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Abstract Flow in channels bounded by wavy or corrugated walls is of interest in
both technological and geological contexts. This paper presents an analytical
solution for the steady Darcy flow of an incompressible fluid through a
homogeneous, isotropic porous medium filling a channel bounded by symmetric
wavy walls. This packed channel may represent an idealized packed fracture, a
situation which is of interest as a potential pathway for the leakage of carbon
dioxide from a geological sequestration site. The channel walls change from
parallel planes, to small amplitude sine waves, to large amplitude nonsinusoidal
waves as certain parameters are increased. The direction of gravity is arbitrary. A
plot of piezometric head against distance in the direction of mean flow changes
from a straight line for parallel planes to a series of steeply sloping sections in the
reaches of small aperture alternating with nearly constant sections in the large
aperture bulges. Expressions are given for the stream function, specific discharge,
piezometric head, and pressure.
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1 Introduction

Flow in channels bounded by wavy or corrugated walls is of interest in both
technological and geological contexts. In some cases, the channel is occupied
entirely by the flowing fluid (this is called an unpacked channel). In other cases it
is filled by a saturated porous medium (this is called a packed channel). Heat
exchangers, membrane blood oxygenators, filters, and chemical reactors are
typical engineered applications of channel flow. In hydrogeology, geotechnical
engineering, and petroleum engineering the flow of groundwater or hydrocarbons
through fractures is of fundamental importance. The direct motivation for this
paper is the potential role of packed fractures as pathways for the leakage of
carbon dioxide from geological sequestration sites.

Flow through channels has attracted the attention of numerous
investigators. Huitt (1956) performed laboratory experiments to measure friction
factors for laminar and turbulent flow in unpacked channels bounded by smooth
and sand-roughened parallel planes. For sand-packed channels he found that the
Ergun equation, which relates the friction factor to porosity and particle diameter,
gave adequate predictions.

Chow et al. (1971) used second order perturbation analysis to solve for the
incompressible viscous flow in an unpacked symmetric channel with small
amplitude sinusoidal walls.

Nishimura et al. (1984) performed laboratory experiments in an unpacked
channel with large amplitude sinusoidal wavy walls covering the range of
Reynolds numbers (Re) from about 40 to 10 000. They measured the wall shear
stress and used the hydrogen bubble technique to observe the flow pattern. They
also used a finite element code to predict the streamlines from Re =1 to 700. The
streamline pattern was symmetric and showed no evidence of separation for Re <
15. They found good agreement between experiment and computation for Re <
350 when unsteady motion was first observed in the experiment. The flow

became turbulent at higher Re.



Datta and Tripathi (2010) studied viscous flow in an unpacked
antisymmetric channel whose walls were small amplitude sine waves. They used
a non-orthogonal coordinate system to obtain a first order perturbation solution.

In the hydrogeology literature, the link between laminar viscous flow in an
unpacked channel and Darcy flow in a fractured porous medium is attributed to
Romm (1966). By rewriting the Poiseuille solution for viscous flow between
parallel planes in the form of Darcy’s law, he showed that the equivalent

hydraulic conductivity K'is proportional to the square of the aperture a’
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where p' is the fluid density, g’ is the acceleration due to gravity, and u' is the
dynamic viscosity. (Note that primes are used throughout this paper to indicate
dimensional quantities.) Using this formula for conductivity in Darcy’s law, the
volumetric flowrate Q’is found to be proportional to a’. This result is referred to
as the “cubic law” and is the basis for many analyses of flow in fractured rock
formations (Domenico and Schwartz, 1998).

Zimmerman and Bodvarsson (1996) reviewed the cubic law and its
extension to flow in unpacked channels bounded by rough walls. They carefully
elucidated the range of conditions under which the Navier-Stokes equations can
be approximated by the Reynolds lubrication equations or the Hele-Shaw
equations. They treated the effect of actual contact between the bounding walls
by using the Hele-Shaw model.

