              |              |              |
| <b>Fm Product</b>                         |                       |               |              |                       |              |              |              |             |              |              |              |              |
| CXF-092                                   | 5.2E-06               | 0.01%         | 0.009%       | 105                   | 0.09%        | 0.06%        | 0.007        | 0.007%      | 0.007%       |              |              |              |
| <b>Es Product</b>                         |                       |               |              |                       |              |              |              |             |              |              |              |              |
| CXES-208                                  |                       |               |              | 4.48                  |              |              | 0.004        |             |              |              |              |              |
| CXES-209                                  |                       |               |              | 822                   |              |              | 0.006        |             |              |              |              |              |
| CXES-210                                  |                       |               |              | 522                   |              |              | 0.013        |             |              |              |              |              |
| <b>Total</b>                              | <b>834.9</b>          | <b>111%</b>   | <b>90.3%</b> |                       | <b>0.028</b> | <b>0.02%</b> | <b>0.02%</b> |             |              |              |              |              |
| <b>Bk Product</b>                         |                       |               |              |                       |              |              |              |             |              |              |              |              |
| CXBK-217                                  | 4.5E-05               |               |              | 0.808                 |              |              | 0.204        |             |              | 0.675        |              |              |
| CXBK-218                                  | 6.5E-04               |               |              | 0.208                 |              |              | 0.034        |             |              | 0.133        |              |              |
| <b>Total</b>                              | <b>6.9E-04</b>        | <b>1.6%</b>   | <b>1.2%</b>  | <b>1.02</b>           | <b>0.08%</b> | <b>0.06%</b> | <b>0.238</b> | <b>0.2%</b> | <b>0.2%</b>  | <b>0.808</b> | <b>2.1%</b>  | <b>2.4%</b>  |
| <b>Cf Product</b>                         |                       |               |              |                       |              |              |              |             |              |              |              |              |
| CXCF-524                                  |                       |               |              | 50.8                  |              |              | 3.94         |             |              | 0.008        |              |              |
| CXCF-525                                  |                       |               |              |                       |              |              | 75.6         |             |              | 0.041        |              |              |
| CXCF-526                                  |                       |               |              |                       |              |              | 20.4         |             |              | 0.357        |              |              |
| <b>Total</b>                              | <b>50.8</b>           | <b>4.2%</b>   | <b>3.0%</b>  |                       | <b>100</b>   | <b>9.10%</b> | <b>87.7%</b> |             | <b>0.406</b> | <b>1.1%</b>  | <b>1.2%</b>  |              |
| <b>Cub 4 Cleanup</b>                      |                       |               |              |                       |              |              |              |             |              |              |              |              |
| CXLR-309                                  | 1.1E-04               |               |              | 14.0                  |              |              | 0.751        |             |              | 0.241        |              |              |
| CXLR-310                                  | 2.3E-04               |               |              | 19.4                  |              |              | 1.62         |             |              | 0.393        |              |              |
| <b>Total</b>                              | <b>3.4E-04</b>        | <b>0.8%</b>   | <b>0.6%</b>  | <b>33.4</b>           | <b>2.8%</b>  | <b>2.0%</b>  | <b>2.98</b>  | <b>2.2%</b> | <b>2.1%</b>  | <b>0.635</b> | <b>1.7%</b>  | <b>1.9%</b>  |
| <b>Recycle to 69CX-7(comp. w/ 69CX-6)</b> |                       |               |              |                       |              |              |              |             |              |              |              |              |
| CXCF-527                                  |                       |               |              |                       |              |              | 8.56         |             |              | 2.53         |              |              |
| CXBK-216                                  |                       |               |              |                       |              |              | 1.21         |             |              | 29.3         |              |              |
| <b>Total</b>                              |                       |               |              |                       |              |              | <b>9.78</b>  | <b>8.9%</b> | <b>8.6%</b>  | <b>31.8</b>  | <b>84.3%</b> | <b>94.6%</b> |
| <b>Total</b>                              | <b>0.057</b>          | <b>131%</b>   | <b>100%</b>  | <b>1678</b>           | <b>138%</b>  | <b>100%</b>  | <b>114</b>   | <b>104%</b> | <b>100%</b>  | <b>33.6</b>  | <b>89.2%</b> | <b>100%</b>  |

Figure 4-1. Example of AK information on impurity levels in the Cf-252 product.



Figures 4-2 and 4-3 provide examples of the AK information on the Cf-252 isotope distributions in the source product. Figure 4-2 is an isotope analysis report based on a mass spectrometry measurement of a sample taken from the dissolved target solutions for Campaign 69.

## ISOTOPE ANALYSIS REPORT

|                             |                              |                 |
|-----------------------------|------------------------------|-----------------|
| REQUISITION NUMBER<br>7091  | CHARGE NUMBER<br>3370-6001   |                 |
| SUBMITTED BY<br>CLVIS PARKS | BUILDING NUMBER<br>7120 6384 | DATE<br>4/27/85 |
| REPORT TO<br>.              | BUILDING NUMBER<br>.         | PHONE<br>4-7064 |

#### PROBABLE COMPOSITION OF SAMPLES

|                 |                 |                                      |  |  |
|-----------------|-----------------|--------------------------------------|--|--|
| CUSTOMER NUMBER | DSOP-249        | CYOF-537                             |  |  |
| LOG NUMBER      | 12-8-94-0182    | 12-894-0184                          |  |  |
| RUN NUMBER      |                 |                                      |  |  |
| 249             | $4.29 \pm .04$  | $4.92 \pm .03$                       |  |  |
| 250             | $9.97 \pm .08$  | $10.19 \pm .04$                      |  |  |
| 251             | $2.93 \pm .03$  | $3.04 \pm .01$                       |  |  |
| 252             | $82.72 \pm .07$ | $82.04 \pm .05$                      |  |  |
| 253             | $0.07 \pm .02$  | <del><math>4.01 \pm .01</math></del> |  |  |
| 254             | $0.02 \pm .01$  | $<0.01$                              |  |  |

\*Isotopic abundance is expressed in atom percent unless otherwise specified.

Figure 4-2. Example of mass spectrometry measurements taken to determine isotopic distribution in the Cf-252 product.

Figure 4-3 shows the projected Cf-252 product composition for Campaign 69 based on the physics calculations for the targets and rework material.



|                     |         |                  |              |                                  |            |          |
|---------------------|---------|------------------|--------------|----------------------------------|------------|----------|
| Rework from Camp 68 |         | 0.0207 g Cf252   |              | 09/06/94 CLCP-725A&B             |            |          |
| Mass analysis,      |         | 02/04/93         | Adjusted to, |                                  | 12/31/94   |          |
| Isotopes            | At %    | Wt %             | Decay Factor | Corrected                        | Normalized | Weight   |
| 249                 | 20.080  | 19.908           | 0.996        | 19.833                           | 27.128     | 0.0095   |
| 250                 | 10.760  | 10.711           | 0.905        | 9.692                            | 13.257     | 0.0046   |
| 251                 | 3.700   | 3.698            | 0.999        | 3.692                            | 5.050      | 0.0018   |
| 252                 | 65.460  | 65.682           | 0.607        | 39.892                           | 54.564     | 0.0190   |
| 253                 | 0.001   | 0.001            | 0.000        | 0.000                            | 0.000      | 0.0000   |
| 254                 | 0.001   | 0.001            | 0.000        | 0.000                            | 0.000      | 0.0000   |
| Avg MW              | 251.230 | 100.000          |              | 73.109                           | 100.000    | 0.0349   |
| Targets             |         | 0.485658 g Cf252 |              | 09/15/94 DSDP-250 Mass(DSDP-249) |            |          |
| Mass Analysis       |         | 01/04/95         | Adjusted to, |                                  | 12/31/94   |          |
| Isotopes            | At %    | Wt %             | Decay Factor | Corrected                        | Normalized | Weight   |
| 249                 | 4.900   | 4.849            | 1.000        | 4.849                            | 4.837      | 0.0263   |
| 250                 | 9.750   | 9.687            | 1.001        | 9.692                            | 9.668      | 0.0526   |
| 251                 | 2.830   | 2.823            | 1.000        | 2.823                            | 2.816      | 0.0153   |
| 252                 | 82.470  | 82.591           | 1.003        | 82.829                           | 82.622     | 0.449768 |
| 253                 | 0.040   | 0.040            | 1.168        | 0.047                            | 0.047      | 0.0003   |
| 254                 | 0.010   | 0.010            | 1.046        | 0.011                            | 0.011      | 0.0001   |
| Avg MW              | 251.711 | 100.000          |              | 100.250                          | 100.000    | 0.5444   |

