

1 **Trace Metal Source Terms in Carbon Sequestration Environments**

2

3

4 Athanasios K. Karamalidis^{1,2}, Sharon G. Torres³, J. Alexandra Hakala², Hongbo

5 Shao⁴, Kirk J. Cantrell⁴, Susan Carroll^{3*}

6

7 ¹Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, U.S.A.

8 ²National Energy Technology Lab, U.S. Department of Energy, Pittsburgh, PA 15236, U.S.A.

9 ³Lawrence Livermore National Laboratory, Livermore, CA 94550, U.S.A.

10 ⁴Pacific Northwest National Laboratory, Richland, WA 99352, U.S.A.

11

12

13

14 **ABSTRACT**

15

16 Carbon dioxide sequestration in deep saline and depleted oil geologic formations is feasible and

17 promising, however, possible CO₂ or CO₂-saturated brine leakage to overlying aquifers may pose

18 environmental and health impacts. The purpose of this study was to experimentally define trace

19 metal source terms from the reaction of supercritical CO₂, storage reservoir brines, reservoir and

20 cap rocks. Storage reservoir source terms for trace metals are needed to evaluate the impact of

21 brines leaking into overlying drinking water aquifers. The trace metal release was measured from

22 sandstones, shales, carbonates, evaporites, basalts and cements from the Frio, In Salah, Illinois

23 Basin – Decatur, Lower Tuscaloosa, Weyburn-Midale, Bass Islands and Grand Ronde carbon

24 sequestration geologic formations. Trace metal dissolution is tracked by measuring solution

25 concentrations over time under conditions (e.g. pressures, temperatures, and initial brine

26 compositions) specific to the sequestration projects. Existing metrics for Maximum Contaminant

27 Levels (MCLs) for drinking water as defined by the U.S. Environmental Protection Agency

28 (U.S. EPA) were used to categorize the relative significance of metal concentration changes in

29 storage environments due to the presence of CO₂. Results indicate that Cr and Pb released from

30 sandstone reservoir and shale cap rock exceed the MCLs by an order of magnitude while Cd and

31 Cu were at or below drinking water thresholds. In carbonate reservoirs As exceeds the MCLs by
32 an order of magnitude, while Cd, Cu, and Pb were at or below drinking water standards. Results
33 from this study can be used as a reasonable estimate of the reservoir and caprock source term to
34 further evaluate the impact of leakage on groundwater quality.

35

36 1. INTRODUCTION

37

38 Carbon capture and sequestration (CCS) technology is one prominent and feasible approach to
39 help mitigate impacts from increasing rates of CO₂ release from emission point sources. The
40 technology, in its most simplistic description, involves the capture of CO₂ from an industrial
41 source such as a coal-fired power plant, compression and transport of CO₂ to an injection site
42 and finally its sequestration to a deep underground geologic formation for long-term storage.

43

44 Many types of geologic formations have been proposed as the final receptors of CO₂ based on a
45 suite of criteria, including their location, geomorphology, potential storage capacity, hydrocarbon
46 potential, and structural characteristics for storage permanence. Among these, deep saline
47 formations and depleted oil and gas fields are the most promising. The former is being
48 considered based on for its large storage capacity with estimates ranging between 2,000 and
49 22,000 Gt for USA and Canada,¹ while the latter promises the additional potential for CO₂-
50 enhanced oil and natural gas recovery² and long-term storage based on its inherent characteristic
51 of maintaining oil and gas securely confined for thousands of years.

52

53 The sequestration of CO₂ in both saline geologic formations and depleted oil and gas fields
54 involves upward brine displacement,³ compression of both injected and resident fluids and

55 expansion of pore space.⁴ Although, in the long geologic time scale the sequestered bulk CO₂ is
56 unlikely to escape due to various trapping mechanisms, such as solution,^{5,6} physical,⁷ and
57 mineral trapping,⁸ slow leakage of buoyant CO₂ or CO₂ saturated brine even under favorable
58 storage conditions may occur. Analog studies of geologic environments containing large,
59 concentrated amounts of CO₂ have shown that leakage processes are inherent in CCS.⁹ Carbon
60 sequestration is viable only if those leakages account for less than 1% of stored CO₂ over 100
61 years.¹⁰ Likely conduits for CO₂ migration to overlying aquifers are faults or fracture networks
62 within caprock and wellbores.¹¹ The primary concern for such a leak is that dissolution of CO₂
63 within the storage reservoir and a drinking water aquifer will depress the pH and consequently
64 dissolve trace metals from minerals, such as carbonate- or sulfide-bearing minerals, clays, and
65 iron oxyhydroxides,¹²⁻¹⁶ liberating naturally-occurring hazardous elements to the water table.^{17,18}
66 The resulting increase in concentration of hazardous trace elements can contaminate drinking
67 water resources and detrimentally affect groundwater quality.¹⁹ Lewicki et al.²⁰ have summarized
68 CO₂ leakage incidents from natural and industrial analogues revealing that in more than 20
69 occasions worldwide, CO₂ escaped mainly through faults, fractures and wells causing adverse
70 health, safety and environmental effects. In most of these occasions, CO₂ was naturally
71 accumulated in highly fractured and/or porous rocks, such as sandstones and limestones, under
72 low-permeability cap rocks or produced by thermal decomposition of carbonate-rich sedimentary
73 rocks and degassing of magma.

74

75 Geochemical modeling and reactive transport simulations have been conducted to systematically
76 evaluate the potential for water quality changes due to CO₂ intrusion into shallow aquifers, but
77 their results are difficult to extrapolate or generalize because these modeling runs are site specific

78 and the variation between sites is high.²¹ Many of these investigations use the Maximum
79 Contaminant Levels (MCLs), as defined by the U.S. EPA, as a metric by which to gauge the
80 effects of geochemical reactions on water quality. According to the National Drinking Water
81 Regulations,²² MCLs are divided into two categories: primary and secondary. Primary drinking
82 water standards, which are for trace metals such as As, Cd, Cr, Pb, and Cu, among others, are
83 legally enforced for the protection of public health by limiting the levels of contaminants in
84 drinking water. Secondary drinking water standards, which include standards for Fe, Mn, and Zn,
85 are non-enforceable guidelines regulating contaminants that may cause cosmetic or aesthetic
86 effects in drinking water. One of the modeling studies probed the potential for trace metal
87 mobilization due to CO₂ intrusion into United States drinking water aquifers, which resulted in
88 predictions that only As, Pb and Zn should exceed their MCLs.^{23,24} Trace metal releases have
89 also been predicted due to acidification of shallow aquifers with low buffering capacity, and in
90 some of these cases trace metal concentrations were estimated to exceed their MCLs
91 (e.g.^{19,24,25}).