As measurement techniques have improved in recent years, several authors
have measured fractures with complex geometries (Hughes and Blunt, 2001;
Konzuk and Kueper, 2004; Piri and Karpyn, 2007). Crandall et al. (2010) used
computational fluid dynamics modeling of flow through a rough walled fracture
with a geometry derived from x-ray computed tomography (CT) images of a
fracture in a sandstone core to investigate the deviation from the cubic law as a
function of fracture aperture.

Ng and Wang (2010) studied steady flow in channels bounded by walls
whose corrugations were small amplitude sine waves. The resistance to flow was
modeled by the Darcy-Brinkman equation which contains terms for both creeping

viscous flow and Darcian porous media flow. Second order perturbation analysis



was used to obtain solutions for flow parallel to the corrugations (longitudinal
flow) and flow normal to the corrugations (cross flow). Wavelength, phase
difference, and permeability effects were explored.

2 Problem statement and solution

Consider a channel bounded by an impermeable wavy surface and its reflection
across a center plane. The generators of the wavy surfaces are straight lines
parallel to each other and to the center plane. The waves are periodic with
wavelength 4’, but are not necessarily sinusoidal. Figure 1 shows a one-cycle
length of the channel and an orthogonal coordinate system with the origin in the
plane of symmetry. The y’ axis is parallel to the generators of the wavy surfaces,
and the z'axis is normal to the plane. The channel extends indefinitely in the x’
and y’ directions, and in this study there is no flow in the y' direction because the
piezometric head does not vary with y’. The bounding wavy surfaces pass

through (x" = 0,y',z' = +L'). The direction of the gravity vector is arbitrary.



Fig. 1 Geometric definition sketch. Heavy lines show one cycle of the periodic
surfaces. The surfaces extend without change in the y’ direction (normal to the
page), x' is the direction of mean flow, and z’ is transverse to the gap. The

direction of the gravity vector is arbitrary.

The channel, which may represent an idealized geologic packed fracture, is

filled with a saturated, homogeneous, isotropic porous medium whose hydraulic
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conductivity is K'. To be more precise, the porous medium considered here is
what Auriault (2009) calls a classical porous medium: a connected solid structure
whose pore space depends on the characteristic pore size. Auriault shows that for
a porous medium of this type, “The flow is governed by Darcy’s law”.

The continuity equation for the steady two dimensional motion of an
incompressible fluid through a static porous medium is

6u’+6w’_0 1
axl aZI - ( )

where u' is the specific discharge (Darcy velocity) in the x’ direction and w' is
the specific discharge in the z’ direction. For Reynolds numbers less than about 1
(based on the specific discharge and an average grain diameter), the momentum
balance is accurately modeled by the x" and z’' components of Darcy’s law (Bear
1972):
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Here h' is the piezometric head given by
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where p’ is the pressure, and ¢’ is the elevation (measured positive upward). The
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elevation of a point is related to its coordinates by

' =x"cos({',x")+y'cos({',y") + 2 cos({',2") + (5
where cos({’, x") is the cosine of the angle between the positive {" and x’
directions, etc., and ', is the elevation of the origin.

The problem is transformed to dimensionless (unprimed) variables using
the following definitions.
x'=Ax, y' =21y, z' =1z,
=X hW=Xh L=1L
w=Uu w=Uw K =UK (6)
p'=p"p g =WU?/g
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The dimensionless wavelength becomes 1, and U’ is a characteristic value of the
specific discharge. The dimensionless equations can be obtained formally simply
by omitting the primes in Equations 1-5.