Figure 4-3. Projected Cf-252 compositions for Campaign 69 based on REDC physics calculations.

The process data were retrieved from REDC processing records from 1972 to 2003. The californium isotopic data retrieved are given in Table 4-2 in units of weight percent.

**Table 4-2. Californium Isotopic Data from Processing Campaigns**

| Data Source                  | Date       | Cf-249 | Cf-250 | Cf-251 | Cf-252 |
|------------------------------|------------|--------|--------|--------|--------|
| Campaign 37                  | 1/10/1972  | 0.21%  | 11.43% | 3.72%  | 84.64% |
| Campaign 35 Rework           | 5/1/1972   | 7.72%  | 10.88% | 3.31%  | 78.09% |
| Campaign 37 Rework           | 11/11/1972 | 12.26% | 12.28% | 3.92%  | 71.55% |
| Campaign 38                  | 11/28/1972 | 6.01%  | 12.14% | 3.45%  | 78.40% |
| Campaign 39 Targets + Rework | 2/6/1973   | 1.81%  | 8.55%  | 2.41%  | 86.62% |
| Campaign 51 Rework           | 9/2/1976   | 11.92% | 9.75%  | 2.99%  | 75.35% |
| Campaign 51 + Rework         | 9/19/1976  | 0.65%  | 7.93%  | 2.13%  | 88.79% |
| Campaign 51 + Turf Rework    | 1/5/1977   | 7.00%  | 11.28% | 3.63%  | 78.06% |
| Campaign 52 Targets          | 1/10/1977  | 0.03%  | 7.85%  | 2.09%  | 88.62% |
| Campaign 53 Rework           | 8/14/1977  | 11.17% | 8.99%  | 2.65%  | 77.18% |
| Campaign 53                  | 8/31/1977  | 0.34%  | 7.70%  | 2.15%  | 88.86% |
| Campaign 53                  | 9/21/1977  | 0.79%  | 7.67%  | 2.10%  | 88.94% |
| Campaign 54                  | 1/10/1978  | 1.46%  | 8.25%  | 2.31%  | 87.86% |
| Campaigns 56 and 57 Rework   | 1/14/1980  | 10.97% | 8.41%  | 2.55%  | 78.07% |
| Camp 63 Targets and Rework   | 10/8/1982  | 1.65%  | 7.92%  | 2.19%  | 87.33% |
| Campaign 65 Rework           | 10/15/1985 | 2.92%  | 7.38%  | 2.14%  | 87.41% |
| Campaign 67 Targets          | 2/2/1987   | 1.93%  | 7.21%  | 2.09%  | 88.40% |
| Campaign 69 Targets          | 12/31/1994 | 4.83%  | 9.67%  | 2.81%  | 82.68% |
| Campaign 70                  | 4/22/1996  | 1.77%  | 8.71%  | 2.46%  | 87.05% |
| Campaign 71                  | 10/12/1998 | 0.32%  | 10.18% | 2.84%  | 86.67% |
| Campaign 72                  | 9/11/2000  | 0.75%  | 8.68%  | 2.44%  | 87.59% |
| Campaign 73                  | 2/6/2003   | 0.79%  | 8.21%  | 2.40%  | 88.61% |
| Shilton email                | 6/9/2003   | 3.37%  | 8.64%  | 2.59%  | 85.39% |

The average concentrations of the isotopes' activities relative to Cf-252 were determined from these analytical results and the specific activities of the isotopes, as given in Table 4-3.

**Table 4-3. Average Activity Distribution of the Californium Isotopes in Cf-252 Source Material**

| Average<br>Activity | Ci/Ci Cf-252 |          |          |          |
|---------------------|--------------|----------|----------|----------|
|                     | Cf-249       | Cf-250   | Cf-251   | Cf-252   |
|                     | 3.82E-04     | 2.24E-02 | 9.48E-05 | 1.00E+00 |

The contributions of Cs-137 (and Sr-90) to the impurity levels from spontaneous fission of Cf-249, Cf-250, Cf-252, Cm-245, Cm-246, and Cm-248 were also considered. The ultimate concentration of the fission products depends on the fission time due to buildup; consequently,

different fission times were considered. Table 4-4 shows the results of the calculations for the buildup of Cs-137 as a function of the fission time.

**Table 4-4. Cesium-137 Contribution from Spontaneous Fission**

| Years | Cs-137 from SF of Cf-249 | Cs-137 from SF of Cf-250 | Cs-137 from SF of Cf-252 | Cs-137 from SF of Cf-245 | Cs-137 from SF of Cf-246 | Cs-137 from SF of Cf-248 | Total Cs-137 | % from Cf-252 |
|-------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------|---------------|
|       | Ci/Ci Cf-252             | Ci/Ci Cf-252 |               |
| 1     | 2.14E-13                 | 2.08E-08                 | 3.10E-05                 | 1.35E-19                 | 7.23E-13                 | 9.75E-15                 | 3.10E-05     | 99.9%         |
| 2     | 4.24E-13                 | 4.01E-08                 | 5.42E-05                 | 5.34E-19                 | 2.68E-12                 | 3.61E-14                 | 5.42E-05     | 99.9%         |
| 3     | 6.28E-13                 | 5.79E-08                 | 7.13E-05                 | 1.19E-18                 | 5.79E-12                 | 7.48E-14                 | 7.13E-05     | 99.9%         |
| 38    | 5.27E-12                 | 2.05E-07                 | 6.22E-05                 | 1.45E-16                 | 4.02E-10                 | 1.97E-12                 | 6.24E-05     | 99.7%         |
| 39    | 5.35E-12                 | 2.03E-07                 | 6.07E-05                 | 1.52E-16                 | 4.15E-10                 | 2.01E-12                 | 6.09E-05     | 99.7%         |
| 40    | 5.43E-12                 | 2.01E-07                 | 5.94E-05                 | 1.59E-16                 | 4.27E-10                 | 2.04E-12                 | 5.96E-05     | 99.7%         |

The results presented in Table 4-4 show that the contribution of Cs-137 from the spontaneous fission from Cf-252 is >99.7%, with decays of up to 40 years. Accordingly, because the contribution from the spontaneous fission of other isotopes is so small, only the contribution of Cs-137 (and Sr-90) to the impurity level from the spontaneous fission of the Cf-252 will be considered in the characterization spreadsheet.

