

Utilization of Municipal Wastewater for Cooling in Thermoelectric Power Plants

Iman Safari^a, Michael E. Walker^a, Ming-Kai Hsieh^b, David A. Dzombak^b, Wenshi Liu^c, Radisav D. Vidic^c, David C. Miller^d, and Javad Abbasian^{a*}

^aIllinois Institute of Technology, Chicago, Illinois

^bCarnegie Mellon University, Pittsburgh, Pennsylvania

^cUniversity of Pittsburgh, Pittsburgh, Pennsylvania

^dNational Energy Technology Laboratory, Morgantown, West Virginia

Abstract

11 A process simulation model has been developed using Aspen Plus® with the OLI (OLI System,
12 Inc.) water chemistry model to predict water quality in the recirculating cooling loop utilizing
13 secondary- and tertiary-treated municipal wastewater as the source of makeup water. Simulation
14 results were compared with pilot-scale experimental data on makeup water alkalinity, loop pH,
15 and ammonia evaporation. The effects of various parameters including makeup water quality,
16 salt formation, NH₃ and CO₂ evaporation mass transfer coefficients, heat load, and operating
17 temperatures were investigated. The results indicate that, although the simulation model can
18 capture the general trends in the loop pH, experimental data on the rates of salt precipitation in
19 the system are needed for more accurate prediction of the loop pH. It was also found that
20 stripping of ammonia and carbon dioxide in the cooling tower can influence the cooling loop pH
21 significantly. The effects of the NH₃ mass transfer coefficient on cooling loop pH appear to be
22 more significant at lower values (e.g., $k_{NH_3} < 4 \times 10^{-3}$ m/s) when the makeup water alkalinity is low
23 (e.g., <90 mg/L as CaCO₃). The effect of the CO₂ mass transfer coefficient was found to be
24 significant only at lower alkalinity values (e.g., $k_{CO_2} < 4 \times 10^{-6}$ m/s).

25 **Keywords:** Municipal Wastewater; Cooling System; Thermoelectric Power plant; Water
26 Chemistry; Water Quality; Modeling; Simulation; Cooling Tower

27 **Introduction**

28 Thermoelectric power production in the United States uses a large amount of freshwater. The
29 industry withdrew 143 BGD in 2005, accounting for about 41% of total freshwater withdrawal
30 (USGS, 2009). The total amount of freshwater consumed by the industry in 1995 was 3.3 BGD,
31 accounting for 3.3% of all freshwater consumption (USGS, 1998). This large water demand is
32 increasingly a problem, especially for new power plant development, as availability of
33 freshwater for new uses diminishes in the U.S. (USGAO, 2003). Use of non-traditional water
34 sources, such as secondary-treated municipal wastewater (MWW), provides one option to reduce
35 freshwater usage in thermoelectric power production (Li et al., 2011a). Utilization of MWW in
36 cooling systems requires careful management of water quality in the cooling system because of
37 the increased potential for mineral precipitation on heat exchanger surfaces (Li et al., 2011b).

38 The accumulation of deposits on the surfaces of heat exchangers is usually referred to as fouling
39 (Bott, 1995), which can include both mineral deposition (scaling) and biofouling. In
40 thermoelectric power plant cooling systems, fouling lowers the overall heat transfer coefficient
41 and negatively impacts power production efficiency (Walker et al, 2012).

42 Much work has been done to identify the important parameters affecting fouling and to quantify
43 their impacts (Li et al., 2011b; Hawthorn, 2009; Nebot et al., 2007; Sultan et al., 1996; Hasson et
44 al., 1978; Taborek et al., 1972a; Taborek et al., 1972b). The parameters considered in these
45 studies include hydrodynamics characteristics inside the condenser tubes, surface temperature,
46 tube properties, and water quality. Among these parameters, water quality characteristics are of
47 greatest importance when MWW, which has higher concentrations of fouling components, is
48 used in the cooling system (DOE/NETL, 2009a; DOE/NETL, 2009b; Argonne National
49 Laboratory, 2007; EPRI, 2003).

50 Although several studies have investigated the effect of recirculating loop water quality on
51 fouling rate, the relationship between the properties of the makeup water and the loop water has
52 not been addressed (Hawthorn, 2009; Ning, 2002; Morse & Knudsen, 1977; Hasson et al.,
53 1968a). The most important parameters that affect the loop water properties include the makeup
54 water characteristics, cycles of concentrations (COC), release of volatile constituents in the
55 cooling tower, and formation/ deposition of salts in the system.

56 This paper presents a process model for predicting water quality in the cooling loop as a function
57 of operating parameters and the makeup water quality. The model will be useful for evaluating
58 the potential performance and treatment needs for alternative sources of cooling water, such as
59 MWW. In addition, the model can be used to assess the economic impact of municipal
60 wastewater utilization in the thermoelectric power plants (Walker et al., 2012).

61 **Recirculating Cooling System**

62 A schematic diagram of a typical recirculating cooling system is shown in Figure 1a, which
63 includes an optional makeup water treatment subsystem and the cooling loop, including the
64 cooling tower and the condenser. The makeup water entering the recirculating cooling loop is
65 concentrated about 3 to 10 times depending on the cycle of concentration (COC) of the process
66 (EPRI, 2003):

$$67 (COC) = \frac{C_{i,L}}{C_{i,MU}} \quad (1)$$

68 Where, $C_{i,MU}$ and $C_{i,L}$ are the concentration of the constituent i in the makeup and recirculating
69 loop, respectively.

70 In a cooling loop, volatile species such as CO₂ and NH₃ are stripped, to varying extents, from the
71 water in the cooling tower, changing the total carbonate and ammonia concentration of the
72 aqueous phase, while formation of the salts such as calcium carbonate and their deposition on
73 heat transfer surfaces reduces the concentration of the associated species in the water. Both the
74 cooling tower and the condenser affect the water chemistry through the formation of salts, and in
75 the cooling tower there also is evaporation of volatile constituents.

76 **Water Chemistry**

77 Determination of the interrelated effects of makeup water quality, deposition of the salt in the
78 condenser, release of volatiles in the cooling tower, and the cycles of concentration on the water
79 quality in the cooling loop requires a comprehensive chemical speciation analysis in the aqueous
80 phase. In general, it is reasonable to assume that the reactions among dissolved species in the
81 aqueous phase are sufficiently fast to achieve equilibrium.

82 Although several studies have examined the effect of carbonate concentration on fouling (Segev
83 et al., 2012; Wiechers, 1975; Hasson et al., 1968b), a more comprehensive water chemistry
84 consideration with a broad range of species expected in degraded waters is required to properly
85 predict the properties of the water in the recirculating cooling loop since degraded waters have
86 much higher concentrations of non-carbonate species such as ammonia, phosphate, and sulfates.
87 Given the very large number (i.e., >100) of components and reactions to be considered for the
88 aqueous phase, a software with a comprehensive thermodynamic equilibrium package is needed
89 to carry out energy and mass balances in the entire system. In this study, Aspen Plus® software
90 was used for energy and mass balances calculations, along with the OLI thermodynamic package
91 (OLI System, Inc.) for detailed water chemistry speciation.

92 **Water Treatment Subsystems**

93 MWW generally requires additional, tertiary treatment to achieve a quality consistent with
94 manageable scaling, biofouling, and corrosion (Bott, 1995; Hsieh et al., 2010; Li et al., 2011b).
95 The average properties of a typical secondary-treated municipal wastewater are presented in
96 Table 1. The cooling system makeup water treatment subsystem for tertiary treatment of MWW
97 may consist of several separate unit operations such as filtration to remove suspended solids,
98 softening to remove hardness, nitrification to remove ammonia, and acid addition to adjust the
99 pH of the water. In all cases considered in this study, it was assumed that all suspended solids
100 had already been removed by filtration. The nitrification process was simulated in Aspen Plus®
101 with OLI chemistry as an activated sludge process to estimate the properties of nitrified
102 secondary-treated municipal wastewater (MWW-N). It should be noted that bicarbonate can be
103 added during the nitrification process to maintain the desired level of pH and/or alkalinity. The
104 simulated composition of MWW-N is also presented in Table 1, indicating that more than 95%
105 of ammonia is removed, resulting in significant consumption of the alkalinity and reduction in
106 the pH of the nitrified water. Acidification simply involves addition of an acid to control the pH
107 of the water. In this study, H_2SO_4 was selected for the acidification process.

108 **Cooling Tower**

109 Modeling and simulation of a cooling tower generally involves simultaneously solving a large
110 number of mass and heat transfer equations for a multicomponent system. However, given the
111 relatively low concentration of the components dissolved in the water, the liquid phase can be
112 treated as pure water to determine the rate of water evaporation as well as the air flow rate
113 through the cooling tower. The calculated values of the water evaporation and air flow rates can

114 then be used to obtain the rate of vaporization of volatile components from the cooling tower and
115 to perform aqueous phase speciation.

116 Different approaches and models have been proposed to estimate the rate of water evaporation
117 and air flow rate in a cooling tower where the liquid phase is represented by pure water
118 (Williamson, 2008; Kröger, 2004; Kloppers & Kröger, 2001; Kröger, 1998; Poppe, 1991;
119 Merkel, 1925). Among these methods, the widely-used model proposed by Merkel (Merkel,
120 1925) was selected to simulate the cooling tower performance. This method simplifies the one-
121 dimensional heat and mass transfer equations by assuming constant water flow rate in the
122 cooling tower and saturated air leaving the tower. It has been shown that the results predicted by
123 the Merkel method are sufficiently accurate for practical applications (Kröger, 2004; Kloppers &
124 Kröger, 2001; Kröger, 1998). The enthalpy and the mass flow rate of the air leaving the tower
125 are determined from the following coupled equations:

$$126 \quad \frac{dH_a}{dT^w} = \frac{m_w}{m_a} Cp_w \quad (2)$$

$$127 \quad M_e = \int_{T^{wo}}^{T^{wi}} \frac{Cp_w dT^w}{(H_a^{T^w} - H_a)} \quad (3)$$

$$128 \quad M_e = \frac{KA}{m_w} = \frac{K(aA_{fr}L)}{m_w} = \frac{KaL}{G_w} \quad (4)$$

129 where H_a is the enthalpy of air and $H_a^{T^w}$ is enthalpy of saturated air evaluated at the water
130 temperature, T^w is the water temperature, Cp_w is the heat capacity of the water, and m_w and m_a
131 represent the mass flow rates of water and air, respectively. In Equations 3 and 4 M_e is the
132 Merkel number, T^{wi} and T^{wo} are the water temperatures at the inlet and outlet of the cooling

133 tower, K is the mass transfer coefficient, G_w is the specific mass flow rate of the water, while A ,
134 a , A_{fr} , and L are the mass transfer area, the specific area, the frontal area, and the length of the
135 tower, respectively. The rate of water evaporation is calculated based on the mass flow rate and
136 enthalpy of the air, assuming the air is saturated at the outlet of the cooling tower.