92

93 Limited experimental data exist to date to assess the probability and the environmental impacts
94 of CO₂ leakage on groundwater quality. For field studies reported in shallow environments, a
95 few examples demonstrate the complexity of the reactions involved. In the U.S. Tri-state mining
96 district (Kansas-Missouri-Oklahoma) high concentrations of zinc, lead and cadmium in the CO₂-
97 rich water decreased as the CO₂ degassed and pH increased. In this system trace metal solubility
98 was governed by the dissolution of iron oxyhydroxide and carbonate minerals.²⁶ Investigations
99 suggest that trace metals dissolved from reaction of CO₂-rich brines with basalt at Mt. Hekla,
100 Iceland are reincorporated into solid phases as the groundwaters are neutralized by continued

101 basalt dissolution.²⁷ At Zero Emission Research and Technology Center (ZERT) in Bozeman
102 MT, a field experiment showed that by injecting CO₂ in a shallow aquifer, Pb and As were
103 readily mobilized and their respective concentrations in the water were increased, but not to a
104 level that exceeded their respective MCLs at the end of the field experiment.^{28,29} In the Frio
105 formation in Texas, a demonstrative CO₂ injection was conducted into a sandstone section of the
106 formation to investigate the potential for geologic storage in a saline sedimentary aquifer.¹² Fluid
107 samples were collected before and after the CO₂ injection. Chemical and modeling results
108 exhibited rapid mineral dissolution especially for calcite and iron oxyhydroxide which
109 significantly increased Fe and Mn concentrations in the saline waters and were associated with
110 early CO₂ breakthrough. Samples collected 15 months after injection showed much lower metal
111 concentrations and higher pH, indicating that the reservoir had buffered any environmental
112 impacts from this short test.¹³ Investigations in Chimayo New Mexico, revealed upwelling trace
113 metals via two pathways that have CO₂-rich or CO₂-poor brines. The former provided a source of
114 As, Pb and U which significantly increased their concentration in the overlying aquifer,
115 exceeding the MCLs in few cases; however, the increase was not attributed to in situ trace
116 element mobilization caused by the presence of CO₂.¹⁷

117
118 The objective of this experimental study is to provide a range of concentrations that can be used
119 as the trace element source term for reservoirs and leakage pathways in risk simulations
120 (i.e.^{30,31}). We report averaged trace metal concentrations after 20 days of reaction of CO₂-rich
121 brines with cap and reservoir rock from different carbon sequestration demonstration projects
122 and wellbore cements. The results rank rock systems and trace elements that require more
123 systematic studies to establish the geochemical reactions that control solution concentrations.

124 Defining the magnitude of this source term is important for both understanding the role of CO₂ in
125 liberating trace metals via dissolution of their parent minerals, and predicting the potential risks
126 to shallow groundwaters if reacted brines leak from storage formations.

127

128
129 **2. EXPERIMENTAL SECTION**

130 **2.1. Rock – Brine – CO₂ Experiments**

131
132 Rock and cement samples used in the experiments from different depths and geologic formations
133 in the United States, Canada and Algeria (Table 1). In all experiments, rock fragments were
134 reacted with synthetic or natural brine and supercritical CO₂ at the temperature and pressure
135 conditions of their respective site. The pCO₂ for a given set of experiments depends on pressure,
136 temperature, and salinity and can be calculated from various equations of state found in the
137 literature.³²⁻³⁵ Most of the brine compositions used in this study were synthesized to simulate the
138 actual brine composition of the site, because collecting adequate mass to conduct experiments
139 and preserving natural brine samples from each site is rarely possible. Only the brines used in
140 experiments studying the Lower Tuscaloosa rocks were collected from the actual site. The rest of
141 the brine compositions, except for one (i.e. Bass Island) were representative of the sites trying to
142 mimic the actual composition of the natural brines. Details about the depth, brine type, mass of
143 solids and brine, temperature, pressure and reaction times for individual experiment are reported
144 in Table 1.

145

146 Static Dickson-type Au reactors housed in water-filled pressure vessels were used to react rock
147 or cement samples with the brine and supercritical CO₂ for most of the experiments. Here we
148 provided a brief description of the experimental setup, details are available in the literature.^{13,36}

149 The reaction kinetics and the approach to equilibrium were monitored by sampling the solution
150 as a function of time. The impact of CO₂ on dissolved trace metal solubility was made from the
151 comparison of the solution composition before and after injection of supercritical CO₂. After one
152 month of reaction to achieve constant concentrations in absence of CO₂, supercritical CO₂ was
153 injected into the reactor-cell (gold bag) and reacted for an additional month. Supercritical CO₂
154 was added in excess to the reaction vessel to ensure that both dissolved and supercritical CO₂
155 were present for the duration of the experiment. Brine samples were taken and analyzed for
156 solution chemistry over the duration of the experiment. Samples for dissolved trace metal
157 analysis were filtered, acidified with high purity nitric acid, and diluted with distilled and
158 deionized water. CO₂ concentrations were measured continuously throughout the experiment.
159 Measuring the CO₂ saturation was essential to the experiment, not only because we wanted to
160 mimic the reservoir conditions, but also as an indicator of possible leaks of the reactor-cell (gold
161 bag) during the experiment. CO₂ values are reported in accompanied studies (Table 1). Control
162 experiments using the same protocol but without any rock sample show that some trace metals
163 are leached from the passivated titanium parts when exposed to supercritical CO₂ and high brine
164 concentrations, but these values are 10 to 1000 times lower than the concentrations from rock-
165 water interactions. Results for all control experiments are reported in Table 2 for direct
166 comparison with the rock-water-CO₂ experiments. Initial trace metal concentrations were 1 to
167 1000 times greater in the solids compared to the solution composition.