Another source of fission products is fast neutron fission induced by neutrons emitted during spontaneous fission. This source was assessed (Reference 9) by the use of the Monte Carlo N-Particle code (MCNP) 5. From these analyses it was concluded that fission products from neutron-induced fission are negligible compared with the fission products from spontaneous fission.

## 5 DETERMINATION OF THE QUANTITY OF NUCLEAR MATERIAL IN SEALED SOURCES

In general, significant documentation and information (including the original production, transportation, and source control documents) exist on sealed sources manufactured in the US. However, for individual sealed sources, variability exists in the quantity and extent of the documentation available for use in the characterization of the sealed source. Because sealed sources are manufactured to meet user specifications, strict adherence to procedures under the oversight of quality assurance programs of the day ensured that these sources and their associated production documents were prepared with a high degree of care and accuracy. The nature of the source production and the historically successful functioning of these sources to meet their intended purposes support this observation. The nuclear material contents of the sources were carefully controlled to meet the specifications imposed by the end user on the power output, neutron flux, impurity levels, etc.

After a source is declared excess, but before it is recovered, all available information and documentation on the source is retrieved, reviewed, and evaluated to determine if the information is adequate relative to the identity of the primary radionuclide in the source and the quantity of the radioactive material in the source. This information may be derived from a set of documents that are considered *primary* information sources in that they contain all of the information necessary to establish the source type (primary radionuclide) and the quantity of radionuclide material in the source.

Generally, only one piece of documentation is required from the list of primary AK information to identify the radionuclide and quantity in a sealed source. The following list provides primary AK information:

- the Nuclear Materials Management Safeguards System (NMMSS),
- shipping records,
- source certificates, and
- fabrication documents.

This primary AK information is unique to a specific sealed source, as identified by a unique serial number. The NMMSS database is available in the public domain and includes information on the

- source manufacturer,
- serial number,
- material type (primary radionuclide),
- weight of the element,
- weight of the isotope,
- date of manufacture,

- ownership,
- possession, and
- NRC license number.

The remaining three primary AK information sources typically show the primary radionuclide, the quantity of the material, and the serial and model number of a specific sealed source. Examples of a source certificate and a licensing document are shown in Figures 5-1 and 5-2.

If these information sources are not available, then reliance is placed on the secondary AK information. One document from the secondary AK information may identify the primary radionuclide in the sealed source, and a second may identify the quantity of material in the source. The secondary AK information includes the

- source markings,
- NRC registry,
- manufacturers' sales catalogues,
- sealed source drawings,
- unique physical descriptions, and
- miscellaneous other documents.

Many sources will have etched markings on the source itself. Often these markings will indicate the primary radionuclide and the quantity of the material in the source. The source markings may identify the model number of the sealed source to allow it to be traced to the NRC registry or to fabrication information for that model of sealed sources. The NRC Registry of Radioactive Sealed Sources is an NRC-controlled web site (<http://nrc-stp.ornl.gov/ssdr.html>) that typically identifies the

- source manufacturer,
- manufacturer model numbers,
- primary radionuclide, and
- maximum quantity of radioactive material in the different source models.

Manufacturers' sales catalogues will generally include information on the sealed source models that have been manufactured, such as the

- model number,
- primary radionuclide,
- quantity of radioactive material in the source, and
- physical dimensions of the sealed source.



In many cases, the availability of the physical dimensions on a particular source model will allow measurements to be made in the field at the time of recovery to confirm the source manufacturer, model, and source content.

If further information is needed for the source, photographs may be taken if the source has a unique physical shape that allows the source model number to be identified. Once the model number is identified, secondary AK documents can be used to identify the primary radionuclide and content of the sealed source. Figures 5-1 through 5-8 provide examples of various primary and secondary AK information (e.g., source certificate of calibration report, source quality control certificate, manufacturer's sales catalogue information, and source shipping papers).

**CERTIFICATE OF CALIBRATION**  
**ALPHA STANDARD SOURCE**

|              |                     |                          |                  |
|--------------|---------------------|--------------------------|------------------|
| Radiation:   | Cf-252              | Customer:                | UCLANL           |
| Half Life:   | 2.645 ± 0.008 years | P.O. No.:                | 2-2F2-Y5226-1    |
| Catalog No.: | AF-252              | Reference Date:          | September 1 1991 |
| Source No.:  | R-380               | Contained Radioactivity: | 1.438            |

**Description of Source**

|                              |                                             |
|------------------------------|---------------------------------------------|
| a. Capsule type:             | A-2                                         |
| b. Nature of active deposit: | Electrodeposited and diffusion bonded oxide |
| c. Active diameter/volume:   | 5 mm                                        |
| d. Backing:                  | 0.254 mm platinum clad nickel               |
| e. Cover:                    | 50 $\mu$ gram/cm <sup>2</sup> gold          |

**Radioimpurities**

None detected

**Method of Calibration**

The source was assayed by alpha spectrometry using a surface barrier detector.

**Uncertainty of Measurement**

|                                                      |        |                                                 |
|------------------------------------------------------|--------|-------------------------------------------------|
| a. Systematic uncertainty in instrument calibration: | ± 2.2% | CAUTION<br>DELICATE SU<br>DO NOT W<br>ACTIVE AF |
| b. Random uncertainty in assay:                      | ± 1.2% |                                                 |
| c. Random uncertainty in weighing(s):                | ± 0.0% |                                                 |
| d. Total uncertainty at the 99% confidence level:    | ± 3.4% |                                                 |

**NIST Traceability**

This calibration is implicitly traceable to the National Institute of Standards and Technology.

**Notes**

1. Nuclear data were taken from "Table of Isotopes", Seventh Edition, edited by Virginia
2. IPL participates in an NIST measurement assurance program to establish and maintain traceability for a number of nuclides, based on the blind assay (and later NIST certified Standard Reference Materials. (As in NRC Regulatory Guide 4.15)



ISOTOPE PRODUCTS LABORATORIES  
 1800 No. Keystone Street,  
 Burbank, California 91504  
 (818) 843 - 7000



QUALITY CONTROL

IPL Ref. No.: 386-3

Figure 5-1. Example of certificate of a calibration document.

## CERTIFICATE OF ALPHA STANDARD SOURCE

Radionuclide: Cf-252 Half-life: 2.645 ± 0.0  
Customer: UNIVERSITY OF CALIFORNIA P.O. No.: 2-2N1-V7444

Catalog No.: AF-252 Source No.: N-746 Reference Date: 3-  
Contained Radioactivity: 0.00543 uCi

### Description of Source

- a. Capsule type: A2  
b. Nature of active deposit: ELECTRODEPOSITED & DIFFUSION  
c. Active diameter: 5 mm.  
d. Backing: PT CLAD Ni  
e. Cover: N/A

### Radioimpurities

### Method of Calibration

The source was assayed using

- Alpha spectrometry with a surface barrier detector.  
 An internal gas flow proportional counter.  
 Large area low alpha background counter.  
 Gamma Spectrometry, Integrating under the \_\_\_\_\_  
Mev. peak(s). The branching ratio(s) used was/were \_\_\_\_\_  
gamma rays per decay.  
 The source was prepared from a weight aliquot of solution  
activity in uCi/gram was determined by the method above.

### Uncertainty of Measurement

- a. Systematic uncertainty of standard/efficiency: ± 1.8  
b. Random uncertainty  
1. In assay: ± 0.7 %  
2. In weighing(s): ± 0.5 %  
c. Total Uncertainty: ± 2.5 % at the 99% confidence level.