137 The mass and heat transfer coefficients, as well as the specific area of the tower, are usually
138 reported in terms of the Merkel number for different zones of the tower. In general, there are
139 three different mass and heat transfer zones in the cooling tower as shown in Figure 1b (Kröger,
140 1998). The first zone (i.e., spray zone) uniformly distributes the water to the top of the fill zone
141 through the nozzles. Most of the heat and mass transfer takes place in the fill zone and water
142 enters the rain zone in the form of droplets and is collected in the cooling tower sump and
143 pumped back to the condenser. The Merkel numbers for the different zones of the cooling tower
144 can be calculated using correlations available in the literature. It has been shown that the rain and
145 spray zones can contribute to up to 30% and 5% of the overall heat removal in a typical cooling
146 tower, respectively (Kröger, 2004). For example, the Merkel number for the fill zone can be
147 calculated by the following correlation (Kloppers, 2003):

$$148 \quad M_{e-fz} = n_1 L_{fz} (G_w)^{n_2} (G_a)^{n_3} \quad (5)$$

149 where M_{e-fz} is the Merkel number of the fill zone, L_{fz} is the height of the fill zone, G_a is the
150 specific mass flow of the air, while n_1 , n_2 , and n_3 are the correlation parameters. Although the
151 water evaporation rate in the cooling tower can be obtained by solving Equations 2 to 5 to
152 predict the water evaporation rate as well as the water flow rate through the cooling loop, these
153 equations should be simultaneously solved with the material and energy balance equations for

154 the entire loop using an iterative scheme. The water evaporation rate, makeup, and blowdown
155 flow rates are related through the following mass balance equations:

156
$$(COC) = \frac{F_{MU}}{F_B} = 1 + \frac{F_E}{F_B} \quad (6)$$

157 where F_{MU} , F_B , and F_E are the volumetric flow rate of makeup, blowdown, and evaporation,
158 respectively.

159 When the water evaporation rate and the air flow rate are determined, the rate of evaporation of
160 volatile species (mainly NH_3 and CO_2) are determined based on the mass transfer limitation
161 and/or the chemical equilibria of the following reactions:

164 The rate of evaporation of volatile species in the cooling tower can be expressed as (Hsieh et al.,
165 2012):

166
$$N_{\text{NH}_3} = \int_0^L k_{\text{NH}_3} \cdot a \cdot A_{fr} \cdot (C_{\text{NH}_3,air}^* - C_{\text{NH}_3,air}) \cdot dz \quad (7)$$

167 where N_{NH_3} is the rate of evaporation of ammonia, k_{NH_3} is the overall mass transfer coefficient
168 based on the gas phase, $C_{\text{NH}_3,air}$ is the concentration of ammonia in the air, and $C_{\text{NH}_3,air}^*$ is the
169 ammonia concentration in gas phase in equilibrium with the aqueous phase which can be obtained
170 from the following equation:

171
$$C_{NH_3,air}^* = \frac{C_{NH_3}}{(KH)_{NH_3}} \quad (8)$$

172 where C_{NH_3} is the concentration of NH_3 in the aqueous phase and $(KH)_{NH_3}$ is the Henry's
 173 constant for NH_3 . A similar expression can be obtained for CO_2 using the driving force in the
 174 aqueous phase:

175
$$N_{CO_2} = \int_0^L k_{CO_2} \cdot a \cdot A_{fr} \cdot (C_{CO_2} - C_{CO_2}^*) \cdot dz \quad (9)$$

176 where N_{CO_2} is the rate of evaporation of carbon dioxide, k_{CO_2} is the overall mass transfer
 177 coefficient based on aqueous phase, C_{CO_2} is the concentration CO_2 in aqueous phase, and $C_{CO_2}^*$
 178 is the concentration in aqueous phase in equilibrium with the gas phase, obtained from the
 179 following equation:

180
$$C_{CO_2}^* = C_{CO_2,air} \cdot (KH)_{CO_2} \quad (10)$$

181 where $C_{CO_2,air}$ is the concentration of CO_2 in the air and $(KH)_{CO_2}$ is the Henry's constant for CO_2 .
 182 the Henry's constant for ammonia and carbon dioxide can be expressed as (Sander, 1999):

183
$$(KH)_{NH_3} = 60 \text{Exp} \left[4100 \left(\frac{1}{T_{avg}} - \frac{1}{298.15} \right) \right] \quad (11)$$

184
$$(KH)_{CO_2} = 0.034 \text{Exp} \left[2400 \left(\frac{1}{T_{avg}} - \frac{1}{298.15} \right) \right] \quad (12)$$

185 Equations 7 to 12 are solved along the height of the tower to obtain the overall evaporation rate
 186 of volatiles in the cooling tower.

187 Although some information related to mass and heat transfer of pure water and air in the cooling
188 towers has been reported in the literature (Kröger, 2004; Kloppers, 2003), the information related
189 to the evaporation of volatile species such as NH₃ and CO₂ has been limited to that obtained in
190 stripping towers and packed bed columns (Maćkowiak & Górkak, 2011; Yoon, 2008;
191 Budzianowski & Koziol, 2005; Cabassud, 2001; Sherwood et al., 1937).

192 Using data from experiments with pilot-scale cooling towers and MWW as makeup water (Vidic
193 & Dzombak, D.A., 2009), Hsieh et al. (Hsieh et al., 2012) evaluated NH₃ and CO₂ removal rates
194 and found that ammonia stripping was controlled by the gas film resistance. Based on the
195 experimental data, Hsieh et al., (Hsieh et al., 2012) estimated the ammonia mass transfer
196 coefficient at:

$$197 k_{NH3} \approx k_{NH3-g} = 2.3 \times 10^{-3} \text{ (m/s)} \quad (13)$$

198 Safari et al. (2013) found that mass transfer coefficients for CO₂ evaporation were controlled by
199 the mass transfer resistances in both the aqueous and gas phases and expressed the overall mass
200 transfer coefficient, k_{CO2} , as a function of pH to represent the co-diffusion effect of bicarbonate
201 ions:

$$202 \frac{1}{k_{CO2}} = \frac{1}{k_{CO2-g} (KH)_{CO2}} + \frac{1}{k_{CO2-w} \left(1 + \frac{Ka1_C}{[H^+]} \right)} \quad (14)$$

203 where $Ka1_C$ is the first dissociation constant of carbonic acid evaluated at average air and water
204 temperature, $[H^+]$ is the molar concentration of H^+ ions in the aqueous phase, while k_{CO2-g} and
205 k_{CO2-w} are the mass transfer coefficients of CO₂ in the gas and liquid phases, respectively. From

206 analysis of the pilot-scale experimental data, the following values for the CO₂ gas and liquid
207 mass transfer coefficients were estimated (Safari et al., 2013):

208 $k_{CO_2-g}=8\times10^{-6}$ (m/s) (15)

209 $k_{CO_2-w}=8\times10^{-8}$ (m/s) (16)

210 Given that no information is available for the mass transfer coefficients of volatile species and
211 their contribution to the mass transfer of volatile species in the rain zone and spray zones of a
212 typical cooling tower is not known, only the mass transfer in the fill zone was considered in this
213 study. These mass transfer coefficients were used in the cooling system simulation to predict the
214 rate of CO₂ and NH₃ evaporation in the tower and, consequently, the pH of the cooling loop.

215 Although formation of salts in secondary-treated municipal wastewaters containing carbonates as
216 well as phosphate, mainly, calcium carbonate and calcium phosphate (Li et al., 2011b), can
217 significantly impact speciation of the aqueous phase, no information is available in the literature
218 addressing the kinetics of salt formation in such waters. Therefore, in this study, we considered
219 the two limiting cases where, in the first case, salt formation was prevented, while, in the second
220 case, the extent of salt formation was dictated by chemical equilibria.

221 **Pilot-Scale Test Data**

222 Experimental data were obtained from a pilot cooling tower operated at Franklin Township
223 Municipal Sanitary Authority, FTMSA (Murrysville, PA) in 2010 (Dzombak et al., in
224 preparation) that included monitoring of the loop pH at various cycles of concentration for both
225 the secondary-treated municipal wastewater (MWW) and nitrified wastewater (MWW-N), as
226 well ammonia monitoring for MWW.

227 Figure 2 shows the extent of ammonia stripping as a function of pH and cycles of concentrations
228 (COC) in the pilot testing, indicating that the ammonia stripping efficiency was a strong function
229 of the pH in the cooling loop.

230 Cooling loop water pH as a function of alkalinity of the makeup water at different cycles of
231 concentrations for the nitrified wastewater (MWW-N) is presented in Figure 3. The results
232 indicate that the pH of the cooling loop generally increased with the alkalinity of the makeup
233 water, and that the pH of the loop apparently was not dependent on the COC.

234 **Results and Discussion**

235 *Comparison of Model Simulations with Pilot-Scale Test Data*

236 Relevant operating parameters for the cooling loop are presented in Table 1. In the model, these
237 parameters were used in the Merkel method to calculate the outlet air temperature and humidity,
238 the water evaporation rate, and the makeup and blowdown flow rates for different cycles of
239 concentrations.

240 Figure 4 provides a comparison of the experimental data on the extent of ammonia stripping in
241 the pilot-scale cooling tower tests for MWW (Dzombak et al., in preparation) with those
242 predicted by the simulation model. The results predicted by the simulation model are in good
243 agreement with the experimental data. In these simulations, MWW was acidified with H_2SO_4 to
244 achieve the desired pH levels.

245 To evaluate the effect of salt formation on the extent of ammonia stripping in the cooling towers,
246 simulation was carried out for two limiting cases: in the first case, salt precipitation was
247 completely suppressed; in the second case, salt precipitation was dictated by chemical equilibria.

248 The results clearly indicate that salt formation does not have any significant impact on the
249 ammonia stripping in the cooling tower, mainly because ammonia evaporation is a strong
250 function of pH. Furthermore, the results also show that the rate of ammonia evaporation
251 significantly increases as the pH of the water increases above a level of 7.

252 Figure 5 presents a comparison of the experimental data and model predictions of the loop pH
253 for the nitrified secondary water (MWW-N) as a function of alkalinity of the makeup water at
254 different cycles of concentrations. In the simulation model, the desired makeup water alkalinity
255 was achieved by adjusting the NaHCO_3 content of the makeup water.

256 The results indicate that salt formation has a significant impact on the loop pH for MWW-N.
257 Compared to the experimental data, higher values of pH are predicted when salt precipitation is
258 suppressed in the model, while lower values are predicted when the extent of salt formation is
259 dictated by chemical equilibria. In the case with no salt precipitation, the pH monotonically
260 increases with decreasing slope, reaching an asymptotic value at high alkalinity (e.g., >50 mg/L
261 as CaCO_3) for all cycles of concentrations. The initial slope is not as steep as expected for pure
262 water because of alkalinity contributions by non-carbonate components. The asymptotic pH
263 values predicted by the model are higher than 8.3, the pH for a mixture of pure water and
264 NaHCO_3 , due to the presence of non-carbonate components in the system. Additionally, in the
265 case that is dictated by equilibrium salt formation, the results indicate an inflection point around
266 pH 6.2, near the pK_a for the first dissociation of carbonic acid. The changes in the slopes of the
267 curves correspond to the predicted formation of various salts such as carbonate, phosphates, and
268 silicate via chemical reaction equilibria in the system. These results indicate that although the
269 simulation model can capture the general trends of the loop pH as a function of makeup water

270 alkalinity and COC, experimental data on the rates of salt precipitation in the system are needed
271 to predict accurately the cooling loop pH.

272 *Effect of NH₃ and CO₂ Evaporation Mass Transfer*

273 A sensitivity analysis was performed to assess the dependence of the cooling loop water quality
274 on the mass transfer coefficients for evaporation of NH₃ and CO₂. As the mass transfer
275 coefficients for ammonia stripping in various unit operations have been reported to be in the
276 range of 0.0008 to 0.01 m/s (Yoon, 2008), this range was selected to investigate the effect of the
277 ammonia mass transfer coefficient on the cooling loop pH. The results at two levels of alkalinity
278 are presented in Figures 6 and 7. These results indicate that, while the loop pH is not sensitive to
279 the mass transfer coefficient of ammonia at high alkalinity levels, it can be significantly affected
280 at low levels of alkalinity with the mass transfer coefficient below 4×10^{-3} m/s. The results also
281 indicate that the rate of ammonia evaporation increases with increasing mass transfer coefficient,
282 while the rate of CO₂ evaporation exhibits the reverse trend. As expressed by Equation 14, this is
283 because the mass transfer coefficient of CO₂ decreases with decreasing pH of the solution. The
284 combined effect of higher NH₃ and lower CO₂ evaporation results in decreasing pH of the loop
285 with increasing ammonia mass transfer coefficient. However, at higher levels of alkalinity,
286 because of the high buffering capacity, the pH of the solution is not affected by the rate of
287 evaporation of CO₂ and NH₃, while, at the lower alkalinity, any slight changes in the ammonia
288 evaporation rate can significantly affect the loop pH. Therefore, it can be concluded that at low
289 alkalinity levels, reliable information regarding the mass transfer coefficient of ammonia is
290 needed to predict accurately the cooling loop pH.

