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Project Goals

This is a collaborative proposal that aims at developing new methods for the analysis and reduction of
complex multiscale networks under uncertainty. The approach is based on combining methods of compu-
tational singular perturbation (CSP) and probabilistic uncertainty quantification. In deterministic settings,
CSP yields asymptotic approximations of reduced-dimensionality “slow manifolds” on which a multiscale
dynamical system evolves. Introducing uncertainty raises fundamentally new issues, particularly concerning
its impact on the topology of slow manifolds, and means to represent and quantify associated variability. To
address these challenges, this project uses polynomial chaos (PC) methods to reformulate uncertain network
models, and to analyze them using CSP in probabilistic terms. Specific objectives include (1) developing
effective algorithms that can be used to illuminate fundamental and unexplored connections among model
reduction, multiscale behavior, and uncertainty, and (2) demonstrating the performance of these algorithms
through applications to model problems.

Accomplishments

Random eigenvalue problem

A spectral decomposition methodology has been developed of the Jacobian of stochastic chemical systems.
These algorithm establish the capability of expressing both the eigenvalues and eigenvectors of the Jaco-
bian in the form of compact Polyomial Chaos (PC) representations, namely in the space of the physical
eigenvectors.

Approach

The development is based on associating with each realization, ξ, of the germ parameterizing the random
inputs a system Jacobian matrix, J(ξ), defined in terms of its entries,

Jij =
∂gi
∂yj

, i, j = 1, . . . , n. (1)
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Provided that the stochastic Jacobian J is in
(
L2(Ω∗)

)n×n and is almost surely R-diagonalizable with n
distinct (stochastic) eigenvalues, we define a spectral representation of J(ξ) according to:

J(ξ) =
P∑

k=0

JkΨk(ξ), ξ ∈ Ω∗. (2)

Such a spectral representation of J enables us to characterize the dependence of system eigenvectors on
the uncertainty spawned by ξ, and provides useful expressions of the Jacobian that preserves the physical
interpretation of its eigenvectors; that is, each eigenvector is in Rn.

Let u be a random n-vector in with spectral expansion u =

P∑
k=0

ukΨk. The modes uk define the

coordinates of u in (Vp)n which we denote by [u]. The matrix J ∈ RN×N is indexed so that it acts on a
random n-vector u ∈ (Vp)n through its coordinate vector [u] as follows:

J [u] =


J 00 J 01 . . . J 0P

J 10 J 11 . . . J 1P

. . . . . . . . . . . . . . . .
J P0 J P1 . . . J PP



u0

u1

...
uP

 ,

with J kl ∈ Rn×n defined by〈
Ψ2

k

〉
J kl
ij = 〈Jij(y)ΨkΨl〉 , i, j = 1, . . . , n, k, l = 0, . . . , P. (3)

A useful relationship was also established between the spectral representation for J in (2) and the matrix
J =

(
J kl
ij

)
defined in (3). For i, j = 1, . . . , n and k = 0, . . . , P we have

J k0
ij =

〈JijΨkΨ0〉〈
Ψ2

k

〉 =

〈( P∑
m=0

Jm
ij Ψm

)
Ψk

〉
〈
Ψ2

k

〉 =

P∑
m=0

Jm
ij

〈ΨkΨm〉〈
Ψ2

k

〉 =

P∑
m=0

Jm
ij

δkm
〈
Ψ2

m

〉〈
Ψ2

k

〉 = Jk
ij .

That is,
J k0 = Jk, k = 0, . . . , P. (4)

Solution algorithm

Solution algorithms were developed for the purpose of computing the chaos coefficients of the eigenvalues
λ(ξ), and right (left) eigenvectors a(ξ) (b(ξ)) of the stochastic Jacobian by solving the following eigenvalue
problem:

J(ξ)a(ξ) = λ(ξ)a(ξ), a(ξ) · a(ξ) = 1, (5)

where · denotes the Euclidean inner product in Rn. The PC representations of λ(ξ) and a(ξ) are

λ(ξ) =

P∑
k=0

λkΨk, a(ξ) =

P∑
k=0

akΨk. (6)

Using (4) to recover the PC representation of J(ξ),

J(ξ) =

P∑
k=0

JkΨk(ξ), Jk = J k0,
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and using the PC representations of λ, a, and J in conjunction with (5), we obtain