### NBS Traceability

This calibration is implicitly traceable to the National Bureau of Standards.

### Notes

1. Nuclear data were taken from "Table of Isotopes", Seventh Edition, edited by C. Michael Lederer et al.
2. IPL participates in an NBS measurement assurance program to establish and maintain implicit traceability for a number of nuclides, based on the blind (and later NBS certification) of Standard Reference Materials. (As in Regulatory Guide 4.15)



Michael D. Hayes  
Quality Control

ISOTOPE PRODUCTS LABORATORIES  
1800 No. Keystone St., Burbank, California 91504  
(818) 843-7000

3

Figure 5-2. Example of a sealed source certificate.

**INFORMATION SHEET**  
**<sup>252</sup>Cf NEUTRON SOURCE**  
**SPECIAL FORM RADIOACTIVE MATERIALS**  
**CERTIFICATE NO. USA/0065/S, Rev. 7**

1671

**Source Identification Number: SR-Cf-1347**

**Shipped To: Frontier Technology Corp., 1641 Burnett Drive, Xenia, OH 45385**

**Shipping Capsule Dwg. No.: M-12541-CP-099 E-1, Items 1a, 1b, 1c, and 1d**

**Closure Date: 9/5/2001**

**Decontamination and Closure Tests**

**Method:** After closure, capsule surfaces were decontaminated until all exterior surfaces were free of contamination ( $\leq 9$  d/m alpha and  $<100$  d/m beta-gamma) as determined by a wipe test. The assembly was immersed in a helium atmosphere at a pressure of 300 pounds per square inch for a period of 30 minutes, then transferred to a helium leak detector. The leak detector has a minimum sensitivity of  $1.0 \times 10^{-8}$  standard cubic centimeters of helium per second.

**Tests:** The finished capsule was found free of detectable leakage and free of transferable contamination on 9/5/2001.

**Californium Content**

**Isotopic Composition:** The californium stock material used to prepare the Pd-Cf<sub>2</sub>O<sub>3</sub> composite wires in the special form shipping capsule SR-Cf-1347 is identified by Batch Code CXCF-379. The isotopic mass distribution of this lot of material is listed in Table 1. The date for the last separation of <sup>248</sup>Cm decay product from this material was 12/27/2000.

**Wire Form:** The californium, in the form of Pd-Cf<sub>2</sub>O<sub>3</sub> composite, has been heated to 1600°C for 60 minutes to melt the palladium and homogenize the mixture. The resulting melted pellet was rolled to a wire having a nearly oval cross section. The resulting wire, Pd-Cf-161, was measured to be  $\leq 0.054$  inches across the long width of the oval.

**Source Strength:** The neutron emission rate of the finished assembly SR-Cf-1347 was determined by comparing its strength to that of SR-Cf-3022, a reference <sup>252</sup>Cf source traceable to the national reference radium-beryllium source, NS-1, at the National Institute of Standards and Technology. The comparison was made by inserting the capsule assembly into a moderator containing an array of fission counters and measuring the subsequent induced electric current by a picoammeter. The total neutron emission rate of this assembly was found to be  $1.0260 \times 10^{10}$  neutrons per second with a relative standard error of  $\pm 0.25\%$  as of 9/6/2001.

**Cf-252 Content:** The <sup>252</sup>Cf content of this assembly has been inferred from the measured neutron emission rate by correcting the gross emission rate by a factor of 0.99839, the fraction of the spontaneous fission neutrons emanating from the isotope <sup>252</sup>Cf, and by dividing by  $2.31434 \times 10^6$  neutrons per second per microgram. These values may be calculated from the isotopic compositions listed in Table 1, the relative quantities listed in the accompanying letter, and from the nuclear data listed in Table 2. The

Figure 5-3. Example of an information sheet for a source certificate (Page 1).

equivalent  $^{252}\text{Cf}$  content on the assay date, 9/6/2001, was computed to be 4.426.2  $\mu\text{g}$  with a relative standard error of  $\pm 0.25\%$ . Due to propagation of errors along the chain of traceability and also to non-random errors, including variations in source geometry, the overall accuracy of the assay is estimated to be  $\pm 3\%$  limit of error.

The radiation intensity one meter from a  $^{252}\text{Cf}$  source in air at standard atmospheric conditions and without contributions from scattering media is nominally 2210 mrem/h fast neutrons plus 190 mR/h gamma for each milligram of  $^{252}\text{Cf}$  in the capsule.

Table 1. Isotopic Mass Analyses

| Cf Batch Code      | CXCF-579                             |
|--------------------|--------------------------------------|
| Mass Analysis Date | 9/23/96                              |
| <u>Nuclide</u>     | <u>Isotopic Composition (atom %)</u> |
| $^{249}\text{Cf}$  | 6.70                                 |
| $^{250}\text{Cf}$  | 9.63                                 |
| $^{251}\text{Cf}$  | 2.97                                 |
| $^{252}\text{Cf}$  | 80.63                                |
| $^{253}\text{Cf}$  | 0.03                                 |
| $^{254}\text{Cf}$  | 0.04                                 |

Table 2. Assumed Nuclear Parameters

| <u>Nuclide</u>    | <u>Half-Life</u> | <u>Alpha branching ratio</u> | <u>Spont. fission branching ratio</u> | <u><math>\Sigma</math></u> |
|-------------------|------------------|------------------------------|---------------------------------------|----------------------------|
| $^{249}\text{Cf}$ | 351 y            | -1.0                         | $5.2 \times 10^{-9}$                  | 3.4                        |
| $^{250}\text{Cf}$ | 13.20 y          | 0.99921                      | 0.00079                               | 3.53                       |
| $^{251}\text{Cf}$ | 898 y            | -1.0                         | $9.0 \times 10^{-6}$                  | 3.7                        |
| $^{252}\text{Cf}$ | 2.645 y          | 0.96904                      | 0.03096                               | 3.768                      |
| $^{253}\text{Cf}$ | 17.81 d          | 0.0031                       |                                       |                            |
| $^{254}\text{Cf}$ | 61.9 d           | 0.00299                      | 0.99701                               | 3.93                       |

Attested J.B. Kraemer Date 9/7/01

Figure 5-4. Example of an information sheet for a source certificate (Page 2).

Call: 937-376-5691 | Fax 937-376-5692 | Email: treva@frontier-cf252.com

## FRONTIER TECHNOLOGY CORPORATION

WORLD'S EXPERT IN NEUTRON SOURCES

[Home](#) | [About Us](#) | [Contact Us](#) | [Product Ordering](#)

### PRODUCTS / CAPABILITIES

#### Californium - 252 Neutron Sources

##### Standard Californium - 252 Sources: Model 10 Series

Single-encapsulated neutron source generally used as inner capsules of multi-encapsulated sources.



The capsule material used is either 304L stainless steel or Zircaloy-2, and the closure is TIG welded.

The Model 10 series of neutron sources are singly-encapsulated sources generally used as the inner capsules of multiply-encapsulated sources. The Model 10 sources have an outside diameter of 0.217/0.218 inches and are available in two lengths, the longer of which is equivalent to the Savannah River SR-CF-1X capsule. Capsule material may be either Type 304L stainless steel or Zircaloy-2. Closure is by tungsten-inert-gas (TIG) welding. The sources are designed to meet Special Form requirements even after infinite decay of the Cf-252 contents.