291 A similar analysis was performed to determine the sensitivity of the loop pH to the CO₂ mass
292 transfer coefficient over the wide range of values reported in the literature (Contreras, 2007;
293 Sherwood et al., 1937). Figures 8 and 9 show the dependence of the cooling loop water quality
294 on the CO₂ mass transfer coefficient at different cycles of concentrations and alkalinity levels.
295 The results indicate that the cooling loop pH is less sensitive to the mass transfer coefficient of
296 CO₂ at lower alkalinity, but it can be significantly affected when CO₂ mass transfer coefficient is
297 low (e.g., $k_{CO_2} < 4 \times 10^{-6}$ m/s). The results also indicate that both NH₃ and CO₂ evaporation rates
298 increase with an increasing CO₂ mass transfer coefficient. The combined effect of higher NH₃
299 and CO₂ evaporation results in increasing pH of the loop with increasing CO₂ mass transfer
300 coefficient. Therefore, it can be concluded that, to predict accurately the loop pH at high
301 alkalinity levels, it is necessary to obtain reliable values of the CO₂ mass transfer coefficient.

302 *Effects of Operating Parameters*

303 The effects of several operating parameters on loop water quality were investigated by
304 simulating different scenarios. In the baseline scenario, the cooling water temperatures at the
305 inlet and outlet of the condenser were selected to be 35 °C and 45 °C, respectively; the condenser
306 duty was assumed to be 811 MW (corresponding to a 500 MW power plant), and the cooling air
307 inlet temperature and relative humidity were selected to be 30 °C and 66.5 %, respectively.
308 MWW was used as the makeup water, and considered to be at COC4.

309 Figure 10a shows the effect of condenser duty on the evaporation rate of volatile components as
310 well as the pH of the cooling loop. In these calculations, it was assumed that the condenser inlet
311 and outlet temperatures were at the baseline condition, while the water flow rate through the loop
312 was adjusted to achieve the desired heat duty. Since COC was maintained at a constant value, the

313 ratios of water evaporation rates, water makeup flow rates, and blowdown flow rates were the
314 same as the ratio of the heat duties. The results indicate that both NH_3 and CO_2 evaporation rates
315 increase with an increase in condenser heat duty, but at a slightly lower ratio than that of the
316 condenser duties. The combined effects of higher CO_2 and higher NH_3 evaporation rates result in
317 a decrease in the loop pH. The lower ratio of evaporation rates can be attributed to mass transfer
318 limitation since the mass transfer area was maintained at the baseline condition, while the
319 cooling load of the tower was increased.

320 The lower ratios of evaporation rates compared to the heat duties can also be explained by
321 estimating the evaporation rates of NH_3 and CO_2 through simplifications of the governing
322 equations. As NH_3 and CO_2 are stripped from the tower, they are continuously replenished in the
323 aqueous phase according to Reactions A and B. The assumption of chemical equilibrium in the
324 aqueous phase leads to the conclusion that the concentrations of free CO_2 and NH_3 in the
325 aqueous phase are relatively constant, while the total carbonate and ammonia contents of the
326 recirculating water decrease as the volatile species are released. Additionally, given the very high
327 flow rate of the air, concentrations of CO_2 and NH_3 in the air can be assumed to remain relatively
328 constant throughout the tower. Based on these assumptions, Equations 7 and 9 can be simplified
329 as:

$$330 \quad N_{\text{NH}_3} = k_{\text{NH}_3} \cdot a \cdot A_{\text{fr}} \cdot \left(\frac{C_{\text{NH}_3}}{(KH)_{\text{NH}_3}} - C_{\text{NH}_3, \text{air}} \right) \cdot L \quad (17)$$

$$331 \quad N_{\text{CO}_2} = k_{\text{CO}_2} \cdot a \cdot A_{\text{fr}} \cdot (C_{\text{CO}_2} - C_{\text{CO}_2}^*) \cdot L \quad (18)$$

332 Assuming negligible concentration of ammonia in the air, Equation 17 can be further simplified:

333
$$N_{NH_3} = k_{NH_3} \cdot A \cdot \left(\frac{C_{NH_3}}{(KH)_{NH_3}} \right) \quad (19)$$

334 where A is the available area for mass transfer:

335
$$A = a \cdot A_{fr} \cdot L \quad (20)$$

336 The mass balance equation for ammonia in the cooling loop can be expressed by the following
337 equation:

338
$$N_{NH_3} = (COC \cdot C_{N,MU} - C_{N,L}) \cdot F_B \quad (21)$$

339 where $C_{N,MU}$ and $C_{N,L}$ are the total ammonia concentration (volatile and nonvolatile forms) in the
340 makeup and recirculating loop, respectively. Volatile fraction of the total ammonia, α , is defined
341 as:

342
$$\alpha = \frac{C_{NH_3}}{C_{N,L}} = f(T, pH) \quad (22)$$

343 which is obtained from the water chemistry calculations. Combining Equations 19 to 22 yields:

344
$$N_{NH_3} = COC \cdot C_{N,MU} \cdot F_B \cdot \left(\frac{B_{NH_3}}{F_B + B_{NH_3}} \right) \quad (23)$$

345

where B_{NH_3} is defined by the following equation:

346
$$B_{NH_3} = \frac{k_{NH_3} \cdot A \cdot \alpha}{(KH)_{NH_3}} \quad (24)$$

347 A similar expression can also be obtained for the CO_2 evaporation rate.

348
$$N_{CO_2} = \frac{COC \cdot C_{C,MU} \cdot F_B \cdot B1_{CO_2} + B1_{CO_2} \cdot B2_{CO_2} - B2_{CO_2}}{F_B + B1_{CO_2}} \quad (25)$$

349 where $C_{C,MU}$ is the total carbonate concentration in the makeup water and $B1_{CO_2}$ and $B2_{CO_2}$ are
350 defined by the following equations:

351
$$B1_{CO_2} = k_{CO_2} \cdot A \cdot \beta \quad (26)$$

352
$$B2_{CO_2} = k_{CO_2} \cdot A \cdot (KH)_{CO_2} \cdot C_{CO_2,air} \quad (27)$$

353 In the above equations, β is the volatile fraction of total carbonate ($C_{C,L}$) in the recirculating
354 cooling loop, which is obtained from the water chemistry calculations.

355
$$\beta = \frac{C_{CO_2}}{C_{C,L}} = f(T, pH) \quad (28)$$

356 Simplified expressions obtained for CO_2 and NH_3 evaporation in Equations 23 and 25 can be
357 used to interpret the results of the simulation. The ratio of NH_3 evaporation to that of the base
358 case is:

359
$$\frac{N_{NH_3}}{(N_{NH_3})_{Base}} = \left[\frac{F_B}{(F_B)_{Base}} \right] \cdot \left[\frac{B_{NH_3}}{(B_{NH_3})_{Base}} \cdot \frac{(F_B + B_{NH_3})_{Base}}{F_B + B_{NH_3}} \right] \quad (29)$$

360 In this equation, the first term on the right-hand side (i.e., blowdown ratio) is identical to the
361 ratio of heat duty, while the second term is smaller than 1. Therefore, the ratio of ammonia
362 evaporation rate is somewhat lower than the blowdown ratio. A similar analysis can be
363 performed to estimate the ratio of CO_2 evaporation to that of a base case using Equation 25.

364 Figure 10b shows the effect of condenser duty on the evaporation rate of volatile components as
365 well as the pH of the cooling loop when all operating parameters (including recirculating water
366 flow rate) except the cooling tower inlet temperature were kept at the baseline condition. The
367 results indicate that, similar to the previous case, both the NH_3 and CO_2 evaporation rates
368 increase with an increase in condenser heat duty. Similarly, the combined effect of higher CO_2
369 and higher NH_3 evaporation results in a decrease in the cooling loop pH and the lower ratio of
370 evaporation rates can be attributed to mass transfer limitation. Since the differences in the
371 temperature and pH are similar to those in the previous case, the ratios of the CO_2 and NH_3
372 evaporation rates (and therefore the cooling loop pH) are similar to those in the previous case.

373 Figure 10c shows the effect of cooling range on the evaporation of the volatile species, as well as
374 the pH of the cooling loop, where the condenser heat duty was maintained at the baseline
375 condition, while the recirculating water flow rate was adjusted to achieve the desired water
376 temperature at the inlet of the cooling tower. In this scenario, because of the higher contribution
377 of the sensible heat, the rate of evaporation of water (and, therefore, the rate of blowdown)
378 slightly decreases with increasing water temperature. Therefore, although higher inlet water
379 temperature increases the driving force for CO_2 and NH_3 evaporation, the lower flow rates of the
380 blowdown stream offset the increase in the evaporation rates (see Equations 23 and 25), resulting
381 in relatively constant NH_3 and CO_2 evaporation rates as well as the pH of the loop.

382 *Impact of Water Chemistry*

383 The water chemistry can be simplified by limiting the species in the water to NH_3 , NH_4^+ , CO_2 ,
384 HCO_3^- , and CO_3^{2-} . The values of the volatile fractions α and β can then be estimated using the
385 following equations:

386
$$\alpha = \left(1 + \frac{[H^+]}{Ka_N}\right)^{-1} \quad (30)$$

387
$$\beta = \frac{1}{\left(1 + \frac{Ka1_C}{[H^+]} + \frac{Ka1_C \cdot Ka2_C}{[H^+]^2}\right)} \quad (31)$$

388 Where, Ka_N is the equilibrium constant of the Reaction A and $Ka1_C$ and $Ka2_C$ are the dissociation
 389 constants of carbonic acid. Figure 11a compares the values α and β obtained from OLI water
 390 chemistry (OLI System, Inc.) and those obtained from Equations 30 and 31 over a wide range of
 391 pH levels. The results indicate that while α can be accurately estimated with the simplified water
 392 chemistry, the values of β are consistently underestimated over the entire range of pH, and the
 393 relative error increases with increasing pH and can reach more than 60%.

394 Figure 11b shows the evaporation rates of both NH_3 and CO_2 predicted by the Aspen/OLI
 395 simulation. The rate of evaporation of CO_2 is dictated by both the mass transfer coefficient and
 396 the equilibrium concentration of CO_2 in the aqueous phase (see Equation 9). While the mass
 397 transfer coefficient increases with increasing pH (see Equation 14), as shown in Figure 11a, the
 398 availability of CO_2 for evaporation decreases with increasing pH. Because of these opposing
 399 factors, the rate of CO_2 evaporation goes through a maximum at pH levels around 7.5.

400 The results predicted using the simplified water chemistry are also presented in Figure 11b.
 401 Comparison of the results obtained with the two models indicates that the simplified model can
 402 predict the evaporation rate of ammonia over a wide range of pH. The excellent agreement
 403 between the two models is directly related to the similar values of α obtained from the
 404 Aspen/OLI and the simplified water chemistry model. However, because of the lower β values
 405 obtained from the simplified water chemistry, the rate of evaporation of CO_2 predicted by the

406 simple model is consistently lower than the rate predicted by the Aspen/OLI simulation.
407 Furthermore, the lower β offsets the effect of the higher CO_2 mass transfer coefficient, resulting
408 in a significantly lower evaporation rate compared to the rate predicted by the Aspen/OLI
409 simulation at higher pH values, which represents the operating range of the cooling towers.