168

169 Experiments for Grand Ronde basalt and Bass Islands dolomite rock samples were conducted in
170 300-mL Parr® pressure vessels (Parr Instrument Company, Moline, Illinois) with a Teflon liner.
171 Parallel experiments were conducted with CO₂ and N₂, respectively, for each rock sample under

172 the same conditions (pressure, temperature, brine concentration, solid to solution ratio) to
173 compare the effect of CO₂ on rock dissolution. Synthetic brine and rock samples were
174 equilibrated with CO₂ or N₂ gas under a designated pressure and temperature. Rock samples were
175 not equilibrated with saline solution before CO₂ or N₂ injection as previously described for other
176 rocks. All wetted parts of the pressure vessel were made of either teflon, titanium or zirconium.
177 No Ti or Zr was detected above its quantification limit (20 and 30 ppb, respectively) in aqueous
178 samples throughout the experiment. Aqueous samples were collected at selected time intervals,
179 and during sampling, the vessels were pressurized with a syringe pump to maintain constant
180 pressure throughout the experiment.

181

182 **2.2. Sample Analysis**

183
184 Major and trace metals in the aqueous samples and the stock solution were analyzed using ICP-
185 MS or ICP-OES. Samples were prepared volumetrically with a 20:1 dilution using an internal
186 standard solution in 2% nitric acid. A fully quantitative analysis using a linear calibration curve
187 based on known standards was performed. The internal standard was corrected for instrument
188 drift and suppression from the sodium chloride matrix. Detection levels were established from
189 duplicate blanks and serial dilution preparations. Matrix spike samples were analyzed for quality
190 control.

191

Table 1. Summary of general experimental parameters.

Lithology	Location	Depth (m)	Solid (g)	Brine (g)	Brine Type ^a	Temperature (°C)	Pressure (MPa)	Reaction Time before CO ₂ injection (days)	Reaction Time after CO ₂ injection (days)
Sandstone Reservoirs									
Mt Simon ³⁶	Illinois, USA	1954	12.4	245.9	A	51	19.5	40	31
Mt Simon ³⁶	Illinois, USA	2062	12.0	320.7	A	51	19.5	35	43
Frio ¹³	Texas, USA	1547	10.6	210.0	B	60	10.0	4	21
Lower Carboniferous ¹⁵	In Salah, Algeria	2062	5.6	301.2	C	95	10.0	33	28
Lower Tuscaloosa ³⁷	Mississippi, USA	3190	10.0	193.2	D	120	34.4	43	46
Lower Tuscaloosa	Mississippi, USA	3193	8.55	170.8	D	120	34.4	53	50
Bunter ³⁸	UK	2000	NA	NA	E	60	30	5	57
Navajo Sandstone ³⁹	Arizona, USA	NA	4.0	40	F	200	30	0	1-58
Shale Caprocks									
Eau Claire ³⁶	Illinois, USA	1675	15.3	262.6	A	51	19.5	41	31
Eau Claire ³⁶	Illinois, USA	1675	10.0	364.3	A	95	19.5	29	64
Lower Carboniferous ¹⁵	In Salah, Algeria	2087	6.4	301.2	C	95	10	31	31
Carbonate Reservoirs									
Vuggy ⁴⁰	Weyburn, Canada	1463	11.6	253.7	G	60	12.4	35	31
Vuggy ⁴⁰	Weyburn, Canada	1448	11.3	340.5	G	60	12.4	28	32
Marly ⁴⁰	Weyburn, Canada	1447	10.4	265.4	G	60	12.4	35	31
Bass Islands ⁴¹	Michigan, USA	1367	4.0	180	H	75	10.0	35	35
Evaporite Caprocks									
Three Fingers ⁴⁰	Weyburn, Canada	1389	12.1	285.5	G	60	12.4	29	64
Basalt									
Grand Ronde ⁴²	Washington, USA	1074	4.0	180	H	75	10.0	35	35
Wellbore Cement									
Class G	NA	NA	4.0	280.5	C	95	10	11	30
Class G	NA	NA	20.0	204.5	C	95	10	21	22
Class G + Lower Carboniferous ¹⁵	In Salah, Algeria	2087	4.8	252.5	C	95	10	26	44
Class G + Lower Carboniferous ¹⁵	In Salah, Algeria	2062	8.6	246.5	C	95	10	40	35

^aBrine Type: A) 2.1 m NaCl, 0.2 m KCl, 0.55 m CaCl₂, and 0.1 m MgCl₂; B) 1.5 m NaCl; C) 1.8 m NaCl, 0.55 m CaCl₂ and 0.1 m MgCl₂; D) Natural brine from Cranfield MI (salinity of 15%wt); E) 1 m NaCl; F) 0.2 m KCl; G) 1.1 m NaCl equilibrated with calcite and anhydrite prior to injection of CO₂; H) 0.1 m NaCl.

3. RESULTS AND DISCUSSION

Our collective experimental dataset shows that reaction of CO₂-rich brines with reservoir rocks (sandstone, carbonate, and basalt), caprocks (shale and evaporite), and wellbore cement enhance trace metals in solutions. The trace metals generally achieve constant concentrations within about 20 days after CO₂ injection, but not in all cases. Relative standard deviation for the trace metal concentrations was generally less than 2% for As, Cr, Cu, Fe; less than 6% for Pb; less than 10% for Cd and Mn; and often as high as 100% for Zn. For some experiments where the trace metal concentrations were low, the relative standard deviation was between 15 and 35%. An example of the change in trace metal concentrations with time is shown in Figure 1 for carbonate rocks from the Weyburn storage project. The results of these specific carbonate experiments suggest that storage of supercritical CO₂ will result in As, Cr, Fe, and Mn concentrations that are at or above EPA drinking water standards. We observed a wide variation in the absolute trace metal concentrations from the other experiments (see Supplementary Information Figures S2 to S13).