P∑
i=0

P∑
j=0

(
J i − λiI

)
ajΨiΨj = r1,

P∑
i=0

P∑
j=0

ai · ajΨiΨj − 1 = r2, (7)

where I is the n × n identity matrix, and r1 and r2 are the residuals due to the finite truncation of the PC
expansions. Following the method of Ghanem and Ghosh (Int. J. Num. Meth. Engng. 72:486-504, 2007)
these residuals are minimized by forcing their orthogonality to the basis of Vp. The stochastic eigenvalue
problem becomes: 

P∑
i=0

P∑
j=0

(
J i − λiI

)
aj〈ΨiΨjΨk〉 = 0, k = 0, . . . , P,

P∑
i=0

P∑
j=0

ai · aj〈ΨiΨjΨk〉 − δk0 = 0, k = 0, . . . , P.

(8)

The system (8) can be simply expressed as:{
(J − λI)⊗ a = ξ̄,

a� a = 1.

We compute λk and ak for k = 0 . . . P by solving the nonlinear system in (8) using Newton-Raphson
iterations, and refer to this approach as the residual minimization method.

We also remark that the method of Ghanem and Ghosh (2007) may be extended to compute the right
stochastic eigenvectors as well, namely by solving:

b(ξ)TJ(ξ) = λ(ξ)b(ξ)T , b(ξ) · b(ξ) = 1.

This can be performed easily by replacin J i by (J i)T in (8).

Relation between nominal and stochastic eigenvectors

Consider the eigenpairs of the nominal system Jacobian J̄ = J(ξ̄),

(λ̄i, āi), ā · ā = 1, i = 1, . . . , n,

where we have used overbars to indicate that these eigenpairs correspond to the nominal system Jacobian.
For a given ξ ∈ Ω∗, consider the eigenpair (λi(ξ),ai(ξ)) of J(ξ), where ai is a unit eigenvector. Under the
assumption that λi(ξ) is a simple real eigenvalue, the choice of ai(ξ) is unique up to its sign. To make the
choice of ai unique, we may multiply ai by sgn (ai· āi), where sgn denotes the signum function.

Assuming that J depends continuously on the parameter ξ, it is well known that the eigenvalues of J(ξ)
depend continuously on ξ; that is, for each eigenvalue λi(ξ), we have limξ→ξ̄ λi(ξ) = λ̄i. In the case J
depends differentiably on ξ, we can say that an eigenvector of J(ξ) (chosen as above to make it unique for
each ξ) corresponding to a simple eigenvalue depends differentiably on ξ in a neighborhood of ξ = ξ̄; this
in particular implies that,

lim
ξ→ξ̄

ai(ξ) = ai(ξ̄) = āi. (9)

A measure of deviation of ai(ξ) from ā is the angle ζi bewteen them:

cos(ζi(ξ)) = ai(ξ)· āi. (10)
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Since the eigenvectors āi form a basis of Rn, we may expand the vectors ai in the basis {ā1, . . . , ān}:

ai(ξ) =
n∑

j=1

hij(ξ)āi. (11)

The coefficients hij provide a further means to assess how close the eigenvectors are to those of the nominal
system. Note that,

b̄k · ai(ξ) = b̄k ·
( n∑

j=1

hij(ξ)āi

)
= hik(ξ).

That is, hij(ξ) = b̄j · ai(ξ). We find it convenient to consider the matrix H = H(ξ) defined by Hij = hij ,
i, j = 1, . . . , n.

In view of (9) we have
lim
ξ→ξ̄

cos(ζi(ξ)) = 1, (12)

and
lim
ξ→ξ̄

hij(ξ) = lim
ξ→ξ̄

b̄j · ai(ξ) = b̄j · āi = δij .

That is, lim
ξ→ξ̄

hij = δij ; this can be written more concisely as

lim
ξ→ξ̄
‖H(ξ)− I‖F = 0, (13)

where ‖·‖F denotes the Frobenius norm:

‖A‖F =
( m∑

i=1

n∑
j=1

|Aij |2
)1/2

, A ∈ Rm×n.

The uncertainty measures cos(ζi(ξ)) and

η(ξ) = ‖H(ξ)− I‖F

to provide useful means for studying the deviation of the stochastic eigenvectors from their nominal conun-
terparts.