410 **Conclusions**

411 A process model was developed using Aspen/OLI software to simulate cooling loop water
412 quality when secondary-treated municipal wastewater is used as makeup water. The model was
413 tested against data from pilot-scale cooling tower experiments conducted with secondary-treated
414 wastewater.

415 Results indicate that ammonia and carbon dioxide stripping in the cooling tower can influence
416 cooling loop water quality. The simulation model can be used to estimate the extent of ammonia
417 evaporation in the cooling tower with reasonable accuracy. The results indicate that salt
418 formation has a significant impact on the loop pH for MWW-N. Compared to the experimental
419 data, higher values of pH are predicted when salt precipitation is suppressed in the model, while
420 lower values are predicted when the extent of salt formation is dictated by chemical equilibria.

421 The results of sensitivity analyses on the effects of NH_3 and CO_2 mass transfer suggest that the
422 cooling loop pH does not appear to be sensitive to the NH_3 mass transfer coefficient, except for
423 cases where both the makeup alkalinity and the mass transfer coefficients are low (e.g.,
424 $\text{ALK}_m < 90 \text{ mg/L as CaCO}_3$, and $k_{\text{NH}_3} < 4 \times 10^{-3} \text{ m/s}$). The results also indicate that the cooling loop
425 pH is less sensitive to the mass transfer coefficient of CO_2 at lower alkalinity levels but it can be
426 significantly affected when CO_2 mass transfer coefficient is low (e.g., $k_{\text{CO}_2} < 4 \times 10^{-6} \text{ m/s}$).

427 Analyses of the effects of cooling loop operating parameters indicate that the rates of evaporation
428 of volatile constituents, to a large extent, are proportional to the flow rate of the blowdown
429 stream. The impact of aqueous water chemistry appears to be significant in predicting the CO₂
430 evaporation rate and assuming simple water chemistry can lead to 10-15% under prediction in
431 the range of pH expected in the cooling loop. However, NH₃ evaporation rate, over the entire
432 range of pH can be accurately estimated using simple water chemistry.

433 **Acknowledgments**

434 The financial support provided by the United States Department of Energy, National Energy
435 Technology Laboratory for this study is greatly appreciated by the authors.

436 Nomenclature

437 α : Volatile fraction of total ammonia (--)
438 β : Volatile fraction of carbonate (--)
439 A : Area for mass transfer (m^2)
440 a : Specific area of the cooling tower ($\text{m}^2 \cdot \text{m}^{-3}$)
441 A_{fr} : Frontal area of the cooling tower (m^2)
442 ALKm: Makeup water alkalinity
443 BI_{CO_2} : Defined by equation 26 ($\text{m}^3 \cdot \text{s}^{-1}$)
444 $B2_{CO_2}$: Defined by equation 26 ($\text{mol} \cdot \text{s}^{-1}$)
445 B_{NH_3} : Defined by equation 24 ($\text{m}^3 \cdot \text{s}^{-1}$)
446 $C_{C,L}$: Concentration of total carbonate in blowdown ($\text{mol} \cdot \text{m}^{-3}$)
447 $C_{C,MU}$: Concentration of total carbonate in makeup ($\text{mol} \cdot \text{m}^{-3}$)
448 $C_{i,L}$: Total concentration of component i in blowdown ($\text{mol} \cdot \text{m}^{-3}$)
449 $C_{i,MU}$: Total concentration of component i in makeup water ($\text{mol} \cdot \text{m}^{-3}$)
450 C_{CO_2} : Concentration of CO₂ in the water at the inlet of cooling tower ($\text{mol} \cdot \text{m}^{-3}$)
451 $C_{CO_2,air}$: Concentration of CO₂ in air at the inlet of cooling tower ($\text{mol} \cdot \text{m}^{-3}$)
452 $C_{CO_2}^*$: Concentration of CO₂ in water in equilibrium with the air ($\text{mol} \cdot \text{m}^{-3}$)
453 $C_{N,L}$: Concentration of total ammonia in blowdown ($\text{mol} \cdot \text{m}^{-3}$)
454 $C_{N,MU}$: Concentration of total ammonia in makeup ($\text{mol} \cdot \text{m}^{-3}$)
455 C_{NH_3} : Concentration of NH₃ in the water at the inlet of cooling tower ($\text{mol} \cdot \text{m}^{-3}$)
456 $C_{NH_3,air}$: Concentration of NH₃ in air at the inlet of cooling tower ($\text{mol} \cdot \text{m}^{-3}$)
457 $C_{NH_3,air}^*$: Concentration of NH₃ in air in equilibrium with the water ($\text{mol} \cdot \text{m}^{-3}$)
458 Cp_w : Heat capacity of water ($\text{J} \cdot \text{kg}^{-1} \cdot {}^\circ\text{K}^{-1}$)
459 F_B : Volumetric flow of blowdown stream ($\text{m}^3 \cdot \text{s}^{-1}$)
460 F_E : Volumetric flow of evaporation stream ($\text{m}^3 \cdot \text{s}^{-1}$)
461 F_{MU} : Volumetric flow of makeup stream ($\text{m}^3 \cdot \text{s}^{-1}$)
462 G_a : Specific mass flow of the air to the cooling tower ($\text{kg} \cdot \text{s}^{-1} \cdot \text{m}^{-2}$)

463 G_w : Specific mass flow of the water to the cooling tower ($\text{kg} \cdot \text{s}^{-1} \text{m}^{-2}$)

464 $[H^+]$: Concentration of proton ion ($\text{mol} \cdot \text{m}^{-3}$)

465 H_a : Enthalpy of humid air ($\text{J} \cdot \text{kg}^{-1}$)

466 $H_a^{T^w}$: Enthalpy of saturated air evaluated at the water temperature ($\text{J} \cdot \text{kg}^{-1}$)

467 K : Water evaporation mass transfer coefficient ($\text{kg} \cdot \text{m}^{-2} \cdot \text{s}^{-1}$)

468 KaI_C : First dissociation constant of carbonic acid ($\text{mol} \cdot \text{m}^{-3}$)

469 $(KH)_{CO_2}$: CO_2 Henry's constant (--)

470 $(KH)_{NH_3}$: NH_3 Henry's constant (--)

471 k_{CO_2} : Overall mass transfer coefficient of CO_2 based on the water phase ($\text{m} \cdot \text{s}^{-1}$)

472 k_{CO_2-g} : Gas phase mass transfer coefficient of CO_2 ($\text{m} \cdot \text{s}^{-1}$)

473 k_{CO_2-w} : Water phase mass transfer coefficient of CO_2 ($\text{m} \cdot \text{s}^{-1}$)

474 k_{NH_3} : Overall mass transfer coefficient of NH_3 based on the gas phase ($\text{m} \cdot \text{s}^{-1}$)

475 k_{NH_3-g} : Gas phase mass transfer coefficient of NH_3 ($\text{m} \cdot \text{s}^{-1}$)

476 L : Total height of the cooling tower (m)

477 L_{fz} : Height of the filling zone of the cooling tower (m)

478 m_a : Mass flow rate of air to the cooling tower ($\text{kg} \cdot \text{s}^{-1}$)

479 M_e : Merkel number of the cooling tower (--)

480 M_{e-fz} : Merkel number of the filling zone of the cooling tower (--)

481 m_w : Mass flow rate of the water at the inlet of the cooling tower ($\text{kg} \cdot \text{s}^{-1}$)

482 n_1 , n_2 , and n_3 : Merkel number correlation parameters (--)

483 N_{CO_2} : CO_2 evaporation rate ($\text{kg} \cdot \text{s}^{-1}$)

484 N_{NH_3} : NH_3 evaporation rate ($\text{kg} \cdot \text{s}^{-1}$)

485 T_{avg} : Air water average temperature ($^{\circ}\text{K}$)

486 T^w : Water temperature ($^{\circ}\text{K}$)

487 T^{wi} : Water temperature at the inlet of the cooling tower ($^{\circ}\text{K}$)

488 T^{wo} : Water temperature at the outlet of the cooling tower ($^{\circ}\text{K}$)

489

490 **References**

491 Argonne National Laboratory, 2007. Use of Reclaimed Water for Power Plant Cooling
492 (ANL/EVS/ R-07/3).

493 Bott, T. R., 1995. Fouling of Heat Exchangers (ISBN# 9780444821867). Elsevier Science &
494 Technology Books, Birmingham, UK.

495 Budzianowski., W., and Koziol. A., 2005. Stripping of Ammonia from Aqueous Solutions in the
496 Presence of Carbon Dioxide Effect of Negative Enhancement of Mass transfer. Chemical
497 Engineering Research and Design 83(A2), 196–204.

498 Cabassud, C., Burgaud, C., Espenan, J.M, 2001. Spring water treatment with ultrafiltration and
499 stripping, Desalination 137 (1-3), 123–131.

500 Contreras, E.M., 2007. Carbon Dioxide Stripping In Bubbled Columns. Industrial & Engineering
501 Chemistry Research 46 (19), 6332-6337.

502 DOE/NETL, 2009a. Water Requirements for Existing and Emerging Thermoelectric Plant
503 Technologies (DOE/NETL-402/080108).

504 DOE/NETL, 2009b. Use of Non-Traditional Water for Power Plant Applications: An Overview
505 of DOE/NETL R&D Efforts (DOE/NETL-311/040609).

506 Dzombak, D. A., Vidic, R. A. and Landis, A. E. 2012. Use of TreatedMunicipal Wastewater as
507 Power Plant Cooling System Makeup Water: TertiaryTreatment versus Expanded Chemical
508 Regimen for Recirculating Water Quality Management. Submitted to U.S. Department of
509 Energy, National Energy Technology Laboratory, Pittsburgh, PA.

510 EPRI, 2003. Use of Degraded Water Sources as Cooling Water in Power Plants (P500-03-110).

511 Hasson, D., Sherman, H., Biton., M., 1978. Prediction of Calcium Carbonate Scaling Rate.
512 Proceeding of 6th international Symposium on Fresh Water from the Sea 2, 193-199.

513 Hasson D., Avriel, M., Resnick, W., Rozenman, T., and Windreich, S., 1968a. Calcium
514 Carbonate Scale Deposition on Heat Transfer Surfaces. Desalination 5 (1), 107-119.

515 Hasson, D., Avriel, M., Resnick, W., Rozenman, T., and Windreich, S., 1968b. Mechanism of
516 Calcium Carbonate Scale Deposition on Heat Transfer Surfaces. Industrial & Engineering
517 Chemistry Fundamental 7 (1), 59-65.

518 Hawthorn, D., 2009. Heat Transfer: Solving Scaling Problems at the Design Stage. Chemical
519 Engineering Research and Design 87 (2), 193-199.

520 Hsieh, M.K., Walker, M.E., Safari, I., Chien, S.C., Abbasian, J., Vidic, R.V., and Dzombak,
521 D.A. 2012, Ammonia Stripping in Open-Recirculating Cooling Water Systems. Environmental
522 Progress & Sustainable Energy DOI: 10.1002/ep.11648.

523 Hsieh, M.K., Li, H., Chien, S.H., Monnell, J.D., Chowdhury, I., Dzombak, D.A., and Vidic,
524 R.V., 2010. Corrosion Control when Using Secondary Treated Municipal Wastewater as
525 Alternative Makeup Water for Cooling Tower Systems. Water Environment Research 82 (12),
526 2346-2356.

