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Abstract 

Researchers performed a series of measurements in May 2012 to 
characterize the NPOD3 detector systems. The detectors were placed 
in varying states of disassembly to determine the effect of individual 
components on the detector response. The Los Alamos BeRP Ball was 
used as the SNM source in both a bare configuration and reflected by 
varying thicknesses of polyethylene. A set of MCNP5 (with the list-
mode patch) and MCNP6 simulations matching the experimental 
setups for the bare and half-inch reflected cases were run and the 
calculated list-mode data were compared to the measured data. The 
total multiplication results show that MCNP5 with the list-mode patch 
replicates the measurements quite well (to within 2%), while MCNP6 
calculations exhibit a ~7% difference from measurements for the bare 
configuration. The benefits and limitations of each code for the use of 
obtaining list-mode data are explained. 
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Introduction 

• A series of subcritical measurements were taken in 2012 
to characterize the NPOD detector systems 
– Source: BeRP ball in a bare configuration and reflected by 

varying thicknesses of polyethylene 
– Detectors: 
 One SNAP detector placed 100 in. from center of source 
 One NPOD in original configuration placed 50 in. from center 

of source 
 One NPOD in original config. and varying states of 

disassembly placed 50 in. from center of source 180 degrees 
from first NPOD 
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Experimental set-up 
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Configurations 

Configuration NPOD #1 NPOD #2 SNAP
1a default default no poly
1b default default poly
2a blue cover blue cover no poly
2b blue cover blue cover poly
3a default no cadmium no poly
3b default no cadmium poly
4a default no cadmium or poly no poly
4b default no cadmium or poly poly
5a default removed no poly
5b default removed poly
6 default removed removed

7a default removed no poly, in line with NPOD
7b default removed poly, in line with NPOD
8 default, 90 degrees removed removed

9a default, 90 degrees default, 90 degrees no poly
9b default, 90 degrees default, 90 degrees poly
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Measurements 

• List-mode data were acquired by the detectors 
– Time and location of absorption events within the detector 

volume 
– Can be used with a variety of analysis methods to infer system 

parameters 

• SNAP detector delivers a gross neutron count rate 
– Used to calculate the effective neutron source strength 

• NPOD detectors provide multiplicity data 
– Analyzed using Feynman-Y analysis to determine the (counting) 

moments and the multiplicity of the system under scrutiny 
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Feynman-Y (Hansen-Dowdy formalism) 

• Multiplicity neutron counting  
– Purely random source exhibits a Poisson distribution of counts 
– A correlated (multiplying) source has a distribution which deviates 

from a pure Poisson 
 The magnitude of this deviation provides insight into the 

multiplicity of the system 
 
 
- Where 𝐶̅ and 𝐶2 are the first and second moments of the 

distribution: 
 

𝑌𝑚 =
𝐶2

𝐶̅
− 𝐶̅ − 1 

𝐶̅ =
∑ 𝑛𝐶𝑛𝑛
∑ 𝐶𝑛𝑛

 𝐶2 =
∑ 𝑛2𝐶𝑛𝑛
∑ 𝐶𝑛𝑛
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Total Multiplication 

• Using the moments 
calculated from the list-
mode data, along with 
some other 
parameters, the total 
multiplication, Mt, can 
be determined 

• The prompt 
multiplication factor, kp, 
is inferred from the total 
multiplication 𝑘𝑝 = 1 −

1
𝑀𝑡

 

Param # Description of Parameter value
1 detector dead time (microsec) 2.5
2 time of measurement (seconds) 156
3 time bin width of detector (microsec) 256
4 neutron leakage from outermost surface (n/s) 1037264
5 id starter Pu-240
6 0th order Divens (source) ~ Pu-240 1.769
7 id chain Pu-239
8 1st order Divens (multiplier) ~ Pu-239 2.354
9 wt% of source ~ Pu-240 0.05954
10 #n/g-s emitted by SNM (Pu-240) 1020
11 neutron lifetime (seconds) 3.90E-05
12 non-correlated neutron source strength (n/s) 436.33
13 correlated neutron source strength (n/s) 282890
14 neutron leakage from SNM (n/s) 1037264
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MC Calculations 

• MCNP5.15 with the in-house multiplication 
patch and MCNP6.1 codes were used with 
ENDF/B-VII.0 

• So far, only the bare and half-inch reflected 
cases have been simulated for Configs. 1, 3 and 
4 
– Currently running simulations for the other 

reflected cases 
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MCNP model 
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Results – 1st and 2nd moments  

Config. (bare)
POLY on 
SNAP?

1st mom. 2nd mom. 1st mom. C/E 2nd mom. C/E 1st mom. C/E 2nd mom. C/E
DEFAULT YES 2.316 8.386 2.454 1.060 9.126 1.088 2.451 1.058 9.235 1.101
DEFAULT YES 2.327 8.444 2.454 1.055 9.124 1.081 2.451 1.053 9.221 1.092
DEFAULT NO 2.316 8.374 2.448 1.057 9.091 1.086 2.450 1.058 9.222 1.101
DEFAULT NO 2.311 8.352 2.449 1.060 9.085 1.088 2.449 1.060 9.222 1.104

NO Cd YES 2.313 8.347 2.454 1.061 9.119 1.092 2.450 1.059 9.227 1.105
NO Cd NO 2.317 8.369 2.461 1.062 9.163 1.095 2.463 1.063 9.308 1.112

NO Cd OR POLY YES 2.282 8.174 2.415 1.058 8.873 1.086 2.411 1.057 8.970 1.097
NO Cd OR POLY NO bad data bad data 0.037 --- 0.039 --- 0.044 --- 0.046 ---

MCNP6 MCNP5 w/patchMeasured

Config. (0.5 inch)
POLY on 
SNAP?