The Stochastic CSP framework

Based on the development above, we have generalized the deterministic CSP formalism to the stochastic
case. Our approach is based on exploiting the spectral representation of the n-dimensional stochastic eigen-
vectors as CSP vectors. Accordingly, the resulting CSP formalism involves a projection onto a stochastic
manifold. Two variants of the stochastic CSP methodology have been developed. The first, is based on
using the stochastic eigenvectors as CSP vectors. The second variant is based on using the deterministic
eigenvectors of the nominal system as CSP vectors. The latter is inspired by the observation that in many
cases the stochastic eigenvalues exhibit a pronounced dependence on ξ, whereas the stochastic eigenvectors
are weakly sensitive to the uncertainty. Thus, in these situations the stochastic CSP algorithm may rely on
projection onto a deterministic manifold, though the projection still involves stochastic mode amplitudes.
One of the main advantages offered by both of these methods is that they provide simple (averaged) criteria
for determination of (stochastic) fast subspaces of an uncertain ODE system.
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Stochastic eigenvectors as CSP vectors

For the uncertain ODE system of the form y = g(y), we seek a decomposition of the system right-hand-
side in terms of the stochastic eigenvectors of J(ξ). By our assumptions on the eigenstructure of J(ξ), we
know that its right eigenvectors {a1, . . . ,an} form a basis of Rn and hence g can be expanded in this basis;
however, the expansion coefficients fi will also be random. Considering the weak form of the governing
equation, we arrive at:

ẏ = g(y) =
n∑

i=1

ai ⊗ fi, (14)

with y ∈ (Vp)n, ai ∈ (Vp)n, and fi ∈ Vp. Thus, we have to compute the n stochastic coordinates fi(ξ) of
the system right-hand side in the space spanned by the right stochastic eigenvectors. The coefficients fi are
evaluated using the Galerkin dot product:

fi
.
= bi � g, (15)

where we have relied on the approximate orthogonality between the stochastic left and right eigenvectors.
With m fast modes, the system (14) is reduced according to:

ẏ ≈
n∑

i=m+1

ai ⊗ fi ≈ (I −
m∑
i=1

ai ⊗ bi)︸ ︷︷ ︸
P

⊗g =: P ⊗ g. (16)

The difficulty in the stochastic case is that in generalmwill depend on ξ. Instead of seeking a criterion guar-
anteeing m fast modes for all (or almost all) ξ ∈ Ω∗, which is a difficult task, we formulate an approximate
criterion in a mean-square sense. Specifically, we deem the first m modes fast if the following inequality
holds: 〈

(τm+1 ⊗
m∑
i=1

ai ⊗ fi)2

〉
< εrel

〈
y2
〉

+ εabs1, (17)

where it is understood that the square operator applies component-wise on the corresponding vectors; that
is, y2 denotes a vector whose n components are the squares of the corresponding components of y. Note
that the criterion in (17) is convenient to implement, because in actual computations the stochastic quantities
are represented by their coordinates in the orthogonal basis of Vp. For instance,

〈
y2
〉

=
P∑

k=0

〈
Ψ2

k

〉 (
yk
)2
.

Different criteria can be considered [J1].

Algorithm for CSP with stochastic eigenvectors: Assembling all the previous components, we end up
with the following stochastic CSP algorithm 1, for the integration of the solution over a time step. Note that
for a system with m fast modes, Algorithm 1 can be used for integration of the simplified stochastic system
ẏ = P ⊗ g with time steps on the order of ατ0

m+1 with 0 < α . 1.
We observe that Algorithm 1 involves solving the stochastic eigenproblem along with several Galerkin

products. In addition, it involves the inversion of the stochastic matrix Λ(t), which can be accomplished
either through a Galerkin linear solve or adaptation of an iterative method for approximation of a matrix
inverse to the stochastic case [J1]. In cases when the nominal system dynamics can be reliably used to
approximate the stochastic system trajectory, we may use the nominal system eigenvectors as CSP vectors.
As shown in [J1], This simplifies many of the computational steps in Algorithm 1.
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Algorithm 1 One step of CSP integration (assuming modes 1, . . . ,m are fast) for the stochastic system
using the stochastic right eigenvectors as CSP vectors.