527 Kloppers, J.C., 2003 .A Critical Evaluation and Refinement of the Performance of Wet-Cooling
528 Towers. PhD Thesis, University of Stellenbosch, Stellenbosch, South Africa.

529 Kloppers, J.C., and Kröger, D., G., 2001. A Critical Cooling Tower Performance Evaluation. 12th
530 IARH Symposium in Cooling Tower and Heat Exchangers, University of Technology, Sydney,
531 Australia.

532 Kröger, D.G., 2004. Air-Cooled Heat Exchangers and Cooling Towers. Penn Well Corp. Tulsa,
533 OK.

534 Kröger, D.G., 1998. Air-Cooled Heat Exchangers and Cooling Towers Thermal-Flow
535 Performance, Evaluation and Design. Begell House Incorporate, New York, NY.

536 Li, H., Chien, S.H., Hsieh, M.K., Dzombak, D.A., and Vidic, R.D., 2011a. Escalating Water
537 Demands for Energy Production and the Potential for Use of Treated Municipal Wastewater.
538 Environmental Science & Technology 45(10), 4195-4200.

539 Li, H., Hsieh, M.K., Chien, S.H., Monnell, J.D., Dzombak, D.A., and Vidic, R.V., 2011b.
540 Control of Mineral Scale Deposition in Cooling Systems Using Secondary-Treated Municipal
541 Wastewater. Water Research 45 (2), 748-760.

542 Maćkowiak, J.F., Górkak, A., 2011. Experimental Model Validation of an Integrated Process for
543 the Removal of Carbon Dioxide from Aqueous Ammonia Solutions, Chemical Engineering
544 Research and Design 89 (8), 1252-2160.

545 Merkel, F., 1925. Verdunstungskühlung. VDI-Zeitschrift 70, 123-128.

546 Morse, R.W., and Knudsen, J.G., 1977. Effect of Alkalinity on the Scaling of Simulated Cooling
547 Tower Water. The Canadian Journal of Chemical Engineering 55 (3), 272-278.

548 Nebot, E., Casanueva, J.F., Casanueva, T., and Sales, D., 2007. Model for Fouling Deposition on
549 Power Plant Steam Condensers Cooled with Seawater: Effect of Water Velocity and Tube
550 Material. International Journal of Heat and Mass Transfer 50 (17-18), 3351–3358.

551 Ning, R.Y., 2002. Discussion of Silica Speciation, Fouling, Control and Maximum Reduction.
552 Desalination 151 (1-2) 67-73.

553 Poppe, M., and Rögener, H., 1991. Berechnung von Rückkühlwerken. VDI Wärmeatlas, Mi 1-
554 Mi 15.

555 Safari, I., Walker. M.E., Abbasian, J., Hsieh, M.K., Dzombak, D.A., Liu., W., Vidic, R.D, and
556 Miller, D.C., Effect of CO₂ Stripping on pH in Open-Recirculating Cooling Water Systems,
557 Paper accepted for publication in Environmental Progress & Sustainable Energy, 2013 (in press).

558 Segev, R., Hasson, D., and Semiat, R., 2012. Rigorous Modeling of the Kinetics of Calcium
559 Carbonate Deposit Formation. AIChE Journal 58 (7), 2286-2289.

560 Sander, R. 1999. Compilation of Henry's Law Constants for Inorganic and Organic Species of
561 Potential Importance in Environmental Chemistry, Air Chemistry Department Max-Planck
562 Institute of Chemistry, Mainz, Germany.

563 Sherwood., T.K., Draemel, F.C., and Rukman N.E. 1937. Desorption of Carbon Dioxide from
564 Water in a Packed Tower, Industrial and Engineering Chemistry 29 (3), 282-285.

565 Sultan, K.M., Zubair, S.M, Budair, M.O., Sheikh, A.K., and Quddus, A., 1996. Fouling
566 Resistance Model for Prediction of CaCO₃ Scaling in AISI 316 Tubes. Heat and Mass Transfer
567 Springer-Verlag 32 (1-2), 73-79.

568 Taborek, J., Aoki, T., Ritter, R.B., Palen, J.W., and Kundsen, J.G., 1972a. Fouling: The Major
569 Unresolved Problem in Heat Transfer. *Chemical Engineering Progress* 68 (2), 59-67.

570 Taborek, J., Aoki, T., Ritter, R.B., Palen, J.W., and Knudsen, J.G., 1972b. Predictive Methods
571 for Fouling Behavior. *Chemical Engineering Progress* 68 (7), 69-78.

572 USGAO, 2003. Freshwater Supply—States' Views of How Federal Agencies Could Help Them
573 Meet the Challenges of Expected Shortages, (GAO-03-514). U.S. General Accounting Office,
574 Washington, DC.

575 USGS, 2009. Estimated Use of Water in the United States in 2005 (USGS Circular 1344). U.S.
576 Geological Survey, Reston, VA.

577 USGS, 1998. Estimated Use of Water in the United States in 1995 (USGS Circular 1200). U.S.
578 Geological Survey, Reston, VA.

579 Vidic, R.V., and Dzombak, D.A., 2009. Reuse of Treated Internal or External Wastewaters in the
580 Cooling Systems of Coal-based Thermoelectric Power Plants (DE-FC26-06NT42722).
581 Submitted to U.S. Department of Energy, National Energy Technology Laboratory, Pittsburgh,
582 PA.

583 Walker, M.E., Safari, I., Theregowda, R.B., Hsieh, M.K., Abbasian, J., Arastoopour, H.,
584 Dzombak, D.A., and Miller D.C., 2012, Economic impact of condenser fouling in existing
585 thermoelectric power plants, *Energy*, 44 (1), 429–437.

586 Wiechers, H.N.S., Sturrock, P., and Marais, G.V.R., 1975. Calcium Carbonate Crystallization
587 Kinetics. *Water Research* 9.(9), 835-845.

588 Williamson, N.J., 2008. Numerical Modeling of Heat and Mass Transfer and Optimization of a
589 Natural Draft Wet Cooling Tower, PhD Thesis, the School of Aerospace, Mechanical and
590 Mechatronic Engineering, The University of Sydney, Australia.

591 Yoon, H., Lim, J.H., and Chung, H.K, 2008. Ammonia Removal Model Based on the
592 Equilibrium and Mass Transfer Principles, *Bulletin Korean Chemical Society* 29 (3), 555-561.

List of Tables

Table 1: Operational condition and cooling tower properties

Table 2: Makeup water qualities of secondary- treated municipal wastewater (MWW), nitrified
secondary- treated municipal wastewater (MWW_N)

List of Figures

Figure 1: a-Schematic diagram of a recirculating cooling system at a thermoelectric power plant
b-Natural draft cooling tower on left and mechanical draft cooling tower on right: 1-
Drift eliminator; 2- Spray zone; 3- Fill zone, 4- Rain zone (Kröger, 1998)

Figure 2: Pilot scale data of the ratio of ammonia in cooling loop ($C_{N,L}$) to makeup water ($C_{N,MU}$)
(Hsieh et al., 2012)

Figure 3: Pilot scale data on the effect of makeup water alkalinity (ALKm) on the loop pH
(pH_Loop) for MWW-N (Safari et al., 2013)

Figure 4: Comparison of pilot scale data and simulation results on the ratio of ammonia concentration in cooling water ($C_{N,L}$) to makeup water ($C_{N,MU}$) with and without salt formation

Figure 5: Effect of salt formation on the cooling loop pH as a function of makeup water alkalinity (ALKm) for MWW-N

Figure 6: Effect of NH_3 mass transfer coefficient (k_{NH_3}) on the cooling loop pH (pH_Loop) for different levels of MWW alkalinity

Figure 7: Stripping rate of CO_2 and NH_3 as a function of ammonia mass transfer coefficient (k_{NH_3}) for different alkalinity of MWW

Figure 8: Effect of CO_2 mass transfer coefficient (k_{CO_2}) on the cooling loop pH (pH_Loop) for different levels of MWW alkalinity

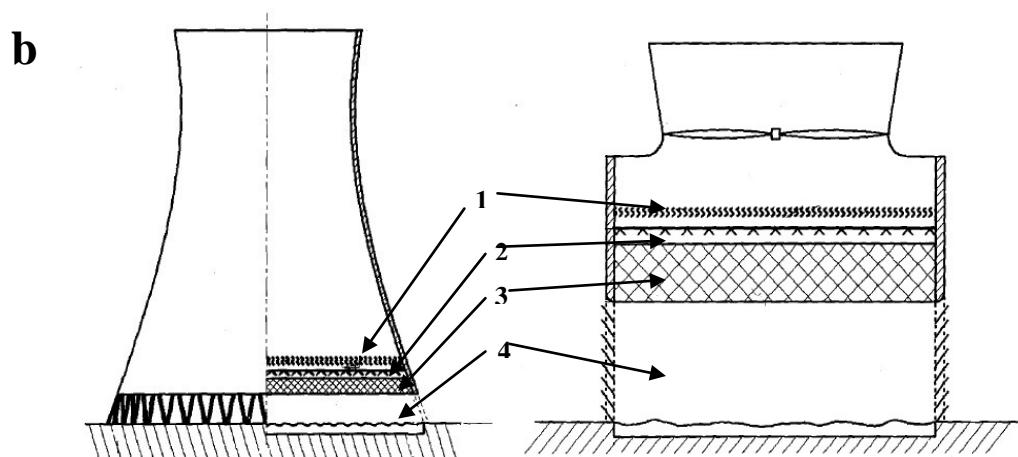
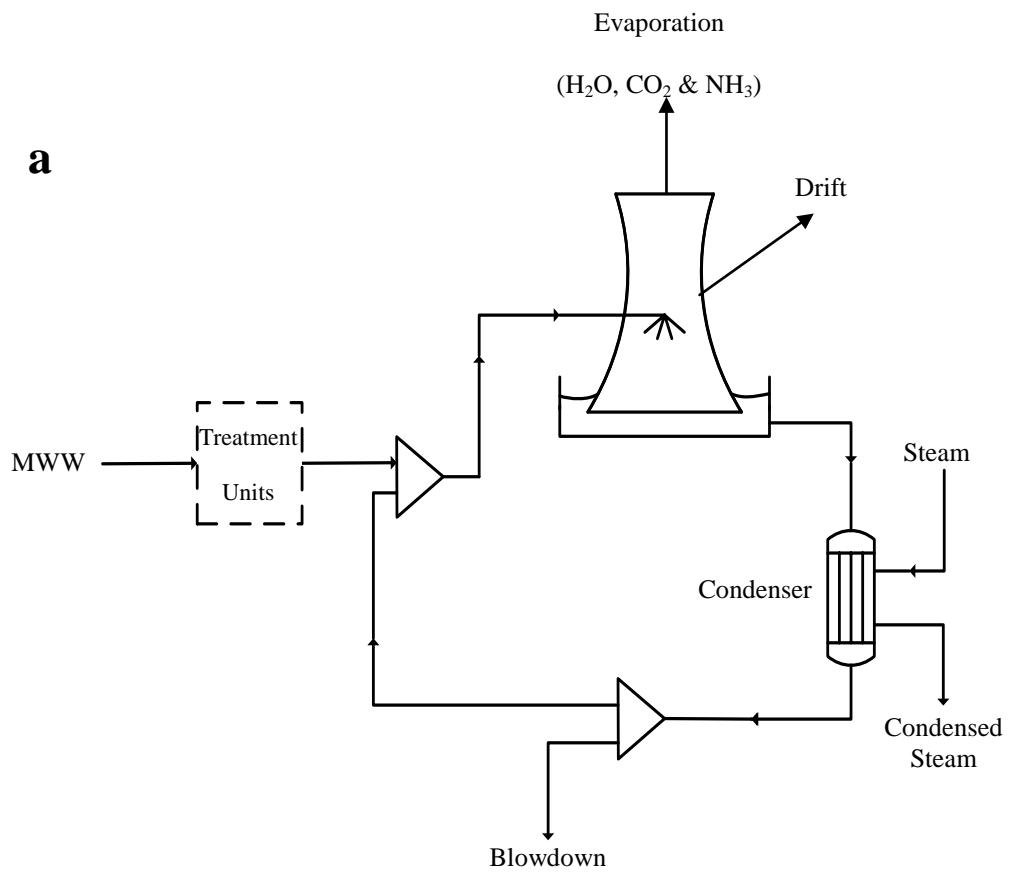
Figure 9: Stripping rate of CO_2 and NH_3 as a function of CO_2 mass transfer coefficient (k_{CO_2}) for different makeup water alkalinity (ALKm) of MWW

Figure 10: a-Effect of condenser heat load on the cooling loop pH when temperatures remain at base case condition for MWW. b- Effect of condenser heat load on the cooling loop pH when the recirculating water flow rate remains at base case condition for MWW. c- Effect of cooling tower inlet water temperature for MWW.