1st mom. 2nd mom. 1st mom. C/E 2nd mom. C/E 1st mom. C/E 2nd mom. C/E
DEFAULT YES 3.124 14.440 3.347 1.071 16.163 1.119 3.345 1.071 16.349 1.132
DEFAULT YES 3.142 14.613 3.347 1.065 16.138 1.104 3.345 1.065 16.362 1.120
DEFAULT NO 3.138 14.567 3.348 1.067 16.151 1.109 3.351 1.068 16.415 1.127
DEFAULT NO 3.129 14.497 3.348 1.070 16.160 1.115 3.350 1.071 16.420 1.133

NO Cd YES 3.126 14.464 3.345 1.070 16.134 1.115 3.345 1.070 16.360 1.131
NO Cd NO 3.187 14.948 3.410 1.070 16.677 1.116 3.407 1.069 16.893 1.130

NO Cd OR POLY YES no data no data 3.298 --- 15.729 --- 3.295 --- 15.934 ---
NO Cd OR POLY NO 0.174 0.206 0.147 0.845 0.170 0.825 0.147 0.845 0.170 0.825
NO Cd OR POLY NO 3.084 14.113 3.295 1.068 15.680 1.111 3.297 1.069 15.949 1.130

Measured MCNP6 MCNP5 w/patch
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Results - Ym 

𝑌𝑚 =
𝐶2

𝐶̅
− 𝐶̅ − 1 

Config. (bare)
POLY on 
SNAP?

Measured

Ym Ym C/E Ym C/E
DEFAULT YES 0.303 0.266 0.878 0.317 1.046
DEFAULT YES 0.303 0.265 0.875 0.312 1.030
DEFAULT NO 0.300 0.265 0.883 0.315 1.050
DEFAULT NO 0.303 0.261 0.861 0.317 1.046

NO Cd YES 0.296 0.263 0.889 0.316 1.068
NO Cd NO 0.296 0.262 0.885 0.317 1.071

NO Cd OR POLY YES 0.300 0.259 0.863 0.311 1.037
NO Cd OR POLY NO bad data 0.009 --- 0.002 ---

MCNP6 MCNP5 w/patch

Config. (0.5 inch)
POLY on 
SNAP?

Measured

Ym Ym C/E Ym C/E
DEFAULT YES 0.499 0.483 0.968 0.543 1.088
DEFAULT YES 0.508 0.475 0.935 0.546 1.075
DEFAULT NO 0.504 0.477 0.946 0.547 1.085
DEFAULT NO 0.504 0.478 0.948 0.553 1.097

NO Cd YES 0.500 0.478 0.956 0.545 1.090
NO Cd NO 0.503 0.480 0.954 0.551 1.095

NO Cd OR POLY YES no data 0.470 --- 0.541 ---
NO Cd OR POLY NO 0.010 0.004 0.400 0.010 1.000
NO Cd OR POLY NO 0.491 0.464 0.945 0.540 1.100

MCNP6 MCNP5 w/patch
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Results – total multiplication and inferred k 

CONFIG. (bare)
POLY on 
SNAP?

Mt k Mt k C/E Mt k C/E
DEFAULT YES 4.276 0.766 3.968 0.748 0.928 4.322 0.769 1.011
DEFAULT YES 4.258 0.765 3.962 0.748 0.930 4.288 0.767 1.007
DEFAULT NO 4.234 0.764 3.967 0.748 0.937 4.307 0.768 1.017
DEFAULT NO 4.243 0.764 3.938 0.746 0.928 4.323 0.769 1.019

NO Cd YES 4.221 0.763 3.948 0.747 0.935 4.313 0.768 1.022
NO Cd NO 4.239 0.764 3.933 0.746 0.928 4.313 0.768 1.017

NO Cd OR POLY YES 4.243 0.764 3.947 0.747 0.930 4.313 0.768 1.016
NO Cd OR POLY NO bad data -- 5.888 0.830 -- 2.375 0.579 --

MEASURED MCNP6 MCNP5

CONFIG. (0.5 in)
POLY on 
SNAP?

Mt k Mt k C/E Mt k C/E
DEFAULT YES 5.422 0.816 4.581 0.782 0.845 4.850 0.794 0.895
DEFAULT YES 5.472 0.817 4.545 0.780 0.831 4.862 0.794 0.889
DEFAULT NO 5.449 0.816 4.551 0.780 0.835 4.863 0.794 0.892
DEFAULT NO 5.467 0.817 4.558 0.781 0.834 4.886 0.795 0.894

NO Cd YES 5.436 0.816 4.557 0.781 0.838 4.858 0.794 0.894
NO Cd NO 5.446 0.816 4.525 0.779 0.831 4.841 0.793 0.889

NO Cd OR POLY YES no data no data 4.552 0.780 --- 4.875 0.795 ---
NO Cd OR POLY NO 1.302 0.232 2.057 0.514 1.580 3.147 0.682 2.417
NO Cd OR POLY NO 5.380 0.814 4.525 0.779 0.841 4.870 0.795 0.905

MEASURED MCNP6 MCNP5
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Inferred k plot 
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Thoughts 

• MCNP6’s PTRAC option is not an ideal method for 
obtaining list-mode data 
– Cannot run in parallel 
– Huge output files 
– Bunch of irrelevant data to sift through 
– ASCII output format significantly truncates time stamp  
– Other output file format option is binary 
– If using EVENT=CAP, the recorded time is the time from the 

fission event to the time of capture, but list-mode needs to be from 
the time of the beginning of the measurement to the time of 
detection (capture).  
 This can be avoided by using a cell-flux tally instead of an F8 capture 

tally 
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