Averaged concentrations measured throughout the duration of the experiment capture the likely range of As, Cd, Cr, Cu and Pb (primary elements of concern) and Fe, Mn, and Zn (secondary elements of concern) that could leak from geologic sequestration environments to overlying aquifers. Table 2 reports averaged concentrations normalized to the appropriate MCL for each element and experiment, as well as results reported by Wigand et al.³⁸ and Lu et al.³⁹ Figure 2 is a cumulative distribution profile of the normalized concentrations plotted against the percentage of the experiments with trace metals at or below a given concentration. Normalized concentrations from all experiments generally span 2 to 3 orders of magnitude where values may

be either above or below the standard threshold (MCL). Concentration thresholds of primary MCLs are As = 10 ppb, Cd = 5 ppm, Cr = 100 ppb, Cu = 1300 ppb, and Pb = 15 ppb, and of secondary MCLs are Fe = 300 ppb, Mn = 50 ppb, and Zn = 5000 ppb. Figure 2 suggests that leakage of brines containing Fe and Mn could impact groundwater quality because normalized concentrations for these elements were consistently higher than the secondary MCLs. Leakage of brines containing Pb, Cr, Cd, and As also need to be considered for integrated risk assessment modeling, as between 50% to 75% of the experiments reported here yielded concentrations for these elements that were above the groundwater thresholds. Of the elements studied, only Cu and Zn are unlikely to affect groundwater quality during mixing of reacted brine, because the concentrations measured from 80% to 90% of the experiments were generally below the thresholds.

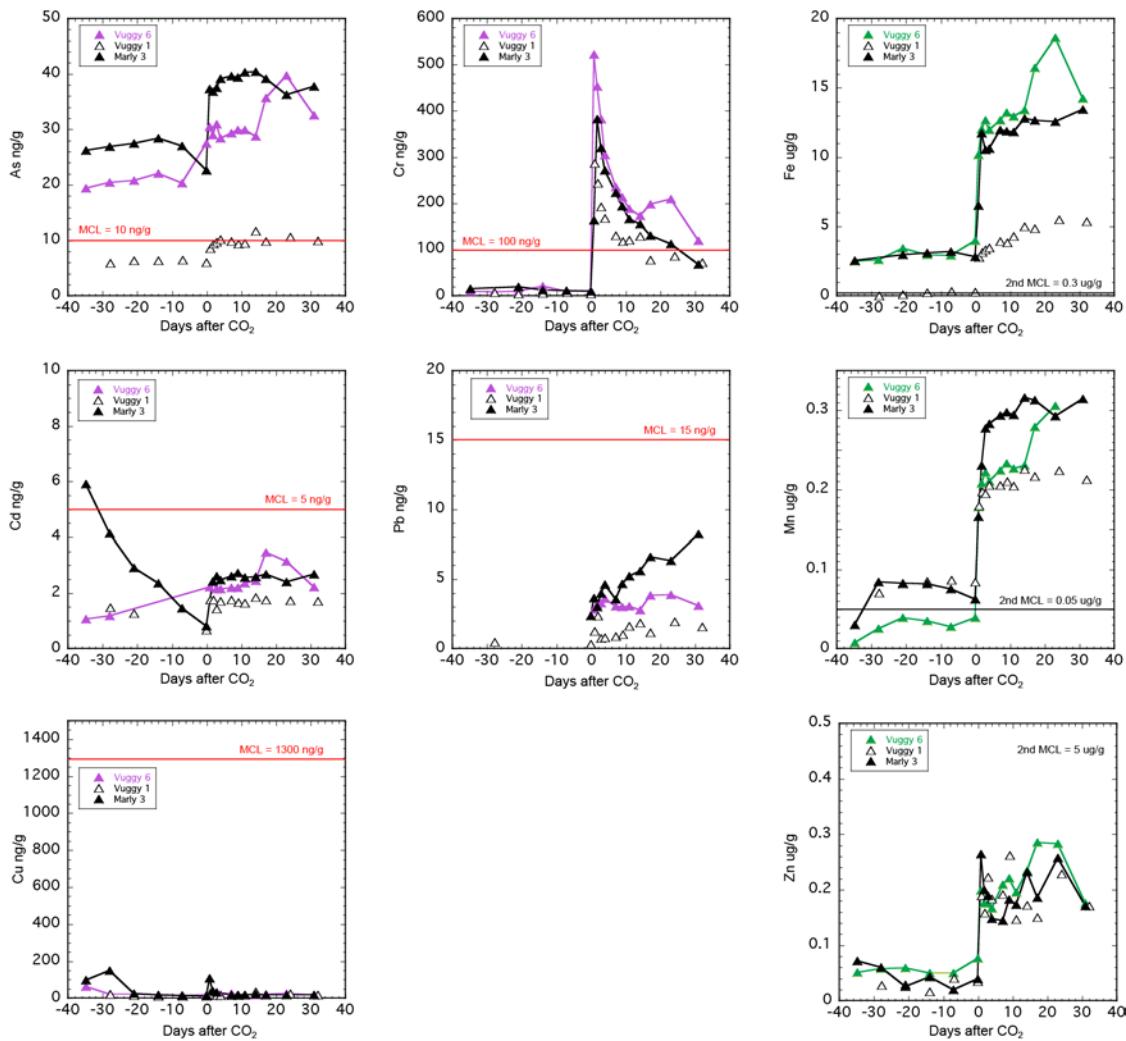


Figure 1. Total concentrations (ng/g or $\mu\text{g/g}$ solution) of dissolved trace metals released from three carbonate samples originated in Weyburn, Canada (Vuggy and Marly) when they reacted with synthetic brine with or without CO_2 as a function of reaction time (days). Time 0 hours denotes the beginning of CO_2 injection in the system.