Λ(t) =
[
Λij(t)

]
=
(
ḃ
T
i + bTi ⊗ J

)
⊗ aj

∣∣∣
t

Γ(t) =
(
Λ(t)

)−1

ŷ(t+ ∆t) = y(t) +

∫ t+∆t

t
P ⊗ g(y(s)) ds {Integration of the slow dynamics}

fj(t) = bj(t)� g
[
ŷ(t+ ∆t)

]
, j = 1, . . . ,m

δy(t) =

m∑
i=1

γi(t)⊗ ai(t), where γi(t) =

m∑
j=1

Γij(t)⊗ fj(t)

y(t+ ∆t) = ŷ(t+ ∆t)− δy(t) {Radical correction}

Nominal system eigenvectors as CSP vectors:

We have seen that the extension of the deterministic CSP method to the stochastic case involves the calcula-
tion of the left and right stochastic eigenvectors and eigenvalues of the stochastic Jacobian J(ξ). These are
computed through the solution of nonlinear deterministic problems after stochastic discretization in Vp. It
can be anticipated that the determination of the stochastic eigenspaces constitutes the most computationally
demanding part of the stochastic CSP method, justifying the question of the possibility to bypass this step in
order to reduce the computational cost. When the uncertainty in the system induces a moderate variability
of the eigenvectors, the stochastic eigenvectors can be well approximated by the deterministic eigenvectors
of the nominal Jacobian J̄ = J(ξ̄), allowing for the expansion of the stochastic system right-hand-side in
the basis of the deterministic nominal eigenvectors. Using the nominal system eigenvectors for CSP vectors
effectively uses the dynamics of the nominal system as a guide for determining the fast and slow subspaces
for the uncertain system. This naturally leads to significant computational savings highlighted by not having
to compute the stochastic eigenvectors.

Assuming such approximation is valid, we reformulate the uncertain system by expanding its right-
hand-side in the basis of the nominal eigenvectors {ā1, . . . , ān}:

ẏ = g(y) =
n∑

i=1

āifi. (18)

The expansion coefficients (mode amplitudes) fi are stochastic and are given by

fi(ξ) = b̄
T
i g(y, ξ), i = 1, . . . , n, (19)

where b̄i ∈ Rn are the nominal left eigenvectors.
The stochastic governing equation can be projected onto Vp, resulting in

ẏk =
n∑

i=1

āif
k
i , k = 0, . . . , P. (20)

For m fast modes, we obtain the following simplified system

ẏk ≈
n∑

i=m+1

āif
k
i = (I −

m∑
i=1

āib̄
T
i )︸ ︷︷ ︸

P̄

gk =: P̄gk. (21)

6



Note that, presently, the projection operator P̄ on the slow dynamics space is deterministic, and the same
for all the stochastic modes of the solution. This has to be contrasted with the method developed above.

Also note that the present simplification calls enables us to adopt a simplified criterion for mode exhaus-
tion. Specifically, an approximate criterion of the form:〈(

τ̄m+1

m∑
i=1

āifi
)2〉

< εrel
〈
y2
〉

+ εabs1.

can be implemented. Note that in this case τ̄m+1 = 1/λ̄m+1 and āi are deterministic.

Algorithm for the simplified CSP with nominal eigenvectors: For a system with m fast modes, Algo-
rithm 2 can be used for integration of the simplified stochastic system ẏk = P̄gk, with time steps on the
order of ατ̄m+1 with 0 < α . 1.

Algorithm 2 One step of CSP integration (assuming modes 1, . . . ,m are fast) for the stochastic system
using the nominal right eigenvectors as CSP vectors.

Λ̄(t) =
[
Λ̄ij(t)

]
=
(

˙̄bTi + b̄
T
i J̄
)
āj

∣∣∣
t

Γ̄(t) =
(
Λ̄(t)

)−1

for k = 0 to P do

ŷk(t+ ∆t) = yk(t) +

∫ t+∆t

t
P̄gk(y(s)) ds {Integration of the slow dynamics}

end for
fkj (t) = b̄

j
(t) · gk

[
ŷ(t+ ∆t)

