

Collaborative research: Dynamcis of electrostatic solitary waves and their effects on current layers

Grant DE-FG02-07ER54941; PI Li-Jen Chen, University of New hampshire
Final Project Report

April 18, 2014

The project has accomplished the following achievements including the goals outlined in the original proposal.

Generation and measurements of Debye-scale electron holes in laboratory: We have generated by beam injections electron solitary waves in the LAPD experiments. The measurements were made possible by the fabrication of the state-of-the-art microprobes at UCLA to measure Debye-scale electric fields [Chiang *et al.*, 2011]. We obtained a result that challenged the state of knowledge about electron hole generation. We found that the electron holes were not due to two-stream instability, but generated by a current-driven instability that also generated whistler-mode waves [Lefebvre *et al.*, 2011, 2010b]. Most of the grant supported a young research scientist Bertrand Lefebvre who led the dissemination of the laboratory experimental results. In addition to two publications, our work relevant to the laboratory experiments on electron holes has resulted in 7 invited talks [Chen, 2007, 2009; Pickett *et al.*, 2009a; Lefebvre *et al.*, 2010a; Pickett *et al.*, 2010; Chen *et al.*, 2011c, b] (including those given by the co-I Jolene Pickett) and 2 contributed talks [Lefebvre *et al.*, 2009b, a].

Discovery of elecctron phase-space-hole structure in the reconnection electron layer: Our theoretical analyses and simulations under this project led to the discovery of an inversion electric field layer whose phase-space signature is an electron hole within the electron diffusion layer in 2D anti-parallel reconnection [Chen *et al.*, 2011a]. We carried out particle tracing studies to understand the electron orbits that result in the phase-space hole structure. Most importantly, we showed that the current density in the electron layer is limited in collisionless reconnection with negligible guide field by the cyclotron turning of meandering electrons.

Comparison of electrostatic solitary waves in current layers observed by Cluster and in LAPD: We compared the ESWs observed in a supersubstorm by the Cluster spacecraft and those measured in LAPD. One of the similarities in the characteristics of ESWs observed in space and in LAPD is that the time duration tends to be approximately the inverse of the electron plasma frequency [Pickett *et al.*, 2009b].

Discovery of suprathermal electron bursts inside a series of magnetic islands: Our effort in examining the roles of ESWs in reconnection current layers resulted in the serendipitous discovery that was published in Nature Physics. In earth's magnetosphere, we observed through the measurements from the four Cluster spacecraft, a series of magnetic islands and suprathermal electron bursts within the islands. The islands were identified to be effectively acceleration sites for electrons [Chen *et al.*, 2008, 2009].

References

Chen, L.-J., Electrostatic solitary waves and their effects on current layers, physics Department, University of New Hampshire, invited Colloquium, 2007.

Chen, L.-J., Recent progress and open questions on magnetic reconnection and electrostatic solitary waves, invited seminar, Center for Space and Remote Sensing Research, National Central (Chung-Yang) University, Chungli, Taiwan, 2009.

Chen, L.-J., W. S. Daughton, B. Lefebvre, and R. B. Torbert, The inversion layer of electric fields and electron phase-space-hole structure during two-dimensional collisionless magnetic reconnection, *Physics of Plasmas*, 18(1), 012,904, doi:10.1063/1.3529365, 2011a.

Chen, L.-J., W. Gekelman, B. Lefebvre, P. Kintner, J. Pickett, P. Pribyl, and S. Vincena, Electrostatic solitary waves in space and laboratory, 11th Interrelationship between Plasma Experiments in Laboratory and Space (IPELS) biannual meeting, Whistler, British Columbia, Canada, invited talk, 2011b.

Chen, L.-J., W. Gekelman, B. Lefebvre, P. Kintner, J. Pickett, P. Pribyl, and S. Vincena, Electrostatic solitary waves generated by beam injection in LAPD, american Geophysical Union, Fall Meeting, Abstract: SM11C-03, invited talk, 2011c.

Chen, L.-J., et al., Observation of energetic electrons within magnetic islands, *Nature Phys.*, 4, 19–23, doi:10.1038/nphys777, 2008.

Chen, L.-J., et al., Multi-spacecraft observations of the electron current sheet, neighboring magnetic islands, and electron acceleration during magnetotail reconnection, *Phys. Plasmas*, 16, 056,501, doi: 10.1063/1.3112744, 2009.

Chiang, F., P. Pribyl, W. Gekelman, B. Lefebvre, L.-J. Chen, and J. Judy, Microfabricated flexible electrodes for multi-axis sensing in the large plasma device at ucla, *IEEE Transactions on Plasma Science*, 39(6), 1507, 2011.

Lefebvre, B., L.-J. Chen, W. Gekelman, P. Kintner, J. Pickett, P. Pribyl, S. Vincena, and F. Chiang, Laboratory measurements of electrostatic solitary structures generated by beam injection, american Geophysical Union, Fall Meeting, abstract SM53A-1362, 2009a.

Lefebvre, B., L.-J. Chen, W. Gekelman, P. Kintner, J. Pickett, P. Pribyl, S. Vincena, and F. Chiang, Electrostatic solitary waves observed in a laboratory experiment, european Geophysical Union, General Assembly, Vienna, 2009b.

Lefebvre, B., L.-J. Chen, W. Gekelman, P. Kintner, J. Pickett, P. Pribyl, S. Vincena, and F. Chiang, Laboratory measurements of electrostatic solitary structures generated by beam injection, nonlinear Waves Workshop 8, invited talk, 2010a.

Lefebvre, B., L.-J. Chen, W. Gekelman, P. Kintner, J. Pickett, P. Pribyl, S. Vincena, F. Chiang, and J. Judy, Laboratory measurements of electrostatic solitary structures generated by beam injection, *Physical Review Letters*, 105(11), 115,001, doi:10.1103/PhysRevLett.105.115001, 2010b.

Lefebvre, B., L.-J. Chen, W. Gekelman, P. Kintner, J. Pickett, P. Pribyl, and S. Vincena, Debye-scale solitary structures measured in a beam-plasma laboratory experiment, *Nonlinear Processes in Geophysics*, 18(1), 41–47, doi: 10.5194/npg-18-41-2011, 2011.

Pickett, J., L.-J. Chen, I. Christopher, B. Lefebvre, and D. Gurnett, Electrostatic solitary waves observed in space and in laboratory experiments, modern Challenges in Nonlinear Plasma Physics, invited talk, 2009a.

Pickett, J., B. Lefebvre, L.-J. Chen, I. Christopher, P. Kintner, and D. Gurnett, Comparison of electrostatic solitary waves observed in space and in laboratory experiments, cOSPAR, Germany, invited talk, 2010.

Pickett, J. S., et al., Electrostatic solitary waves in current layers: from cluster observations during a super-substorm to beam experiments at the lapd, *Nonlin. Proc. Geophys.*, 16, 1–12, 2009b.