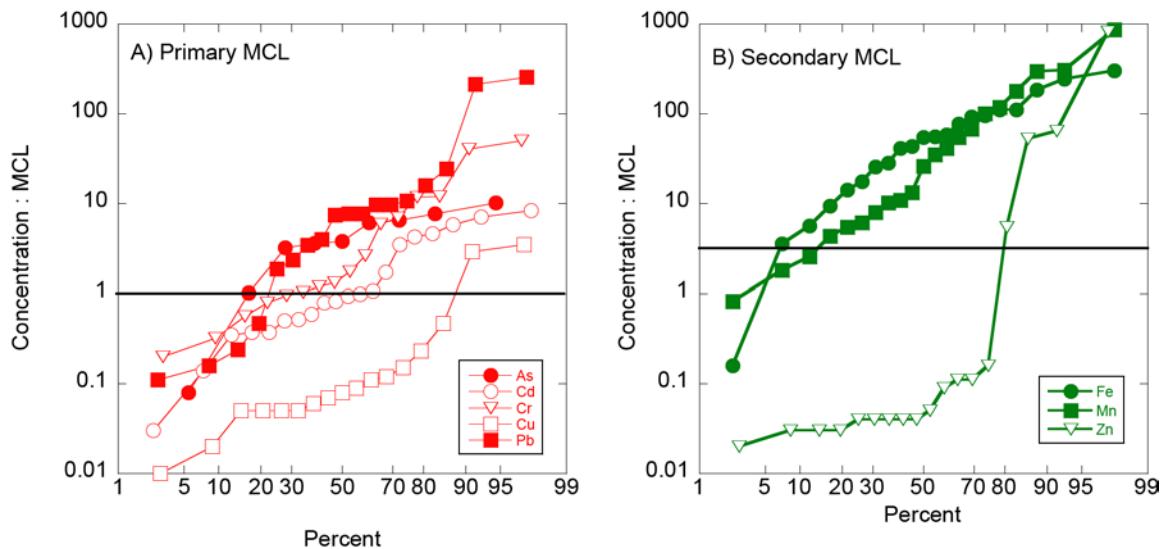


Figure 2. Cumulative distribution profiles of averaged concentrations normalized to MCL plotted against the percentage of the experiments with trace metals at or below a given concentration.

Table 2. Average trace metal concentrations normalized to primary or secondary MCL. Concentrations were averaged after about 20 days of reactions. Relative standard deviation for the trace metal concentrations was generally less than 2% for As, Cr, Cu, Fe; less than 6% for Pb; less than 10% for Cd and Mn; and often as high as 100% for Zn.

Lythology	As	Cd	Cr	Cu	Fe	Mn	Pb	Zn
Sandstone Reservoirs								
Mt Simon³⁶	- ^a	0.50	40.61	0.23	55.31	10.13	9.66	0.04
Mt Simon³⁶	-	1.06	50.19	0.12	77.11	10.84	2.35	-
Frio¹³	0.08	0.82	1.21	0.08	14.13	8.00	7.67	-
Lower Carboniferous¹⁵	-	0.98	5.90	0.05	303.43	40.96	1.88	0.03
Lower Tuscaloosa³⁷	-	7.06	-	2.90	111.33	308.00	212.67	53.18
Lower Tuscaloosa	-	3.48	1.33	3.52	25.70	296.00	254.00	5.48
Bunter³⁸	-	0.79	-	0.47	94.99	865.00	7.67	820.52
Navajo Sandstone³⁹	-	-	-	0.05	5.67	1.80	-	64.00
Shale Caprocks								
Eau Claire³⁶	-	1.73	7.03	0.05	241.95	67.61	7.48	-
Eau Claire³⁶	6.10	0.37	11.90	-	110.00	34.80	4.00	0.03
Lower Carboniferous¹⁵	-	0.93	0.32	0.15	184.00	2.55	24.48	0.11
Carbonate Reservoirs								
Vuggy⁴⁰	3.77	0.52	1.04	0.01	43.00	6.14	0.47	0.04
Vuggy⁴⁰	1.02	0.35	0.79	-	17.47	4.36	0.11	0.04
Marly⁴⁰	3.60	0.59	1.76	0.02	54.77	5.48	0.24	0.05
Bass Islands⁴¹	-	0.03	-	0.09	0.16	0.82	-	0.02
Evaporite Caprocks								
Three Fingers⁴⁰	-	0.37	11.99	0.05	58.10	13.19	0.16	0.03
Basalt								
Grand Ronde⁴²	-	0.14	-	0.06	40.99	99.87	-	0.04
Wellbore Cement								
Class G	10.12	8.41	2.65	-	3.55	54.15	9.71	0.16
Class G	3.20	4.24	0.56	-	9.45	26.08	3.43	0.04
Class G + Lower Carboniferous¹⁵	7.72	4.63	0.96	0.11	91.52	177.20	10.62	0.11
Class G + Lower Carboniferous¹⁵	6.51	5.83	0.20	0.07	28.18	118.64	15.97	0.09
Blanks								
0.1 m NaCl	-	-	0.64	0.07	0.14	-	0.39	-
1 m NaCl + 0.8 m NaHCO₃	0.014	0.05	0.35	0.04	0.69	0.21	0.38	0.005
3.6 m NaCl + 0.015 m NaHCO₃	0.59	0.09	0.12	0.02	-	0.86	0.09	0.009
DI water	-	-	-	-	-	-	-	-

^aThe dashes in the table indicate insufficient data. Concentrations were below the limit of detection.

The rock type (or cement) has significant control on the release of trace metals both in terms of mineral dissolution and carbonate content that can buffer solution pH. Table 3 recasts the information in Table 2 for a given rock type to highlight which types of rock yield trace metal concentrations that exceed EPA primary or secondary MCLs during reaction with CO₂. Values highlighted with red shading indicate that the respective trace metal concentration exceeds the MCL, whereas those values below or equal to MCL are shaded in green, indicating that they are of less concern when developing models to predict the effects of leaked brine on shallow groundwaters. The amount of trace metals that can be leached from rock types are generally greater for sandstone and shale, followed by cement, and then carbonate, evaporite, and basalt. Dissolved Fe and Mn routinely exceeded the secondary standards for nearly all rock types and their impact to groundwater quality should be evaluated closely. Any impacts to groundwater quality from Fe and Mn would contribute to an economic risk by altering groundwater aesthetics. Dissolved Pb concentrations were highest for sandstones, shales, and cements, but were released in limited amounts for carbonates, evaporites and basalt. Higher releases of Pb generally correspond to those experiments at higher temperatures, with the highest concentrations in the 120 °C sandstone experiments. Elevated Cr release occurred in all rock types (sandstones, shales, carbonates, evaporites or cements) except basalt. The As source term from sandstones and shales were inconclusive because the As concentration of the synthetic brines was generally higher than concentrations measured after the reaction with CO₂-rich brines. Slight As release was observed for carbonates, cements and evaporites.