All Model 10 sources are certified by the U.S. Department of Transportation (USDOT) as Special Form, and all have been approved for licensing purposes by the U.S. Nuclear Regulatory Commission (USNRC) for general uses other than well logging.

The Model 10 sources offer great flexibility in meeting customer outer capsule configuration and material requirements because Model 10 sources may be further encapsulated in capsules of arbitrary design, and still be licensed and transported as Model 10 sources.

#### Custom and Semi-Custom Packaging of Radioactive Materials

Custom and Semi-Custom Type A Containers

#### U.S.D.O.T. Special Form Certificate

| Dimensions       | Model 10         | Model 10S        |
|------------------|------------------|------------------|
| Outside diameter | 0.217/0.218 inch | 0.217/0.218 inch |
|                  | 5.51/5.54mm      | 5.51/5.54mm      |
| Outside length   | 0.975 inch       | 0.470 inch       |
|                  | 24.77mm          | 11.94mm          |
| Inside diameter  | 0.154 inch       | 0.154 inch       |
|                  | 3.91mm           | 3.91mm           |
| Inside length    | 0.75 inch        | 0.24 inch        |
|                  | 19.05mm          | 6.10mm           |
| Maximum content: | 10 milligrams    | 4 milligrams     |
| Californium-252  |                  |                  |

Standard Neutron Source Model 10S per Dwg. No. A10010-AA01

Figure 5-5. Example of a manufacturer's sales catalogue (Page 1).

**Standard Californium - 252 Sources: Model 100 Series**

Double encapsulated, employing a Model 10 series source as the primary encapsulation.

The outer capsule material is either 304L stainless steel or Zircaloy-2.

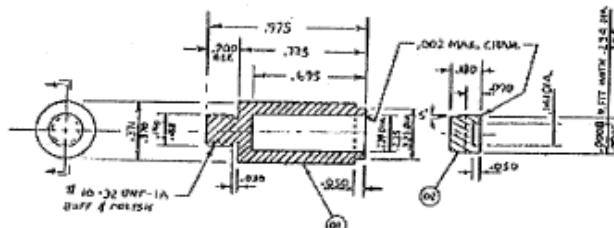
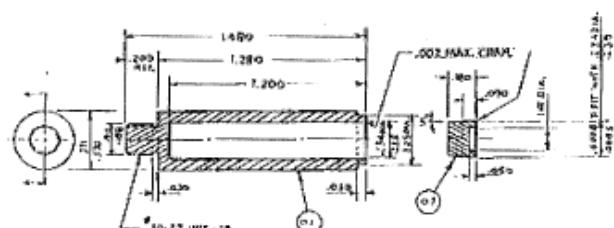
The Model 100 series of neutron sources are doubly-encapsulated sources which employ a Model 10 series source as the primary encapsulation. Model 100 series sources have an outside diameter of 0.370/0.371 inches and are available in two lengths, both of which are available with or without a 10-32 threaded stud on one end. The longer length version with the stud is equivalent to the Savannah River SR-CF-100 series capsules. Outer capsule material may be either type 304L stainless steel or Zircaloy-2. Closure is by TIG welding.

Thirty-two versions of the standard length source and thirty-two versions of the shortened source are possible as the result of various combinations of inner and outer capsule materials and orientations, and the presence of or lack of the threaded stud. All sixty-four versions of the Model 100 series are certified by the USDOT as Special Form, and all have been approved for licensing purposes by the USNRC for general uses.

Nominal dimensions for the Frontier Technology Corporation Model 100 and Model 100S sources are shown below:

| Dimensions              | Model 100        | Model 100S       |
|-------------------------|------------------|------------------|
| Outside diameter        | 0.370/0.371 inch | 0.370/0.371 inch |
|                         | 9.398/9.423mm    | 9.398/9.423mm    |
| Outside length w/stud   | 1.48 inches      | 0.97 inch        |
|                         | 37.59mm          | 24.6mm           |
| Outside length w/o stud | 1.28 inches      | 0.77 inch        |
|                         | 32.5mm           | 19.55mm          |
| Inside diameter         | 0.234/0.235 inch | 0.234/0.235 inch |
|                         | 5.953/5.962mm    | 5.953/5.962mm    |
| Inside length           | 1.02 inches      | 0.52 inch        |

|                  | 30.6mm        | 13.2mm       |
|------------------|---------------|--------------|
| Maximum content: |               |              |
| Californium-252  | 10 milligrams | 4 milligrams |



**Standard Neutron Source Model 100S per Dwg. No. A10010-PA02**

**Standard Neutron Source Model 100 per Dwg. No. A10100-PA01**


Figure 5-6. Example of a manufacturer's sales catalogue (Page 2).


 92  
 EA02

 AEA Technology  
 Nuclear Science

 220 Harwell, Didcot  
 Oxfordshire OX11 0RA  
 United Kingdom  
 Telephone 01235 821111  
 Facsimile 01235 432916  
[www.aeat.co.uk](http://www.aeat.co.uk)

## Radioactive source test report

|                             |                                                                                               |                                             |                                          |
|-----------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------|------------------------------------------|
| product code:<br>CVNK 8015  | description:<br>Californium-252 Neutron<br>Source (Spontaneous<br>Fission)<br>Capsule Type XI | customer order no:<br>58077                 | 'BS/ISO classification:<br>E66545        |
| FIS no:<br>NS/AM/923        | customer:<br>AEAT QSA Inc<br>Burlington<br>USA                                                | special form certificate no:<br>GB/007/S-85 | recommended working<br>life:<br>15 Years |
| source model no:<br>CVN,CY2 | nominal content activity:<br>2.22 MBq                                                         | Item No NA 9682                             |                                          |

| serial no<br>batch no | measurement 1 |                               | measurement 2 |          | test<br>A | test<br>D | test<br>L |
|-----------------------|---------------|-------------------------------|---------------|----------|-----------|-----------|-----------|
|                       | date          | 3.01x10 <sup>5</sup><br>n/sec | date          | 05/02/01 |           |           |           |
| 9590 NC               | 2.6 MBq       | 05/02/01                      |               |          | 05/02/01  | 05/02/01  | 06/02/01  |

Notes: Export Control Applicable ; DUEC(exempt)

signature:

 position: *Production manager* date: *6/3/01*

'this classification complies with BS5288:1976, which is in agreement with ISO 2919  
 (see overleaf for definition and description of tests)

Figure 5-7. Example of a source test report.

**AEA Technology QSA Inc.**

 40 North Avenue  
 Burlington, MA 01803  
 (781) 272-2000  
 (800) 815-1383

 6765 Langley Drive  
 Baton Rouge, LA 70809  
 (225) 751-5893  
 (800) 225-1383

 Packing list number 19996 Page 1  
 2/13/01 17:40:13

 Shipped from:  
 Company . . . : 1 AEA TECHNOLOGY Ship Date . . . : 2/13/01  
 Warehouse . . . : IS Shipment number : 98322

 Ship to . . . : Order information  
 TROXLER ELECTRONICS CO 106555 1/02/01  
 3008 CORNWALLIS ROAD TROXLER ELECTRONICS  
 RESEARCH TRIANGLE PARK NC 27709 P.O. Information  
 UNITED STATES PO61723-00  
 Date . . . : 0/00/00

Shipping instructions . . . : FEDEX STD COLLECT #0276 0020 4

 Carrier/pro number Truck/trailer number Gross weight U/M  
Federal Express Corporati 4.000 LB  
 412757228950

Shipping instructions : FEDEX STD COLLECT #0276 0020 4

 Approved by: License number: 032-0182-1(NC)  
 Comments:

 Items not assigned to containers  
 Item number Rel Item description Packed qty/ U/M  
 Backorder qty U/M

 CVNK8015 1 "A" CF252 NEUTRON SOURCE 1.000 EA  
 .000 EA

TROXLER ITEM #105779

RAS DATE 2/7/01

 Serial numbers: 9590NC  
 \*\* End of Packing List \*\*\*

 Surface 6 mr/hr  
 One Meter 0.8 mr/hr  
 Yellow 11 Labels  
 Ext. Contamination <0.001 UCI

*Recon.*

Figure 5-8. Example of a source shipping record.