]
, j = 1, . . . ,m, k = 0, . . . , P

for k = 0 to P do

δyk(t) =

m∑
i=1

γki (t)āi(t), where γki (t) =

m∑
j=1

Γ̄ij(t)f
k
j (t)

yk(t+ ∆t) = ŷk(t+ ∆t)− δyk(t) {Radical correction}
end for

Implementations

The CSP algorithms outlined above were applied to a model chemical system, and computational experi-
ments were conducted to illustrate the eigenvector representations and to test the performance of the CSP
integration algorithms. The analysis showed that for system considered, the stochastic eigenvalues exhibit
a rich PC spectrum and accordingly pronounced variability, whereas the eigenvectors exhibit an essentially
degenerate spectrum with the dominant amplitude lying in the mean. Thus, the random eigenvectors were
found to remain closely aligned with the corresponding nominal ones. These features were exploited to sim-
plify CSP projection onto deterministic (nominal) manifolds, and consequently enhance the efficiency of the
integration. The simulations were also used to validate the explicit Galerkin solution, namely by comparison
with direct Monte Carlo integration. The validated Galerkin solution was then used to conduct performance
tests. In all cases considered, a close agreement between the predictions was found, and substantial speedup
in the integration of the uncertain dynamical system was achieved. In particular, when CSP using nominal
eigenvectors was used, order-of-magnitude improvements in integration efficiency were observed.

A detailed account of algorithmic constructions and computational tests is provided in [J1].
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Preconditioned Stochastic Projection

A well-known difficulty that occurs with time-dependent dynamical systems concerns the broadening of the
spectrum of the PC representation over time. This in turns makes it difficult to approximate model variables
via finite PC expansions, and to select a PC basis dimension that remains suitable over the entire integration
horizon. The underlying difficulty is that different realizations of the random solution trajectory fail to stay
in phase as time progresses. In the context of chemical systems, for instance, some realizations can reach
equilibrium very quickly, while others can exhibit a transient behavior over substantially larger timescales.
This decorrelation of trajectories entails the generation of multiple modes in the PC representation of the
model variables over time. Therefore, the corresponding PC expansions require a large number of terms for
a reasonably accurate approximation of the stochastic behavior.

In order to address this difficulty, we have developed a stochastic preconditioning approach, in the con-
text of non-intrusive methods. The method addresses the issue of widening spectra by introducing a global,
multiple time scale, linear or affine stretching of the solution variables so as to synchronize realizations,
and consequently control their variance and PC spectrum. The basic idea behind the method is to work
with transformed variables in scaled time which are in phase and have controlled spectra, i.e. the trans-
formed variables have tight low order PC representations which can be computed with a limited number of
realizations. Subsequently, the distribution of the original variables can be easily recovered, from that of
transformed ones, through a sampling strategy.

Approach

The approach we have developed generally involves three distinct steps, namely the definition of the trans-
formation, the projection of the transformed variables, and finally the recovery of the original variable, for
the purpose of sampling and analysis.

Taking advantage of the non-intrusive character of the method, the preconditioning is performed sepa-
rately for each component of the system. Therefore, for convenience, we on a generic scalar variable, X ,
and its transform, Y .

Variable transformations: Recall that the state variable X is a stochastic process, X : [0, Tfin]× Ω∗ →
R. We introduce the transformed variable Y = Y (τ, ξ) that depends on the scaled time, τ . The scaled time
τ = τ(t, ξ) is defined through,

τ(t, ξ) =
t

t̂(ξ)
, t ∈ [0,+∞), (22)

where t̂ : Ω∗ → (0,∞) is a random variable which we call the time scaling factor. We assume that there
exist positive constants κ1 < κ2 such that

κ1 ≤ t̂(ξ) ≤ κ2, for almost all ξ ∈ Ω∗.

In general, we define the scaled variable Y by

Y (τ(t, ξ), ξ) = Φ[X(t, ξ)].

where Φ is an invertible mapping on L2(Ω∗). We mainly focused on the case of linear scaling where,

Φ[X(t, ξ); ĉ] =
1

ĉ(ξ)
X(t, ξ), (23)

where ĉ : Ω∗ → (0,∞) is an amplitude scaling factor; we assume that there exist positive constants ν1 and
ν2 that are independent of ξ and,

ν1 ≤ ĉ(ξ) ≤ ν2, for almost all ξ ∈ Ω∗. (24)
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Note that in the case where X(t, ξ) is positive valued, as is the case for chemical species concentrations,
we may also consider log-linear scaling,

Φ[X(t, ξ); ĉ] = log

(
1

ĉ(ξ)
X(t, ξ)

)
. (25)

An advantage of the log-linear scaling is in preserving positivity of the recovered state variables. More-
over, since the scaled variables are ultimately approximated using PC expansions, sometimes the log-linear
scaling may result in a better behaved PC representations for the scaled variables.