Table 3. Median trace metal concentrations normalized to primary or secondary MCL for all the experiment. Shading below indicates those rock types that yielded trace metal concentrations that were at, below or above the MCL.

Metal	Median	Basalt	Sandstone	Shale	Carbonates	Evaporite	Cement
Primary							
Cu	0.08	<MCL	<MCL ^a	<MCL	<MCL	<MCL	<MCL
As	3.8	<MCL ^b			> MCL	<MCL	>MCL
Cd	0.93	<MCL	<MCL ^a	~MCL	~MCL	<MCL	>MCL
Cr	1.27	<MCL	>MCL	>MCL	>MCL	>MCL	~MCL
Pb	4.0	<MCL	>MCL	>MCL	<MCL	<MCL	>MCL
Secondary							
Zn	0.04	<MCL	<MCL ^a	<MCL	<MCL	<MCL	<MCL
Mn	26.08	>MCL	>MCL	>MCL	>MCL	>MCL	>MCL
Fe	54.7	>MCL	>MCL	>MCL	>MCL	>MCL	>MCL

^aTwo points from the experiment were above the MCL; ^bSamples were below the limit of detection. MCLs in drinking water (µg/L or ppb): Cu, 1300; As, 10; Cd, 5; Cr (total), 100; Pb, 15; Zn, 5000; Mn, 50; Fe, 300.

Implications of brine leakage on groundwater quality

The increased acidity associated with brines in equilibrium with supercritical CO₂ will increase trace metal concentrations in the storage reservoir and along cap rock and wellbore leakage pathways. Although these carbon sequestration experiments show that some trace metals exceeded their respective MCLs, their impact on groundwater quality will be dependent on many processes along the leakage pathway and within the shallow aquifer. This will involve degassing of CO₂, an increase in pH, and precipitation of carbonate and iron hydroxide minerals as temperature and pressure decrease.^{13,27-29} All of these processes are likely to lower the trace metal concentration. Leakage into many groundwaters will also be accompanied by a change from reducing to oxidizing conditions that should result in much lower Fe and Mn concentrations

from hydroxide precipitation.²⁶ Even for elements such as Pb with fairly high concentrations, it is likely that degassing of the brines could lower the concentrations along the leakage pathway through precipitation or adsorption. Lower Pb concentrations in experiments with cement suggest that Pb released from the caprock would be removed from solution possibly by amorphous silica and carbonate minerals (the primary cement alteration products). Natural dispersion and sorption reactions also have the potential to lower Pb concentrations within a dilute aquifer. The range of trace metal concentrations from these 21 experiments can be used as source terms to overlying aquifers to assess risk during the site selection and permitting process. Once site-specific core is available additional experiments may be performed to narrow the uncertainty of risk assessment calculations.

ACKNOWLEDGEMENTS

We wish to thank LLNL personnel Victoria Genetti and Rachel Lindvall and URS-Pittsburgh personnel for analyzing the solution compositions. This work was supported by Department of Energy, Office of Basic Energy Science. This work was completed as part of National Risk Assessment Partnership (NRAP) project. Support for this project came from the DOE Office of Fossil Energy's Crosscutting Research program. The authors wish to acknowledge Robert Romanosky (NETL Strategic Center for Coal) and Regis Conrad (DOE Office of Fossil Energy) for programmatic guidance, direction, and support. This work was performed under the auspices of the U.S. Department of Energy by Carnegie Mellon University and National Energy Technology Laboratory under contract DE-FE0004000, Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, and Pacific Northwest National Laboratory,

which is operated for U.S. Department of Energy by Battelle Memorial Institute under contract DE-AC05-76RL01830.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

ASSOCIATED CONTENT

Supporting Information

Details of the individual dissolved trace metals release from different types of rocks and locations, when reacted with or without CO₂ saturated synthetic or natural brine as a function of time and their comparison with regulatory maximum contaminant levels. This material is available free of charge via the Internet at <http://pubs.acs.org>.

AUTHOR INFORMATION

Corresponding Author

*E-mail: carroll6@llnl.gov; Phone: (925) 423-5694

Notes

The authors declare no competing financial interest.

REFERENCES

- (1) U.S. DOE, National Energy Technology Laboratory, *Carbon Sequestration Atlas of the United States and Canada*, 3rd ed., Morgantown, WV, USA, 2010.
- (2) Newmark, R.L.; Friedmann, S.J.; Carroll, S.A. Water challenges for geologic carbon capture and sequestration. *Environ. Manage.* **2010**, 45, 651-661.
- (3) Oldenburg, C.M.; Rinaldi, A.P. Buoyancy effects on upward brine displacement caused by CO₂ injection. *Transport Porous Med.* **2011**, 87, 525–540.
- (4) Bachu, S. CO₂ storage in geological media: Role, means, status and barriers to deployment. *Progr. Energ. Combust. Sci.* **2008**, 34, 254-273.
- (5) Benson, S.M.; Cole, D.R. CO₂ sequestration in deep sedimentary formations. *Elements* **2008**, 4 (5), 325–331.
- (6) Gilfillan, S.M.V.; Lollar, B.S.; Holland, G.; Blagburn, D.; Stevens, S.; Schoell, M.; Cassidy, M.; Ding, Z.; Zhou, Z.; Lacrampe-Couloume, G.; Ballentine, C.J. Solubility trapping in formation water as dominant CO₂ sink in natural gas fields. *Nature* **2009**, 458, 614–618.
- (7) Metz, B.; Davidson, O.; Coninck, H.D.; Loos, M.; Meyer, L. IPCC Special Report on Carbon Dioxide Capture and Storage. New York, Cambridge, 2005.
- (8) Shukla, R.; Ranjith, P.; Haque, A.; Choi, X. A Review of studies on CO₂ sequestration and caprock integrity. *Fuel* **2010**, 89 (10), 2651-664.

(9) Nelson, C. R.; Evans, J. M.; Sorensen, J. A.; Steadman, E. N. Factors affecting the potential for CO₂ leakage from geologic sinks, Plain CO₂ reduction (PCOR) Partnership, 2005. Available only online at
<http://www.undeerc.org/PCOR/newsandpubs/pdf/FactorsAffectingPotential.pdf>.