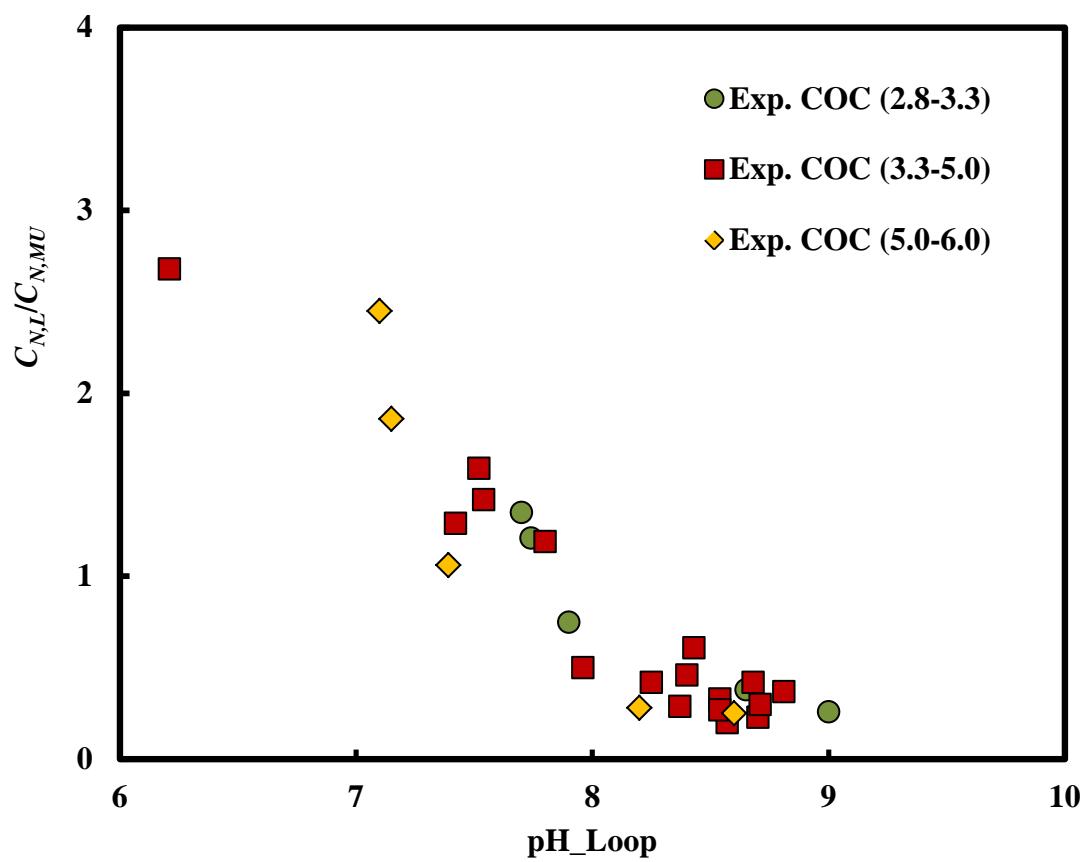
Figure 11: a- Volatile fraction of total ammonia and carbonate from Aspen/OLI water chemistry and simplified water chemistry. b- Evaporation rates predicted by Aspen/OLI water chemistry and simplified water chemistry

Table 1

Parameter	Value
Makeup water temperature, °C	25
Water inlet temperature to the cooling tower, °C	40 to 45
Water outlet temperature from cooling tower, °C	25 to 35
Inlet air temperature (dry bulb), °C	28
Inlet air relative humidity, %	60
Cooling tower filling height, m	0.915
Gas-liquid interfacial area, $\text{m}^2 \cdot \text{m}^{-3}$	147.5
Cycles of concentrations	2 to 10
Condenser heat duty, kJ/S	811085
Merkel number parameters of equation 4 (Kröger, 2004):	
n_1	0.279
n_2	-0.094
n_3	0.602



Table 2

Analyses	Unit	MWW ^a	MWW-N ^b
Al	mg/L	0.2	0.2
Ca	mg/L	41.5	41.5
Fe	mg/L	0.504	0.504
K	mg/L	16.3	16.3
Mg	mg/L	10.7	10.7
Mn	mg/L	0.317	0.317
Na	mg/L	94.2	94.2
SiO ₂	mg/L	8.54	8.54
pH		7.1	6.7
NH ₃ -N	mg/L	21.0	0.05
Bicarbonate Alkalinity	mg/L as CaCO ₃	177	25.0
Cl	mg/L	106	106
NO ₃ -N	mg/L	3.6	18.1
SO ₄	mg/L	86	86
Total P	mg/L	4.5	4.5


^a: Samples from Franklin Township Municipal Sanitary Authority September 2008 (Vidic & Dzombak, D.A., 2009)