## 6 CHARACTERIZATION OF Cf-252 SOURCES IN WASTE DRUMS

After the Cf-252 sealed sources are recovered, they are placed into a special form capsule (SFC) or into another approved consolidation container that, in turn, is loaded into a 55-gallon drum. For the characterization of the drum, an Excel spreadsheet is used for the information input and the subsequent calculations for the characterization of the drum, including the quantities of reportable radionuclides in the drum. Also determined are the derived parameters, such as TRU concentration, decay heat, and the uncertainties in these values. All of the documentation on each source is reviewed, and the required information for the characterization of the source is input to the “*Source Inputs*” Sheet of the Excel workbook (Reference 10). The required information is the source identification (ID), the manufacture date, the curies or grams of Cf-252, and the estimated total weight of the SFC and sources. Figure 6-1 shows an example of the *Source Inputs* datasheet for the Cf-252 characterization workbook.

**Container Characterization Report**  
**Cf-252 Sources**

**Data Input Sheet**

NDA/Radiological Characterization BDR#

|                 |
|-----------------|
| LA11-OSR-CH-00X |
|-----------------|

Run Date

|            |
|------------|
| 11/15/2011 |
|------------|

Container Number

|      |
|------|
| 1234 |
|------|

Estimate Waste Weight, kg

|     |
|-----|
| 7.7 |
|-----|

| Source ID | Manufacture Date | Source Contents, Curies | Source Contents, Grams |
|-----------|------------------|-------------------------|------------------------|
| 91-191    | 1/1/1991         |                         | 0.01                   |
| 91-192    | 1/1/1991         | 3.00E-02                |                        |
| 91-193    | 1/1/1991         | 3.00E-02                |                        |
| 91-194    | 1/1/1991         | 3.00E-02                |                        |
| 91-195    | 1/1/1991         | 3.00E-02                |                        |
| 91-196    | 1/1/1991         | 3.00E-02                |                        |
| 91-197    | 1/1/1991         | 3.00E-02                |                        |
| 91-198    | 1/1/1991         | 3.00E-02                |                        |
| 91-199    | 1/1/1991         | 3.00E-02                |                        |
| 91-200    | 1/1/1991         | 3.00E-02                |                        |

Figure 6-1. Example of the Source Inputs Datasheet.

Each source is decay corrected from the input manufacture date to the run date entered into the input sheet. The californium isotopes are decayed to account for the ingrowth of their respective curium daughters. The production of Cs-137 and Sr-90 is accounted for by the spontaneous fission of Cf-252 from the date of manufacture to the run date.

The spreadsheet calculates both the activity and mass for all of the radionuclides in the drum and the associated uncertainties in these values (Reference 11). The derived parameters of TRU, FGE, Plutonium Equivalent (**PE-Ci**), decay heat, and total activity are also calculated.

Figure 6-2 provides an example of the characterization summary report for a drum of Cf-252 sources.

Californium-249 through Cf-252 undergo alpha decay to Cm-245, Cm-246, Cm-247, and Cm-248, respectively. Further decays along the decay chain produce very small quantities of the WIPP-reportable actinides U-233, U-234, U-238, Pu-238, Pu-239, Pu-240, Pu-242, and Am-241 as a function of total decay time. To determine the upper-bound drum inventories of these radionuclides, the 50-year decay of a 1-curiel Cf-252 source was calculated using the RadDecay code. In the calculation, a limiting drum is assumed to contain 10 curies of Cf-252 sources, so the RadDecay results are multiplied by a factor of 10. The total Cf-252 activity of the sources within any single drum is assumed to be <10 Ci. This amount is the approximate total of the 50 largest Cf-252 sources in Los Alamos National Laboratory's OSRP database. It therefore provides a conservative limit for the potential ingrowth of secondary and tertiary daughters of californium isotopes that could be found in a single drum. These values are thus used as the maximum values (upper bound) of a single drum's daughter inventory (Reference 12).

The “less than” values shown in Table 6-1 will be reported for each drum containing Cf-252 sources. Note that Pu-238 is not a decay product of any of the californium isotopes and is therefore reported as zero.

**Table 6-1. Reported “Less Than” Values for the Upper-Bound Activities of Decay Products of Cf-252 in a Drum of Sources**

| Radionuclide | Total (Ci) |
|--------------|------------|
| U-233        | < 5.97E-17 |
| U-234        | < 4.36E-21 |
| U-238        | < 1.12E-16 |
| Pu-238       | 0.00E+00   |
| Pu-239       | < 2.34E-15 |
| Pu-240       | < 6.56E-14 |
| Pu-242       | < 3.68E-08 |
| Am-241       | < 2.87E-07 |



Container Characterization Report

Cf-252 Sources Version 1.0

| NDA/Radiological Characterization BDR# |                | LA11-OSR-CH-00X |          |          |          |          |                       |                      |
|----------------------------------------|----------------|-----------------|----------|----------|----------|----------|-----------------------|----------------------|
| Run Date                               |                | 11/15/2011      |          |          |          |          |                       |                      |
| Container Number                       |                | 1234            |          |          |          |          |                       |                      |
| Net Waste Weight                       |                | 7.7 kg          |          |          |          |          |                       |                      |
| Nuclide                                | % Type A Limit | Activity (Ci)   | Grams    | FGE      | PECi     | Watts    | Uncertainty in Curies | Uncertainty in Grams |
| Cm-245                                 | 1.51E-06       | 3.63E-06        | 2.09E-05 | 3.13E-04 | 3.87E-06 | 1.21E-07 | 1.74E-06              | 9.98E-06             |
| Cm-246                                 | 9.82E-05       | 2.36E-04        | 7.58E-04 | 0.00E+00 | 2.51E-04 | 7.73E-06 | 2.00E-05              | 6.43E-05             |
| Cm-247                                 | 6.15E-10       | 4.98E-10        | 5.31E-06 | 2.65E-06 | 4.79E-10 | 1.58E-11 | 5.38E-11              | 5.74E-07             |
| Cm-248                                 | 8.20E-03       | 4.43E-05        | 1.03E-02 | 0.00E+00 | 1.64E-04 | 5.69E-06 | 3.13E-07              | 7.28E-05             |
| Cf-249                                 | 2.58E-03       | 2.09E-03        | 5.05E-04 | 2.27E-02 | 2.25E-03 | 7.78E-05 | 9.94E-04              | 2.40E-04             |
| Cf-250                                 | 7.84E-03       | 4.23E-02        | 3.81E-04 | 0.00E+00 | 1.83E-02 | 1.57E-03 | 3.40E-03              | 3.07E-05             |
| Cf-251                                 | 2.80E-04       | 5.33E-04        | 3.33E-04 | 3.00E-02 | 5.85E-04 | 1.96E-05 | 5.11E-05              | 3.20E-05             |
| Cf-252                                 | 1.70E+00       | 2.38E-02        | 4.37E-05 | 0.00E+00 | 6.09E-03 | 1.77E-03 | 1.68E-04              | 3.09E-07             |
| Sr-90                                  | 6.93E-04       | 5.61E-05        | 4.07E-07 | 0.00E+00 | 0.00E+00 | 6.50E-08 | 3.97E-07              | 2.87E-09             |
| Cs-137                                 | 9.67E-04       | 5.22E-04        | 5.94E-06 | 0.00E+00 | 0.00E+00 | 5.78E-07 | 3.69E-06              | 4.20E-08             |
| U-233                                  | 0.00E+00       | <5.97E-17       | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00              | 0.00E+00             |
| U-234                                  | 0.00E+00       | <4.36E-21       | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00              | 0.00E+00             |
| U-238                                  | 0.00E+00       | <1.12E-16       | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00              | 0.00E+00             |
| Pu-238                                 | 0.00E+00       | 0.00E+00        | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00              | 0.00E+00             |
| Pu-239                                 | 0.00E+00       | <2.34E-15       | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00              | 0.00E+00             |
| Pu-240                                 | 0.00E+00       | <6.56E-14       | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00              | 0.00E+00             |
| Pu-242                                 | 0.00E+00       | <3.68E-08       | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00              | 0.00E+00             |
| Am-241                                 | 0.00E+00       | <2.87E-07       | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00              | 0.00E+00             |
| <b>Totals</b>                          |                | 1.72            | 6.96E-02 | 1.23E-02 | 5.30E-02 | 2.76E-02 | 3.46E-03              |                      |