(10) DOE Carbon Sequestration Technology Roadmap and Program Plan. U.S. DOE and NETL: Washington DC, 2007.

(11) Zhang, M.; Bachu, S. Review of integrity of existing wells in relation to CO₂ geological storage: What do we know? *Int. J. Greenh. Gas Con.* **2011**, 5, 826-840.

(12) Kharaka, Y.K.; Cole, D.R.; Hovorka, S.D.; Gunter, W.D.; Knauss, K.G.; Freifeld, B.M. Gas-water-rock interactions in Frio Formation following CO₂ injection: implications for the storage of gases in sedimentary basins. *Geology* **2006**, 34 (7), 577–580.

(13) Kharaka, Y.K.; Thordsen, J.J.; Hovorka, S.D.; Nance, H.S.; Cole, D.R.; Phelps, T.J.; Knauss, K.G. Potential environmental issues of CO₂ storage in deep saline aquifers: geochemical results from the Frio-I Brine Pilot test, Texas, USA. *Appl. Geochem.* **2009**, 24, 1106–1112.

(14) Carroll, S.; Hao, Y.; Aines, R. Geochemical detection of CO₂ in dilute aquifers. *Geochem. Transactions* **2009**, 10:4; DOI: 10.1186/1467-4866-10-4.

(15) Carroll, S.A.; McNab, W.W.; Torres, S.C. Experimental study of cement-sandstone/shale-brine-CO₂ interactions. *Geochem. Transactions* **2011**, 12, 1-19.

(16) Binyam L. Alemu; Per Aagaard; Ingrid Anne Munz; Elin Skurtveit. Caprock interaction with CO₂: A laboratory study of reactivity of shale with supercritical CO₂ and brine. *Appl. Geochem.* **2011**, 26, 1975–1989.

(17) Keating, E.H.; Fessenden, J.; Kanjorski, N.; Koning, D.J.; Pawar, R. The impact of CO₂ on shallow groundwater chemistry: observations at a natural analog site and implications for carbon sequestration. *Environ. Earth Sci.* **2010**, 60, 521-536.

(18) Lu, J.; Partin, J.W.; Hovorka, S.D.; Wong, C. Potential risks to freshwater resources as a result of leakage from CO₂ geological storage: a batch-reaction experiment. *Environ. Earth Sci.* **2010**, 60, 335–348.

(19) Zheng, L.; Apps, J.A.; Zhang, Y.; Xu, T.; Birkholzer, J.T. On mobilization of lead and arsenic in groundwater in response to CO₂ leakage from deep geological storage. *Chem. Geol.* **2009**, 268, 281-297.

(20) Lewicki, J.L.; Birkholzer, J.T.; Tsang, Ch.-F. Natural and industrial analogues for leakage of CO₂ from storage reservoirs: identification of features, events, and processes and lessons learned. *Environ. Geol.* **2007**, 52, 457-467.

(21) Lemieux, J.-M. Review: The potential impact of underground geological storage of carbon dioxide in deep saline aquifers on shallow groundwater resources. *Hydrogeol. J.* **2011**, 19, 757-778.

(22) U.S. EPA, *Code of Federal Regulations*, 40 CFR Part 141 and 143, EPA 816-F-09-0004, May 2009.

(23) Birkholzer, J.T.; Apps, J.; Zheng, L.; Zhang, Y.; Xu, T.; Tsang, C.-F. Research project on CO₂ geological storage and groundwater resources, quality effects caused by CO₂ Intrusion into Shallow Groundwater, Technical Report, Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 352 pp, 2008;
<http://escholarship.org/uc/item/82c0q660>.

(24) Apps, J.A.; Zheng, L.; Zhang, Y.; Xu, T.; Birkholzer, J.T. Evaluation of potential changes in groundwater quality in response to CO₂ leakage from deep geologic storage. *Transport Porous Med.* **2010**, 82 (1), 215–246.

(25) Wang, S.; Jaffe, P.R. Dissolution of a mineral phase in potable aquifers due to CO₂ releases from deep formations; effect of dissolution kinetics. *Energ. Convers. Manage.* **2004**, 45, 2833-2848.

(26) Carroll, S.A.; O'Day, P.A.; Piechowski, M. Rock-water interactions controlling zinc, cadmium, and lead concentrations in surface waters and sediments, U.S. Tri-State Mining District. 2. Geochemical Interpretation. *Environ. Sci. Technol.* **1998**, 32, 956-965.

(27) Flaathen, T.K.; Gislason, S.R.; Oelkers, E.H.; Sveinbjörnsdóttir, A.E. Chemical evolution of the Mt. Hekla, Iceland, groundwaters: A natural analogue for CO₂ sequestration in basaltic rocks. *Appl. Geochem.* **2009**, 24 (3), 463-474.

(28) Spangler, L.H.; Dobeck, L.M.; Repasky, K.S.; Nehrir, A.R.; Humphries, S.D.; Barr, J.L.; Keith, C.J.; Shaw, J.A.; Rouse, J.H.; Cunningham, A.B.; Benson, S.M.; Oldenburg, C.M.; Lewicki, J.L.; Wells, A.W.; Diehl, J.R.; Strazisar, B.R.; Fessenden, J.E.; Rahn, T.A.; Amonette, J.E.; Barr, J.L.; Pickles, W.L.; Jacobson, J.D.; Silver, E.A.; Male, E.J.; Rauch, H.W.; Gullickson, K.S.; Trautz, R.; Kharaka, Y.; Birkholzer, J.; Wielopolski, L. A shallow subsurface controlled release facility in Bozeman, Montana, USA, for testing near surface CO₂ detection techniques and transport models. *Environ. Earth Sci.* **2009**, 60, 227–239.

(29) Kharaka, Y.K.; Thordsen, J.J.; Kakouras, E.; Ambats, G.; Herkelrath, W.N.; Beers, S.R.; Birkholzer, J.T.; Apps, J.A.; Spycher, N.F.; Zheng, L.; Trautz, R.C.; Rauch, H.W.; Gullickson, K.S. Changes in the chemistry of shallow groundwater related to the 2008

injection of CO₂ at the ZERT field site, Bozeman, Montana. *Environ. Earth Sci.* **2010**, *60*, 273–284.

