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Abstract  Flow in channels bounded by wavy or corrugated walls is of interest in 

both technological and geological contexts.  This paper presents an analytical 

solution for the steady Darcy flow of an incompressible fluid through a 

homogeneous, isotropic porous medium filling a channel bounded by symmetric 

wavy walls.  This packed channel may represent an idealized packed fracture, a 

situation which is of interest as a potential pathway for the leakage of carbon 

dioxide from a geological sequestration site.  The channel walls change from 

parallel planes, to small amplitude sine waves, to large amplitude nonsinusoidal 

waves as certain parameters are increased.  The direction of gravity is arbitrary.  A 

plot of piezometric head against distance in the direction of mean flow changes 

from a straight line for parallel planes to a series of steeply sloping sections in the 

reaches of small aperture alternating with nearly constant sections in the large 

aperture bulges.  Expressions are given for the stream function, specific discharge, 

piezometric head, and pressure.  
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1 Introduction 

Flow in channels bounded by wavy or corrugated walls is of interest in both 

technological and geological contexts.  In some cases, the channel is occupied 

entirely by the flowing fluid (this is called an unpacked channel).  In other cases it 

is filled by a saturated porous medium (this is called a packed channel).  Heat 

exchangers, membrane blood oxygenators, filters, and chemical reactors are 

typical engineered applications of channel flow.  In hydrogeology, geotechnical 

engineering, and petroleum engineering the flow of groundwater or hydrocarbons 

through fractures is of fundamental importance.  The direct motivation for this 

paper is the potential role of packed fractures as pathways for the leakage of 

carbon dioxide from geological sequestration sites.  

Flow through channels has attracted the attention of numerous 

investigators.  Huitt (1956) performed laboratory experiments to measure friction 

factors for laminar and turbulent flow in unpacked channels bounded by smooth 

and sand-roughened parallel planes.  For sand-packed channels he found that the 

Ergun equation, which relates the friction factor to porosity and particle diameter, 

gave adequate predictions. 

Chow et al. (1971) used second order perturbation analysis to solve for the 

incompressible viscous flow in an unpacked symmetric channel with small 

amplitude sinusoidal walls.   

 Nishimura et al. (1984) performed laboratory experiments in an unpacked 

channel with large amplitude sinusoidal wavy walls covering the range of 

Reynolds numbers (Re) from about 40 to 10 000.  They measured the wall shear 

stress and used the hydrogen bubble technique to observe the flow pattern.  They 

also used a finite element code to predict the streamlines from Re = 1 to 700.  The 

streamline pattern was symmetric and showed no evidence of separation for Re < 

15.  They found good agreement between experiment and computation for Re < 

350 when unsteady motion was first observed in the experiment.  The flow 

became turbulent at higher Re. 
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 Datta and Tripathi (2010) studied viscous flow in an unpacked 

antisymmetric channel whose walls were small amplitude sine waves.  They used 

a non-orthogonal coordinate system to obtain a first order perturbation solution. 

 In the hydrogeology literature, the link between laminar viscous flow in an 

unpacked channel and Darcy flow in a fractured porous medium is attributed to 

Romm (1966).  By rewriting the Poiseuille solution for viscous flow between 

parallel planes in the form of Darcy’s law, he showed that the equivalent 

hydraulic conductivity 𝐾′is proportional to the square of the aperture 𝑎′ 

𝐾′ =
𝜌′𝑔′𝑎′2

12𝜇′  

where 𝜌′ is the fluid density, 𝑔′ is the acceleration due to gravity, and 𝜇′  is the 

dynamic viscosity.  (Note that primes are used throughout this paper to indicate 

dimensional quantities.)  Using this formula for conductivity in Darcy’s law, the 

volumetric flowrate 𝑄′is found to be proportional to 𝑎′3.  This result is referred to 

as the “cubic law” and is the basis for many analyses of flow in fractured rock 

formations (Domenico and Schwartz, 1998). 

 Zimmerman and Bodvarsson (1996) reviewed the cubic law and its 

extension to flow in unpacked channels bounded by rough walls.  They carefully 

elucidated the range of conditions under which the Navier-Stokes equations can 

be approximated by the Reynolds lubrication equations or the Hele-Shaw 

equations.  They treated the effect of actual contact between the bounding walls 

by using the Hele-Shaw model. 

 As measurement techniques have improved in recent years, several authors 

have measured fractures with complex geometries (Hughes and Blunt, 2001; 

Konzuk and Kueper, 2004; Piri and Karpyn, 2007).  Crandall et al. (2010) used 

computational fluid dynamics modeling of flow through a rough walled fracture 

with a geometry derived from x-ray computed tomography (CT) images of a 

fracture in a sandstone core to investigate the deviation from the cubic law as a 

function of fracture aperture. 

Ng and Wang (2010) studied steady flow in channels bounded by walls 

whose corrugations were small amplitude sine waves.  The resistance to flow was 

modeled by the Darcy-Brinkman equation which contains terms for both creeping 

viscous flow and Darcian porous media flow.  Second order perturbation analysis 
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was used to obtain solutions for flow parallel to the corrugations (longitudinal 

flow) and flow normal to the corrugations (cross flow).  Wavelength, phase 

difference, and permeability effects were explored. 