TRU Alpha Activity Concentration  
TRU Alpha Activity  
Total Pu-239 Equiv Activity  
Total Pu-239 Fissile Gram Equiv  
Total Decay Heat

| Value    | (one Sigma) | Units |
|----------|-------------|-------|
| 3.78E+02 | 4.16E+01    | nCi/g |
| 2.91E-03 | 3.20E-04    | Ci    |
| 2.76E-02 | 2.11E-04    | Ci    |
| 5.30E-02 | 1.62E-02    | g     |
| 3.46E-03 | 2.46E-05    | W     |

(Print Name) \_\_\_\_\_  
RC Operator Review \_\_\_\_\_  
2nd RC Operator Review \_\_\_\_\_

Signature \_\_\_\_\_  
\_\_\_\_\_

Date \_\_\_\_\_  
\_\_\_\_\_

Figure 6-2. Example of the Characterization Spreadsheet Report.

## 7 UNCERTAINTY ANALYSIS

This section discusses the uncertainty in the reported values of the radionuclides in the drums containing the Cf-252 sources. The radionuclide inventory of each sealed source is calculated based on the manufacturer's reported Cf-252 activity and the radionuclide distributions derived from REDC process data, as described in Section 4.0. Sources of uncertainty are summarized in Table 7-1.

**Table 7-1. Summary of Uncertainty Elements for Cf-252 Sources**

| Source of Uncertainty                                                               | Treatment                                              |
|-------------------------------------------------------------------------------------|--------------------------------------------------------|
| Manufacturer's uncertainty in mass or activity of source                            | $\pm 5\%$ per source, with 50 sources per drum         |
| Uncertainty in californium isotopics                                                | Based on variability among REDC campaigns              |
| Uncertainty in other radionuclide impurities                                        | Derived from californium decay                         |
| Instrument uncertainty                                                              | Included as one source of variability in the REDC data |
| Uncertainty in decay time from REDC campaign measurement to source calibration date | $\pm 6$ months                                         |

### 7.1 Manufacturer's Source Material Uncertainty

The Cf-252 sources were manufactured by a number of different manufacturers. Figures 5-5 and 5-6 are reproduced from a product catalog for one manufacturer. This catalog specifies that, for various sources (including Cf-252), the source material will be determined to within 2%–5%. A value of 5% is assumed for each source. Each drum is assumed to contain at least 50 sources of approximately equal size. Therefore, the drum uncertainty due to the manufacturer's uncertainty is  $\sim 5/\sqrt{50} \% = 0.71\%$ . It is assumed that sources from other manufacturers, including ORNL, have a similar level of uncertainty.

### 7.2 Californium Isotopic Distribution Uncertainty

The isotopic composition of californium produced at ORNL's REDC was measured for each production campaign. "Development of Radionuclide Distributions for Cf-252 Sealed Sources" (Reference 13) provides a summary of these compositions for over 20 campaigns. The standard deviation among the campaigns is calculated based the reported isotopic distributions in the batches of Cf-252 source materials, as shown in Table 7-2.

**Table 7-2. Uncertainties in the Isotopic Distribution for Cf-252 Source Material**

|                             | Cf-249 | Cf-250 | Cf-251 | Cf-252 |
|-----------------------------|--------|--------|--------|--------|
| Average                     | 3.94%  | 9.12%  | 2.67%  | 84.01% |
| Standard Deviation          | 4.18%  | 1.54%  | 0.57%  | 5.33%  |
| Relative Standard Deviation | 106.2% | 16.9%  | 21.4%  | 6.3%   |

Note that for Cf-252, the campaign-to-campaign variability in the Cf-252 fraction is accounted for when the source is calibrated. Therefore, only the manufacturer's uncertainty applies to Cf-252.

It is assumed that 10 sources in each drum are derived from the same batch of californium and that each drum contains at least 50 sources of approximately equal size. As a result, each drum has material from at least five batches of californium. The uncertainty is therefore estimated to be the above relative standard deviation values divided by the square root of five.

### 7.3 Uncertainty in Other Radionuclide Impurity Levels

The impurity levels for other radionuclides are derived from the decay of the californium isotopes. Table 7-3 shows each radionuclide and its parent. The uncertainty in the radionuclide's impurity level is the same as the relative uncertainty of the parent. Note that the fission products Cs-137 and Sr-90 are formed from the spontaneous fission of several californium and curium isotopes. The contribution of Cs-137 and Sr-90 is overwhelmingly driven by the spontaneous fission of Cf-252; accordingly, only the uncertainty in the Cf-252 is applied. Table 7-3 summarizes the treatment of the uncertainties in the impurity levels in the source material.

**Table 7-3. Summary of the Treatment of Uncertainties in the Impurity Levels**

| Radionuclide | Parent                            | Uncertainty in Impurity Level           |
|--------------|-----------------------------------|-----------------------------------------|
| Cm-245       | Cf-249                            | Same as Cf-249                          |
| Cm-246       | Cf-250                            | Same as Cf-250                          |
| Cm-247       | Cf-251                            | Same as Cf-251                          |
| Cm-248       | Cf-252                            | Only manufacturer's uncertainty applies |
| Cs-137       | Cf-252<br>via spontaneous fission | Only manufacturer's uncertainty applies |
| Sr-90        | Cf-252<br>via spontaneous fission | Only manufacturer's uncertainty applies |

## 7.4 Uncertainty in the Decay Time from the REDC Production Date to the Shipping Date

The californium isotopes are taken from REDC campaign measurements when the californium targets are processed. It is assumed that the sources are fabricated and calibrated within a relatively short time after processing because the principal source material (Cf-252) has a relatively short half-life. This decay is accounted for when calibrating the Cf-252 source; therefore, this element of uncertainty does not apply to Cf-252 or its decay products. However, the levels of the other californium isotopes will be affected by decay and the uncertainty in the decay time. The uncertainty in the decay time is assumed to be 6 months. The uncertainty in the decaying radionuclide is

$$\frac{\Delta A}{A} \approx \lambda \Delta t.$$

The uncertainty in the decay product is

$$\frac{\Delta A}{A} \approx \frac{\lambda \Delta t e^{-\lambda t}}{(1 - e^{-\lambda t})}.$$

Table 7-4 shows the uncertainty in each radionuclide due to uncertainty in the decay time as a function of decay time.