Projection of the scaled variables: PC representations of the scaling factors, ĉ and t̂, are computed using
a NISP sample set S. We assume that for each ξj ∈ S one is able to define a corresponding pair of factors
(t̂(ξj); ĉ(ξj)), the corresponding realizationX(ξj , t) is used for this purpose. The expansions of the scaling
factors are

ĉ
.
=

P∑
k=0

ckΨk, t̂
.
=

P∑
k=0

tkΨk,

where the expansion coefficients are computed through a classical NISP procedure:

ck =

Nq∑
j=1

Πk,j ĉ(ξj), tk =

Nq∑
j=1

Πk,j t̂(ξj).

Since ĉ and t̂ are positive we may also consider the expansion of their logarithms. This again has the
advantage of preserving their positivity and in some cases yielding nicer (tighter and/or sparser) PC spectra.
In particular, we will project the logarithm of the normalized variables, ĉ(ξ)/ĉ(ξ = 0) and t̂(ξ)/t̂(ξ = 0):

log

(
ĉ(ξ)

ĉ(0)

)
.
=

P∑
k=0

σkΨk, log

(
t̂(ξ)

t̂(0)

)
.
=

P∑
k=0

θkΨk,

where

σk =

Nq∑
j=1

Πk,j log

(
ĉ(ξj)

ĉ(0)

)
, θk =

Nq∑
j=1

Πk,j log

(
t̂(ξj)

t̂(0)

)
. (26)

Accordingly ĉ and t̂ are approximated through,

ĉ
.
= ĉ(0) exp

(
P∑

k=0

σkΨk

)
, t̂

.
= t̂(0) exp

(
P∑

k=0

θkΨk

)
. (27)

Preconditioned projection algorithm: The major computational work in the method involves the non-
intrusive projection of the transformed variable, Y (τ(t, ξ), ξ) = Φ

[
X(t, ξ); ĉ

]
, to get its PC representation.

This calls for time discretization. Owing to the assumed properties of the time scaling in (22), for every
t ∈ [0,+∞), τ(t, ·) ∈ [0,+∞) almost surely. Moreover, for a given (t′, ξ) ∈ [0,+∞) × Ω∗, there
corresponds an (unscaled) time t given by t = t′ × t̂(ξ), and we have that

Y (t′, ξ) = Φ
[
X
(
t′ × t̂(ξ), ξ

)
; ĉ
]
.
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This allows us to discretize the transformed variable Y on a fixed deterministic grid of times t′ in the scaled
space. With the slight abuse of notation where there is no confusion between τ and t′, the PC expansion
sought is then expressed as

Y (τ, ξ)
.
=

P∑
k=0

Yk(τ)Ψk(ξ) ≈ Φ
[
X(τ × t̂(ξ), ξ); ĉ

]
, (28)

where the PC coefficients Yk(τ) are to be computed on a fixed grid of scaled times τ . Specifically, given
∆τ > 0 and defining τl

.
= l∆τ , l = 0, 1, . . . the NISP projection of the k-PC mode of Y would be

Yk(τl) =

Nq∑
j=1

Πk,jΦ
[
X(τl × t̂(ξj), ξj); ĉ

]
. (29)

The expression in (29) suggests an implementation where one first selects the time step ∆τ and then
performs Nq successive deterministic solves for X(t, ξj), ξj ∈ S, recording and projecting the current state
when t reaches t = (l∆τ) × t̂(ξj). However, since each component Xi of the state vector X has its own
time scale factor t̂i(ξ), we have preferred a different approach resulting in a deterministic time integration
ofX(t, ξj) with a fixed time step, ∆t, for all the elements in S, and to rely on an interpolation procedure to
retrieve the values Xi(τ il × t̂i(ξj), ξj) needed for the projection in (29).

Recovering the original variables: We now turn to the problem of reconstructingX(t, ξ) from the trans-
formed variable Y (τ, ξ). The objective is to derive an efficient procedure to resample X(t, ξ), particularly
to perform various statistical analyses. Specifically, we want to reconstruct the corresponding value of
X(t, ξl).