Equation 1 is identically satisfied by the dimensionless stream function
whose derivatives are related to the dimensionless specific discharge by

_
0z

G
w=—% (8)

(7)
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As demonstrated by Bear (1972), a flow governed by Equations 1-3 is
irrotational. Substitution of Equations 7 and 8 into the condition of irrotationality
shows that 1 obeys the Laplace equation. The linearity of the Laplace equation
permits the use of the principle of superposition to solve for the stream function as
the sum of a term corresponding to a uniform flow in the x direction and a term
that depends on the wall shape. This solution, which has been obtained by the
method of separation of variables, is

V sin(2mx) sinh(2mz)
27 sinh(2mL)

where V is a dimensionless constant related to the amplitude of the walls. Each

Yx,z) =z+ €)

streamline corresponds to a fixed value of y. In particular, the centerplane is
given by i = 0, and the upper and lower wall contours z, are given by
Y(x, z54) = £L (10)

The coordinates of any streamline can be determined by fixing a value of ¥,
where - L < ¢ < L, and solving Equation 9 iteratively for z as x is scanned
through the desired range. Because the no slip condition does not hold for the
specific discharge, any pair of streamlines can be interpreted as the impermeable
boundaries of a channel.

Differentiating Equation 9 as prescribed by Equations 7 and 8, the
components of the specific discharge are found to be

14 V sin(2mx) cosh(2mz) 11
w= sinh(2mL) an
_ 1% cos(2.7rx) sinh(2mz) 12)
sinh(2mL)



From Equation 12 it can be deduced that V = w(0,—L).

The dimensionless flowrate Q is found by integrating u over the

dimensionless channel cross section.

Zs+ Zs+

szudAzb f udz=2bf udz
A 0

Zg—

where b is the dimensionless breadth of the channel, i.e. in the y direction.
Substituting Equation 11 for u and integrating gives.

Zs
Q f+ 1_}_Vsin(27rx)cosh(an)
2b sinh(2mL)

0

sin(2mx)

27 sinh(27L) [sinh(27z;,) — sinh(0)]

= [ze4 — 0]+ V

Replacing zs+ from Equation 9

Q L sin(2mx) sinh(2mz,,.) sin(2mx) sinh(2mz,,.)
2b 21 sinh(2mL) 21 sinh(2mL)

leads to the simple result that
Q = 2bL (13)
Dividing Q/b by the dimensionless channel aperture, 2z, , gives the

dimensionless average specific discharge u in the x direction.

L
_ Vsin(2mx) sinh(2mz,, )
27 sinh(27L)

u(x) = (14)

L

Substitution of Equations 11 and 12 into the dimensionless forms of
Equations 2 and 3, followed by partial integration enables the determination of the
dimensionless piezometric head distribution.

x V][cos(2mx) cosh(2mz) — 1]
h(x,2) = h(0,0) = + 21K sinh(27L)

(15)



where it is assumed that the dimensionless head at the origin is known. The
corresponding dimensionless pressure distribution is given by
p(x,z) = p(0,0) — pglxcos({,x) +ycos({,y) + zcos({,z)]

pgx N pgV[cos(2mx) cosh(2mz) — 1]
K 27K sinh(2mL)

(16)

3 Results

The dimensionless width parameter L and the dimensionless amplitude
parameter V determine the shape of the flow passage. Inspection of Equation 9
shows that the boundaries reduce to parallel planes for V = 0. This corresponds
to uniform parallel flow in the x direction and a constant rate of head loss in the x
direction. The value of V is bounded because the x component of the specific
discharge cannot become negative. It appears that there is no exact closed form
expression for this limit, but for small L it is very closely approximated by

V < tanh(2nL) 17
For large values of L the upper limit is considerably less than tanh(2zL). Values

of ¥ which exceed the limit cause divergence of the solution for z..



Figure 2 shows that for fixed L, the walls are small amplitude sine waves
when V is small, but become increasingly nonsinusoidal as V increases. For large
V the form of the channel approaches a series of long thin fissures separated by

short bulging chambers.
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Figure 3 shows that the effect of increasing L with V fixed is to increase

the aperture of the channel and also to reduce the deviation from a sinusoidal

shape.
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Figures 4 and 5 show the streamline patterns for different values of L and
V. Increasing V from 3 E-5 to 6 E-5 and increasing L from 1 E-3to 1 E-5 greatly
magnifies the difference between the largest and smallest apertures while
increasing the proportion of the channel occupied by the small aperture regions.
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Fig. 4 Dimensionless streamlines for flow between wavy surfaces for V = 3 E —
5L=1E-5.
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Fig. 5 Dimensionless streamlines for flow between wavy surfaces for V = 6 E —
5L=1E-3.