^b: Simulation results for tertiary treatment of MWW with nitrification

Figure 1

Figure 2

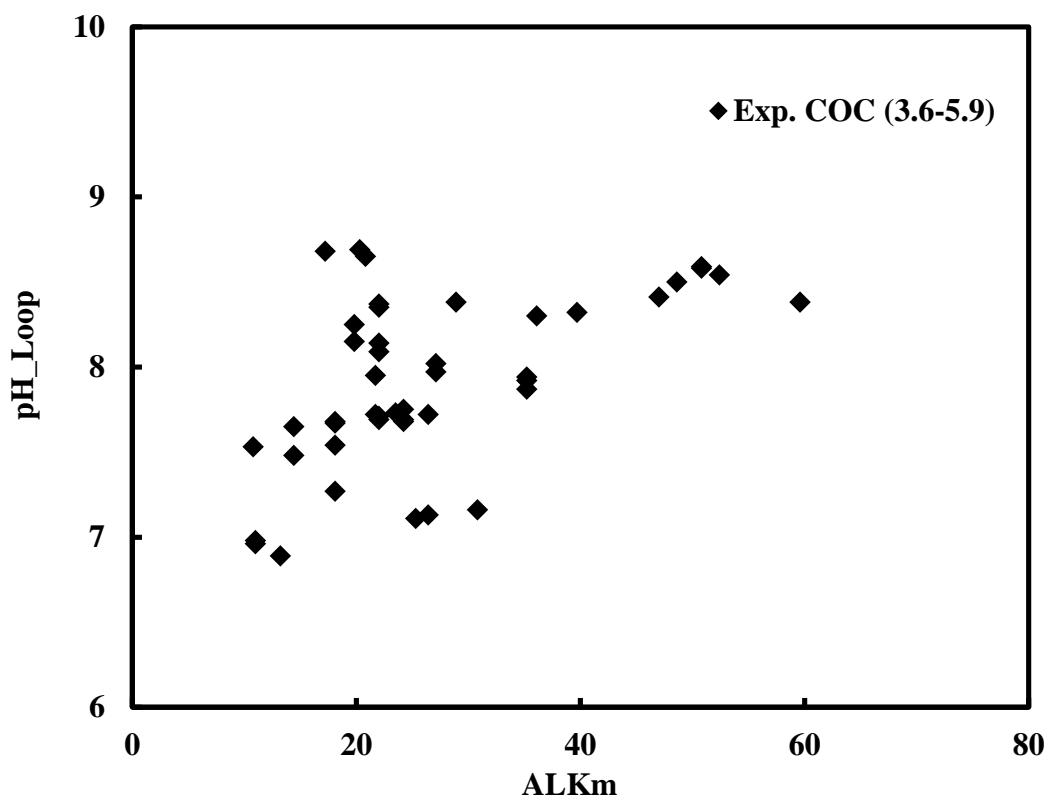


Figure 3

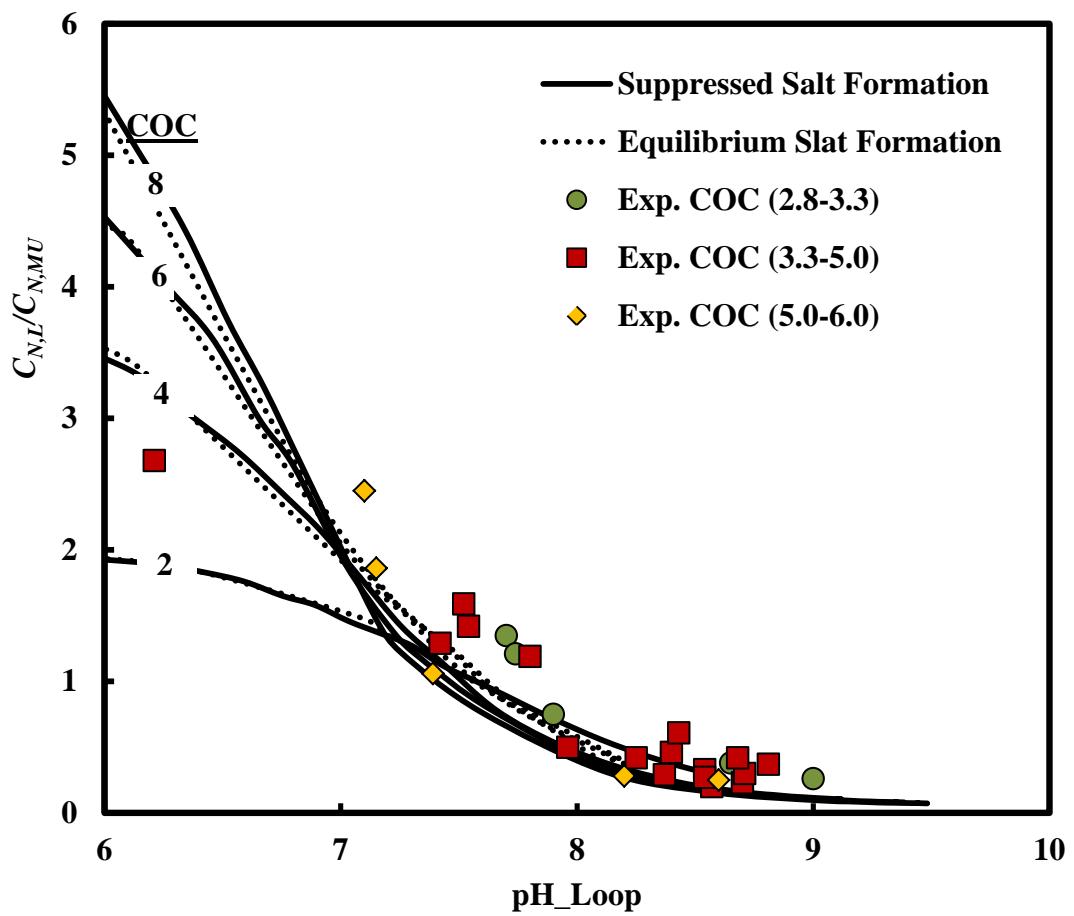
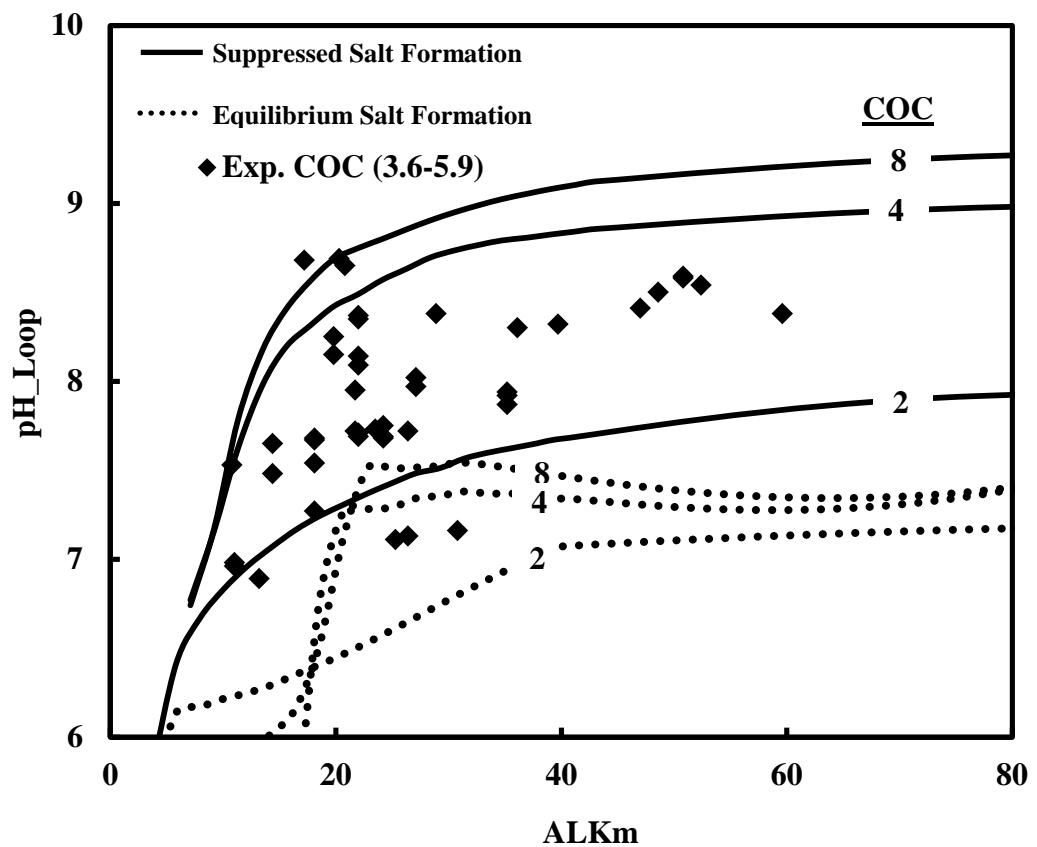
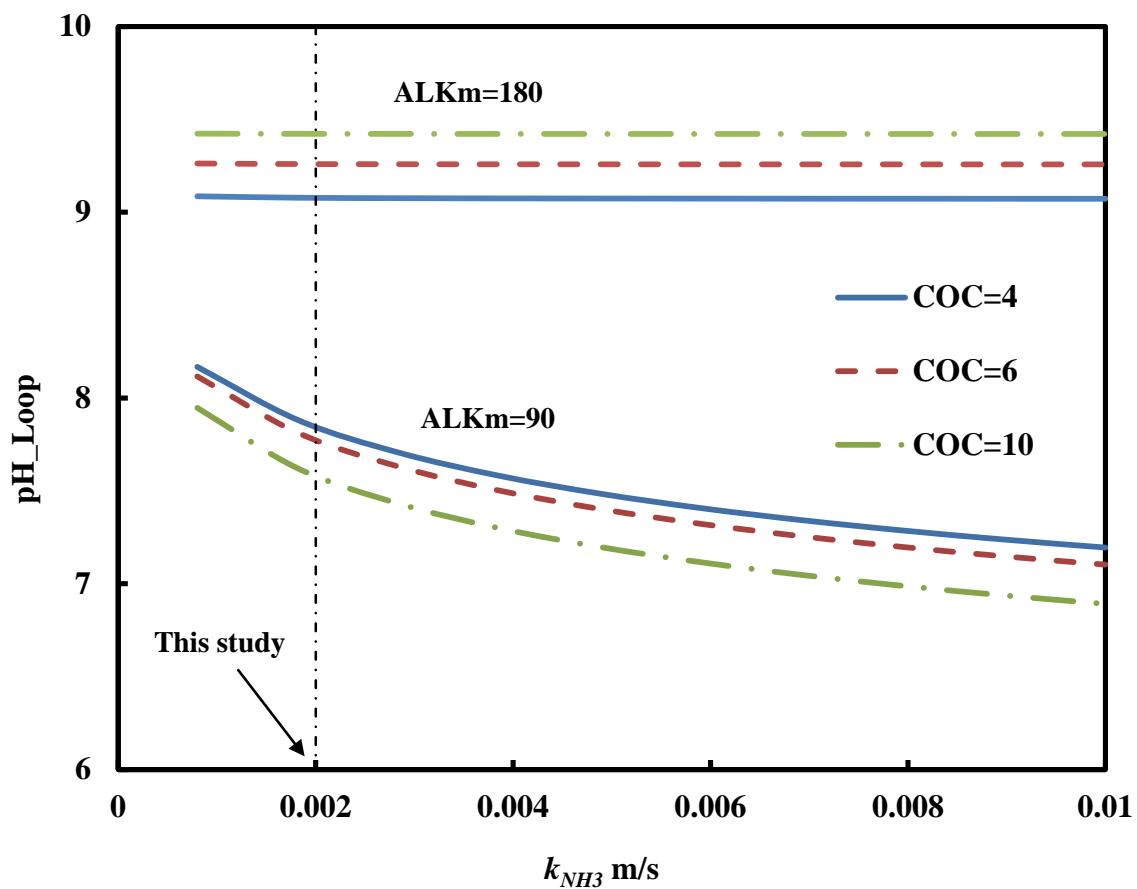