The recovery amounts to the inversion of the transformation:

X(t, ξ) = Φ−1 [Y (τ(t, ξ), ξ); ĉ(ξ)] . (30)

For the case of linear scaling, we have

X(t, ξ) = Φ−1 [Y (τ(t, ξ), ξ); ĉ(ξ)] = ĉ(ξ)Y (τ(t, ξ), ξ), (31)

while for the case of log-linear scaling, we have

X(t, ξ) = Φ−1 [Y (τ(t, ξ), ξ)] = ĉ(ξ) exp
(
Y (τ(t, ξ), ξ)

)
. (32)

Of course, in practice we will approximate X by inserting the PC expansions of the scaling factors and
scaled variables in (30). Introducing the notation X̃ to denote the recovered state variable X from the PC
expansions of the scaled variable through the above relations, we have,X̃(t, ξ) = ĉ(ξ)

{∑P
k=0 Yk(τ(t, ξ))Ψk(ξ)

}
linear scaling,

X̃(t, ξ) = ĉ(ξ)
{

exp
(∑P

k=0 Yk(τ(ξ, t))Ψk(ξ)
)}

log-linear scaling.
(33)

We can then sample the expansion of X̃(t∗, ·) in (33) to generate an approximate distribution of X(t∗, ·)
fairly efficiently. The only issue remaining is that the PC coefficients of the scaled variable Y are known on
the fixed grid of scaled times τl which generally will not coincide with the time τ(t∗, ·) in (33). A piecewise
linear interpolation may be used to compute the PC coefficients Yk at the needed scaled time τ .

Finally, a complete sampling method is immediately constructed through a Monte Carlo procedure
wrapped around the recovery procedure. For fixed t∗, one only has to sample Ω∗ from the distribution
Fξ to obtain a sampling of the distribution of X̃(t∗, ·).
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Implementations

The approach above was illustrated for the case of a stiff oxidation problem with large uncertainties in rate
parameters. Computations relied on first constructing a coarse computational database of individual real-
izations. The database was then used to define appropriate characteristic time and concentration scales for
each species and each of the realizations. A NISP approach is then used to express these global charac-
teristic scales in terms of appropriate, low-order PC expansions, and the latter are used to scale individual
realizations. NISP is also used to project the resulting stretched realizations onto the PC basis. This leads to
a reprensentation of the response of the stochastic system in terms of an appropriate combination of the PC
expansions for the preconditioners and for the stretched variables. Computational experiments conducted
using a coarse computed database showed that the preconditioning approach can naturally lead to tight low-
order PC representations, and that the latter may be efficiently sampled to recover the distribution of the
original variables in the physical timescale.

A detailed account of algorithmic constructions and computational tests is provided in [J2].

Bayesian Preconditioning Approach

When chemical system dynamics are modeled using stochastic simulation algorithms (SSAs), several chal-
lenges arise due to the compound impact of high fluctuation levels (intrinsic stochasticity due to finite system
size), and of the steep dependence of the system response on uncertain rates. In these situations, a straightfor-
ward NISP approach can be problematic especially when sparse SSA sampling must be utilized to estimate
the quantity of interest (QoI) at the quadrature nodes. Specifically, accuracy may severely deteriorate due to
large sampling errors.

To address these hurdles, an alternative to the projection based approach described above was also de-
veloped. The method extends the stochastic preconditioning approach discussed for deterministic systems.
It utilizes appropriate transformations (preconditioning) of the state variables and infers a PC model for
the transformed (preconditioned) variables via Bayesian regression. Two possibilities were considered for
computing the preconditioner, which is characterized by time and amplitude scaling factors. The first ap-
proach uses Bayesian regression, whereas PC expansions of the scaling factors are determined in the second
using deterministic realizations of the reaction rate expressions (RREs) for the chemical system. One then
proceeds to discretize the resulting preconditioned variables on a scaled time mesh, and Bayesian regression
is used to infer a PC response surface for them. The process results in response surfaces for the expected
trajectory and variance of the stochastic system, involving combinations of deterministic PC models for the
preconditioners and stochastic PC models of the preconditioned variables.

The approach was illustrated for the case of a Michaelis-Menten dynamics and a genetic positive feed-
back loop. Both of the examples show large noise amplitudes, the latter also exhibiting steep response to
uncertainty in the reaction rates. Computational experiments show that Bayesian preconditioning algorithms
can simultaneously accommodate large variation with uncertain inputs and high fluctuation levels, and that
robust estimates can be obtained with a moderate number of SSA samples. This includes the dependence
of both the mean and variance of the state variables on the uncertain inputs. This constitutes a signifi-
cant advantage, since performing a large number of SSA replicas in high dimensions can be prohibitively
expensive.

Details of the algorithmic constructions, numerical constructions and performance metics are provided
in [J3]; for brevity, they are omitted from this report.
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