Figures 6 and 7 show the variation in centerplane dimensionless
piezometric head and dimensionless specific discharge with x for the same cases
as Figures 4 and 5, respectively. As seen from Equation 15, the head depends also
on the dimensionless hydraulic conductivity and the head at the origin, which
have the same values in these two figures. As expected, the centerline specific
discharge goes through a much wider excursion in the more extreme channel. In
both cases, the head drops in a noticeably nonlinear fashion, but the deviation is
far more pronounced in the more extreme channel. The head drops more rapidly
in the narrow aperture reaches where the specific discharge is greater and much

less steeply through the chambers.
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Fig. 6 Dimensionless centerplane head, centerplane specific discharge, and
apertureforV =3E—-5,L=1E—-5,K =1,h(0,0) = 2.
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Fig. 7 Dimensionless centerplane head, centerplane specific discharge, and
fracture width forv =6 E—-5,L =1E—-3,K = 1,h(0,0) = 2.
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Figure 8 shows that for a fixed value of L, increasing V escalates the
amplitude of the specific discharge averaged over the cross section of the channel.
When V is held constant, increasing L decreases the amplitude of wu as illustrated

in Figure 9.
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Fig. 8 Average dimensionless specific discharge u(x) forL=1E—-5andV =
2E—-5to6 E—5.
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Fig. 9 Average dimensionless specific discharge u(x) for L=1E —-5to 2E —
4andV =6E —5.

The variation of u with z at various values of x is depicted in Figures 10
and 11. In Figure 10, 0 < x <0.5, which corresponds to an aperture < 2L. Here
the specific discharge is uniform at x = 0 and increases with distance from the
centerplane to an increasing degree until x = 0.25. Beyond x = 0.25, the profile
flattens until it is again uniform at x = 0.5. Figure 11 covers the range of 0.5 < x
< 1, for which the aperture > 2L. It shows how u decreases away from the
centerplane to an increasing degree until x = 0.75 and then flattens until it is again
uniform at x = 1. Separate plots have been used for the two halves of the cycle

because the amplitudes of u and z differ greatly for the case shown.
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Fig 10 u(x, 2)-u(x, 0) for x = 0, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45,

0.50,withL=1E-5V=3E-5
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Fig 11 u(x, 2)-u(x, 0) for x = 0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90,
0.95,1.00 withL=1E-5V=3E-5
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Figure 12 is a graph of the dimensionless transverse specific discharge w at
the upper wall and at specified fractions of the channel half width. This
demonstrates that the flow moves toward or away from the centerplane in phase
with the wall, but with an amplitude that decreases to zero as the centerplane is

approached.
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Fig. 12 Dimensionless transverse specific discharge w at specified fractions of the
channel half width as a functionofx for L =1E—-5andV = 6 E — 5.

4 Conclusions

This paper presents an analytical solution for the steady flow of an incompressible
fluid through a homogeneous, isotropic porous medium filling a channel bounded
by symmetric wavy walls. The channel walls change from parallel planes, to
small amplitude sine waves, to large amplitude nonsinusoidal waves as certain
parameters are increased. The direction of gravity is arbitrary. A plot of
piezometric head against distance in the direction of mean flow changes from a
straight line for parallel planes to a series of steeply sloping sections in the reaches
of small aperture and high specific discharge alternating with nearly constant

sections in the large aperture, low specific discharge bulges. Expressions are
19



given for the stream function, specific discharge, piezometric head, and pressure.
These conclusions can be useful in investigating the effect of velocity variations
along a fracture on reactive transport properties of the fracture due to migration of
CO,-saturated brine in a carbon storage application.
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