(30) McMahon, P.B.; Chapelle, F.H. Redox processes and water quality of selected principal aquifer systems. *Ground Water* **2008**, *46* (2), 259-271.

(31) Siirila, E.R.; Navarre-Sitchler, A.K.; Maxwell, R.M.; McCray, J.E. A quantitative methodology to assess the risks to human health from CO₂ leakage into groundwater. *Adv. Water Resour.* **2012**, *36*, 146-164.

(32) Akinfiev, N. N.; Diamond, L. W. Thermodynamic model of aqueous CO₂ –H₂O-NaCl solutions from -22 to 100 °C and from 0.1 to 100 Mpa. *Fluid Phase Equilib.* **2010**, *295*, 104-124.

(33) Duan, Z.; Sun, R.; Zhu, C.; Chou, I-M. An improved model for the calculation of CO₂ solubility in aqueous solutions containing Na⁺, K⁺, Ca²⁺, Mg²⁺, Cl⁻, and SO₄²⁻. *Mar. Chem.* **2006**, *98*, 131–139.

(34) Spycher, N.; Pruess, K.. A phase-partitioning model for CO₂-Brine mixtures at elevated temperatures and pressures: Application to CO₂-Enhanced Geothermal system. *Transp. Porous Med.* **2010**, *82*, 173-196.

(35) Enick, R. M.; Klara, S. M. CO₂ solubility in water and brine under reservoir conditions. *Chem. Eng. Comm.* **1990**, *90*, 23–33.

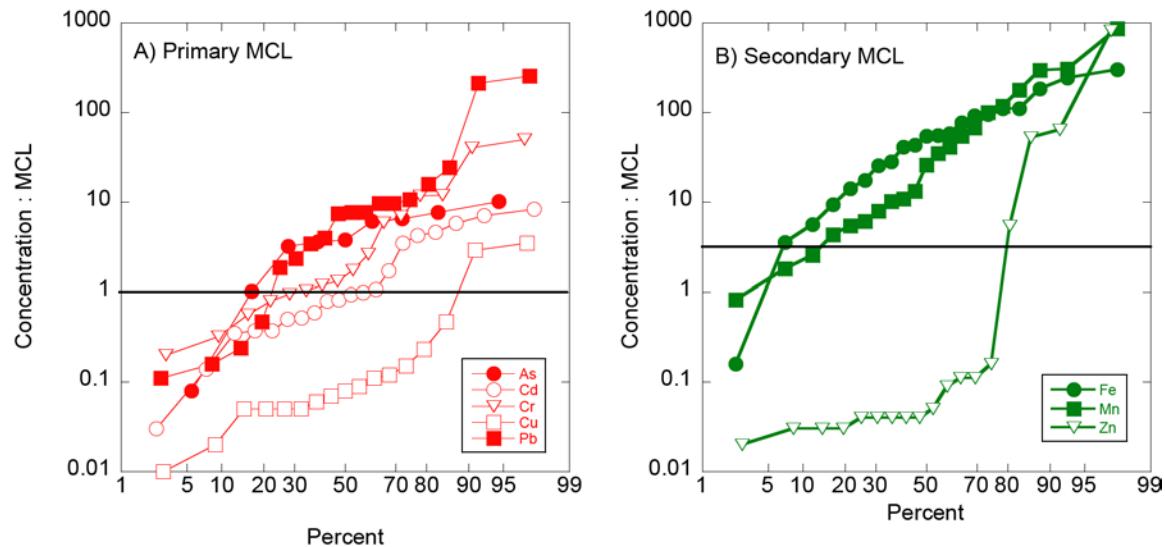
(36) Carroll, S.; McNab, WW.; Dai, Z.; Torres, S.C. Reactivity of Mt. Simon sandstone and the Eau Claire shale under CO₂ storage conditions. *Environ. Sci. Technol.* **2012**, submitted.

(37) Lu, J.; Kharaka, Y.K.; Thordsen, J.J.; Horita, J.; Karamalidis, A.; Griffith, C.; Alexandra, J.H.; Ambats, G.; Cole, D.R.; Phelps, T.J.; Manning, M.A.; Cook, P.J.; Hovorka, S.D. CO₂-rock-brine interactions in Lower Tuscaloosa Formation at Cranfield CO₂ sequestration site,

Mississippi, U.S.A.. *Chem. Geol.* **2012**, 291, 269-277. DOI: 10.1016/j.chemgeo.2011.10.020.

(38) Wigand, M.; Carey, J.W.; Schütt, H.; Spangenberg, E.; Erzinger, J. Geochemical effects of CO₂ sequestration in sandstones under simulated in situ conditions of deep saline aquifers. *Appl. Geochem.* **2008**, 23, 2735-2745.

(39) Lu, P.; Fu, Q.; Seyfried, Jr. W.E.; Hereford, A.; Zhu, C. Navajo Sandstone-brine-CO₂ interaction: implications for geological carbon sequestration. *Environ. Earth Sci.* **2011**, 62, 101-118.


(40) Smith, M.; Sholokhova, Y.; Hao, Y.; Carroll, S. Evolution of carbonate dissolution features produced under variable pCO₂ conditions relevant to CO₂-EOR and geologic CO₂ storage. *Geochim. Cosmochim. Acta* **2012** (submitted).

(41) Harrison, W.B.; Grammer, G.M.; Barnes, D.A. Reservoir characteristics of the Bass Islands dolomite in Otsego County, Michigan: Results for a saline reservoir CO₂ sequestration demonstration. *Environ. Geosci.* **2009**, 16 (3), 139-151.

(42) McGrail, B.P.; Sullivan, E.C.; Spane, F.A.; Bacon, D.H.; Hund, G.; Thorne, P.D.; Thompson, C.J.; Reidel, S.P.; Colwell, F.S. Preliminary hydrogeologic characterization results from the Wallula Basalt pilot study. PNWD-4129 Battelle Pacific Northwest Division Richland, Washington, 2009.

TABLE OF CONTENTS ARTWORK

Range of trace metal concentrations normalized to maximum contaminant levels that could leak from geologic carbon storage reservoirs by on experiments