Figure 4

Figure 5

Figure 6

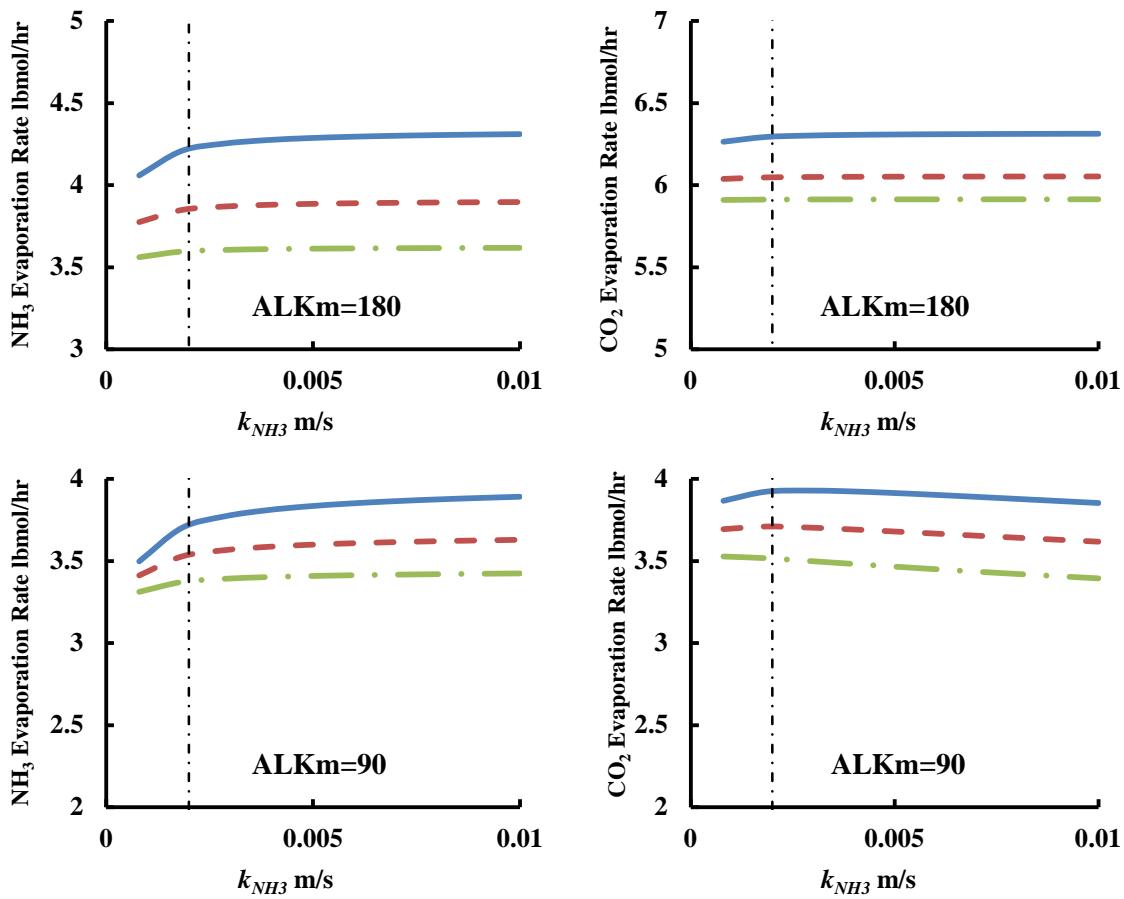


Figure 7

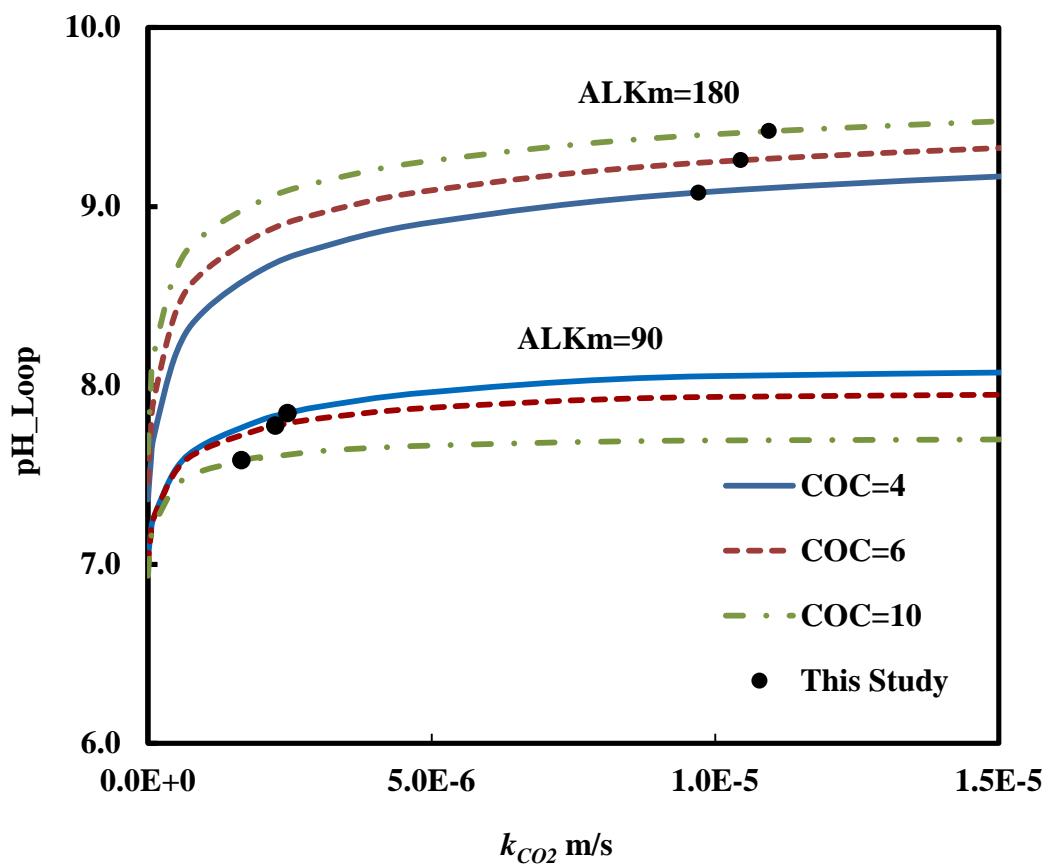


Figure 8

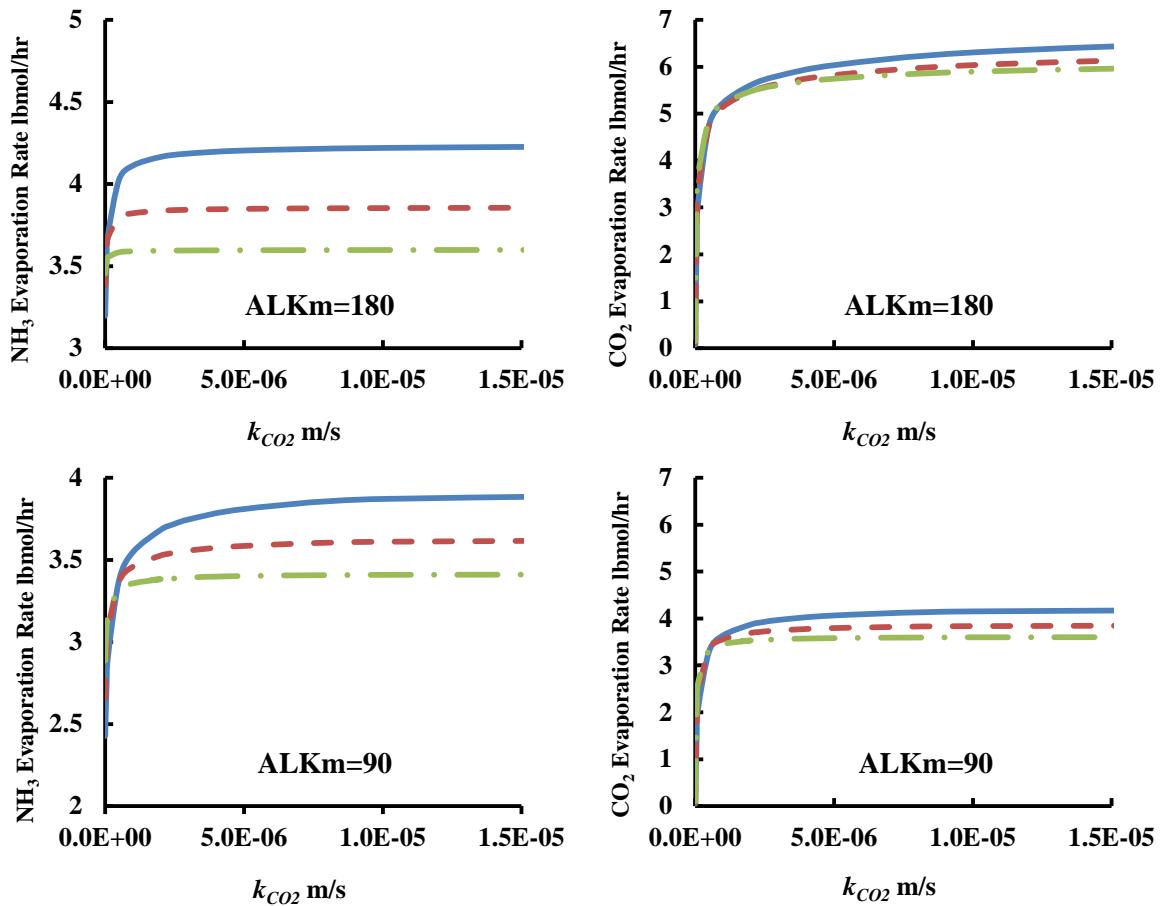
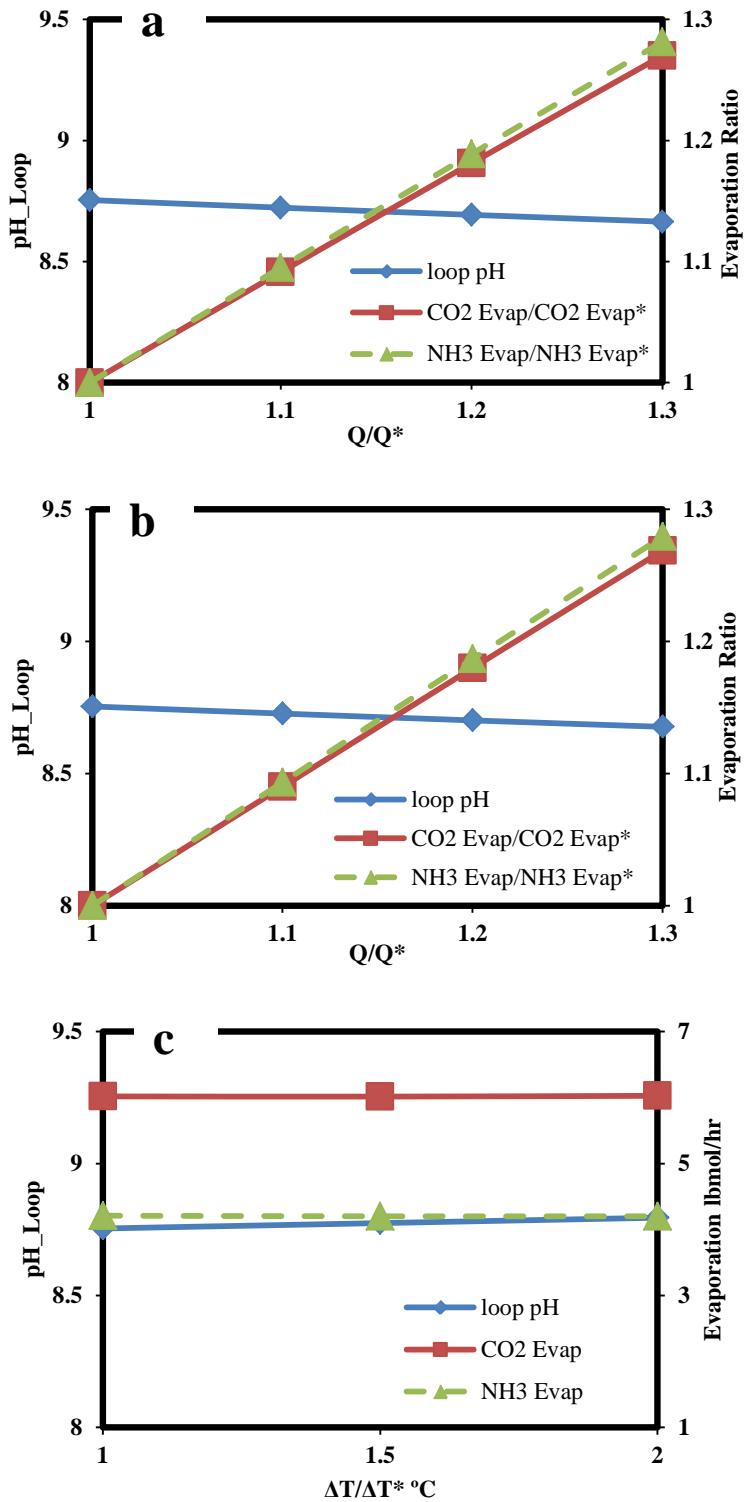



Figure 9

Figure 10

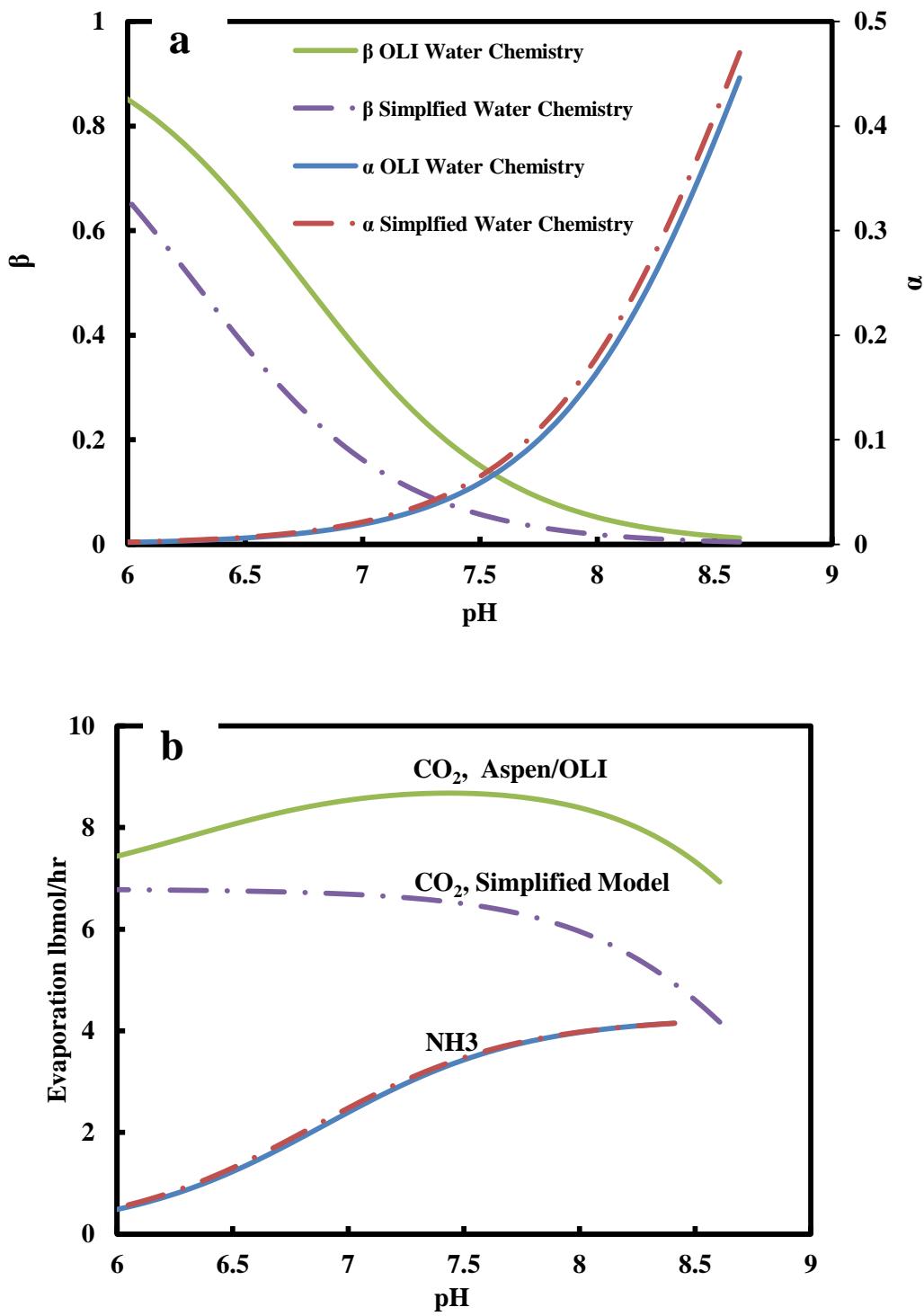


Figure 11