**Table 7-4. Uncertainty in Each Radionuclide as a Function of the Uncertainty in the Decay Time**

| Radionuclide | 10-Year Decay | 15-Year Decay | 20-Year Decay |
|--------------|---------------|---------------|---------------|
| Cf-249       | 0.1%          | 0.1%          | 0.1%          |
| Cf-250       | 2.6%          | 2.6%          | 2.6%          |
| Cf-251       | 0.0%          | 0.0%          | 0.0%          |
| Cf-252       | -             | -             | -             |
| Cm-245       | 5.0%          | 3.3%          | 2.5%          |
| Cm-246       | 3.8%          | 2.2%          | 1.4%          |
| Cm-247       | 5.0%          | 3.3%          | 2.5%          |
| Cm-248       | -             | -             | -             |
| Cs-137       | -             | -             | -             |

It is assumed that the sources are, on average, >10 years old. Therefore, as an upper bound, the uncertainty values for a 10-year decay period are applied.

## 7.5 Total Uncertainty

The total uncertainty is calculated by combining all of the uncertainties as discussed below.

Because the manufacturer's uncertainty is common to all of the radionuclides, it is treated separately. Therefore, the combination in quadrature is performed in two steps:

1. all uncertainties other than manufacturer's uncertainty are combined in quadrature, and
2. the manufacturer's uncertainty is added to determine the total uncertainty.

Table 7-5 summarizes the contributions of the uncertainties for each radionuclide.

**Table 7-5. Summary of the Total Uncertainty Derivation**

| Radionuclide | Uncertainty in Manufacturer's Stated Source Size | Uncertainty in Californium Isotopes | Uncertainty in Decay Time | Total Uncertainty Excluding Mfg. Uncertainty | Total Uncertainty |
|--------------|--------------------------------------------------|-------------------------------------|---------------------------|----------------------------------------------|-------------------|
| Cm-245       | 0.71%                                            | 47.5%                               | 5.0%                      | 47.8%                                        | 47.8%             |
| Cm-246       | 0.71%                                            | 7.6%                                | 3.8%                      | 8.5%                                         | 8.5%              |
| Cm-247       | 0.71%                                            | 9.6%                                | 5.0%                      | 10.8%                                        | 10.8%             |
| Cm-248       | 0.71%                                            | -                                   | -                         | 0.0%                                         | 0.7%              |
| Cf-249       | 0.71%                                            | 47.5%                               | 0.1%                      | 47.5%                                        | 47.5%             |
| Cf-250       | 0.71%                                            | 7.6%                                | 2.6%                      | 8.0%                                         | 8.0%              |
| Cf-251       | 0.71%                                            | 9.6%                                | 0.0%                      | 9.6%                                         | 9.6%              |
| Cf-252       | 0.71%                                            | -                                   | -                         | 0.0%                                         | 0.7%              |
| Sr-90        | 0.71%                                            | -                                   | -                         | 0.0%                                         | 0.7%              |
| Cs-137       | 0.71%                                            | -                                   | -                         | 0.0%                                         | 0.7%              |

## 7.6 Uncertainty for Derived Parameters

The derived parameters TRU, FGE, PE-Ci, decay heat, and total activity are summations made over the individual radionuclides multiplied by the appropriate weighting factors. The manufacturer's uncertainty applies to all radionuclides and therefore introduces a statistical dependency when the uncertainty in the derived parameters is being determined. Other parameters also introduce potential statistical dependences. The decay time introduces a dependency among the decaying radionuclides (either too much or too little decay) and the opposite dependency among the decay products (i.e., too little or too much production). These dependencies tend to be offsetting. The uncertainty in the californium isotopes affects both the californium isotope and its curium daughter. However, the activities of the curium isotopes are

very small, so this dependency is negligible. Therefore, the only dependency explicitly considered is the manufacturer's uncertainty.

The uncertainty in the derived parameters is therefore calculated by combining in quadrature the independent sources of uncertainty for each radionuclide, again multiplied by the appropriate weighting factors. The manufacturer's uncertainty is then combined in quadrature with the independent sources of uncertainty, resulting in the total derived parameter uncertainties, as shown in Table 7-6.

**Table 7-6. Total Uncertainties for Derived Parameters**

| <b>Derived Parameter</b> | <b>Source Total Uncertainty</b> |
|--------------------------|---------------------------------|
| TRU                      | 7.7%                            |
| FGE                      | 8.0%                            |
| PE-Ci                    | 2.2%                            |
| Decay Heat               | 2.2%                            |
| Total Activity           | 2.2%                            |

## REFERENCES

1. US Congress Public Law 99-240, “Low-Level Radioactive Waste Policy Amendments Act of 1985” (January 15, 1986).
2. Nuclear Regulatory Commission, Code of Federal Regulations, Title 10, Part 61 Licensing Requirements for Land Disposal of Radioactive Waste (December 27, 1982).
3. CCP-AK-LANL-008, “Central Characterization Project Acceptable Knowledge Summary Report for Los Alamos National Laboratory Off-Site Source Recovery Project Sealed Sources, Waste Stream: LA-OS-00-01.001, LA-OS-00-03 and LA-OS-00-04,” Revision 8 (February 22, 2010).
4. United States Department of Energy, “Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant,” DOE/WIPP-02-3122 Rev. 7.4, Carlsbad Field Office, Carlsbad, New Mexico (April 22, 2013).
5. United States Department of Transportation, 49 CFR, Transportation, Part 173, “Shippers—General Requirements for Shipments and Packagings, Section 435, Table of A1 and A2 Values for Radionuclides” (September 14, 2006).
6. United States Department of Energy, “Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC),” Carlsbad, New Mexico, Washington TRU Solutions, LLC, Rev. 4 (2012).
7. Calculation No. VA-OSR-12, “To Determine the Radionuclides in the Waste Drums Containing Cf-252 Sealed Source Waste That Are Required to Be Reported under the Requirements of the WIPP WAC and the TRAMPAC,” Vance & Associates, Ruidoso, New Mexico (January 17, 2012).
8. H. Evans, J. Harvill, T. Sowdon, and J. Booth, “Sealed Sources Peer Review Report,” Washington Safety Management Solutions (December 5, 2003).
9. Calculation No. VA-OSR-14, “Relative Importance of Neutron-Induced Fission,” Vance & Associates, Ruidoso, New Mexico (December 20, 2011).
10. Calculation No. VA-OSR-13, “Development of the Spreadsheet for the Radiological Calculations for the Characterization of Cf-252 Sources,” Vance & Associates Ruidoso, New Mexico (July 31, 2012).
11. Calculation VA-OSR-11, “Uncertainty Analysis for Cf-252 Sources,” Vance & Associates Ruidoso, New Mexico (December 21, 2011).

12. Calculation VA-OSR-15, "Determine Upper Bound of Decay Product Inventories from a Drum of Cf-252 Sources," Vance & Associates, Ruidoso, New Mexico (March 4, 2012).
13. Calculation No. VA-OSR-10, "Development of Radionuclide Distributions for Cf-252 Sealed Sources," Vance & Associates, Ruidoso, New Mexico (January 17, 2012).