 

 

2 Problem statement and solution 

Consider a channel bounded by an impermeable wavy surface and its reflection 

across a center plane.  The generators of the wavy surfaces are straight lines 

parallel to each other and to the center plane.  The waves are periodic with 

wavelength λ’ , but are not necessarily sinusoidal.  Figure 1 shows a one-cycle 

length of the channel and an orthogonal coordinate system with the origin in the 

plane of symmetry.  The 𝑦′ axis is parallel to the generators of the wavy surfaces, 

and the 𝑧′axis is normal to the plane.  The channel extends indefinitely in the 𝑥′ 

and 𝑦′ directions, and in this study there is no flow in the 𝑦′ direction because the 

piezometric head does not vary with 𝑦′.  The bounding wavy surfaces pass 

through (𝑥′ = 0, 𝑦′, 𝑧′ = ±𝐿′).  The direction of the gravity vector is arbitrary. 
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Fig. 1  Geometric definition sketch.  Heavy lines show one cycle of the periodic 

surfaces.  The surfaces extend without change in the 𝑦′ direction (normal to the 

page), 𝑥′ is the direction of mean flow, and 𝑧′ is transverse to the gap.  The 

direction of the gravity vector is arbitrary. 

 

The channel, which may represent an idealized geologic packed fracture, is 

filled with a saturated, homogeneous, isotropic porous medium whose hydraulic 
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conductivity is 𝐾′.  To be more precise, the porous medium considered here is 

what Auriault (2009) calls a classical porous medium: a connected solid structure 

whose pore space depends on the characteristic pore size.  Auriault shows that for 

a porous medium of this type, “The flow is governed by Darcy’s law”. 

The continuity equation for the steady two dimensional motion of an 

incompressible fluid through a static porous medium is 

𝜕𝑢′
𝜕𝑥′ +

𝜕𝑤′
𝜕𝑧′ = 0                                                           (1) 

  

where 𝑢′ is the specific discharge (Darcy velocity) in the 𝑥′ direction and 𝑤′ is 

the specific discharge in the 𝑧′ direction.  For Reynolds numbers less than about 1 

(based on the specific discharge and an average grain diameter), the momentum 

balance is accurately modeled by the 𝑥′ and 𝑧′ components of Darcy’s law (Bear 

1972): 

𝑢′ = −𝐾′  
𝜕ℎ′

𝜕𝑥′                                                                (2) 

                                 

𝑤′ = −𝐾′ 𝜕ℎ′

𝜕𝑧′                                                                 (3) 

 

Here ℎ′ is the piezometric head given by 

ℎ′ =  
𝑝′

𝜌′𝑔′ + 𝜁′                                                            (4) 

where 𝑝′ is the pressure, and 𝜁′ is the elevation (measured positive upward).  The 

elevation of a point is related to its coordinates by 

𝜁′ = 𝑥′ cos(𝜁′, 𝑥′) + 𝑦′ cos(𝜁′, 𝑦′) + 𝑧′ cos(𝜁′, 𝑧′) + 𝜁′0                           (5) 

where cos(𝜁′, 𝑥′) is the cosine of the angle between the positive 𝜁′ and 𝑥′ 

directions, etc., and 𝜁′0 is the elevation of the origin. 

The problem is transformed to dimensionless (unprimed) variables using 

the following definitions. 

𝑥′ = 𝜆′𝑥, 𝑦′ = 𝜆′𝑦, 𝑧′ = 𝜆′𝑧,   

𝜁′ = 𝜆′𝜁, ℎ′ = 𝜆′ℎ, 𝐿′ = 𝜆′𝐿 

𝑢′ = 𝑈′𝑢,       𝑤 = 𝑈′𝑤,      𝐾′ = 𝑈′𝐾                                                                  (6) 

𝜌′ = 𝜌′ ∙ 𝜌,                       𝑔′ = (𝑈′2 𝜆′⁄ )𝑔  
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The dimensionless wavelength becomes 1, and 𝑈′ is a characteristic value of the 

specific discharge.  The dimensionless equations can be obtained formally simply 

by omitting the primes in Equations 1-5.    

 Equation 1 is identically satisfied by the dimensionless stream function ψ 

whose derivatives are related to the dimensionless specific discharge by 

𝑢 =
𝜕𝜓
𝜕𝑧                                                                    (7) 

𝑤 = −
𝜕𝜓
𝜕𝑥                                                               (8) 

As demonstrated by Bear (1972), a flow governed by Equations 1-3 is 

irrotational.  Substitution of Equations 7 and 8 into the condition of irrotationality 

shows that 𝜓 obeys the Laplace equation.  The linearity of the Laplace equation 

permits the use of the principle of superposition to solve for the stream function as 

the sum of a term corresponding to a uniform flow in the x direction and a term 

that depends on the wall shape.  This solution, which has been obtained by the 

method of separation of variables, is 

𝜓(𝑥, 𝑧) = 𝑧 +
𝒱𝒱 sin(2𝜋𝑥) sinh(2𝜋𝑧)

2𝜋 sinh(2𝜋𝐿)                                     (9) 

where 𝒱𝒱 is a dimensionless constant related to the amplitude of the walls.  Each 

streamline corresponds to a fixed value of 𝜓.  In particular, the centerplane is 

given by 𝜓 = 0, and the upper and lower wall contours 𝑧𝑠± are given by 

𝜓(𝑥, 𝑧𝑠±) = ±𝐿                                                                (10) 

The coordinates of any streamline can be determined by fixing a value of 𝜓, 

where – 𝐿 ≤ 𝜓 ≤ 𝐿, and solving Equation 9 iteratively for z as x is scanned 

through the desired range.  Because the no slip condition does not hold for the 

specific discharge, any pair of streamlines can be interpreted as the impermeable 

boundaries of a channel. 

 Differentiating Equation 9 as prescribed by Equations 7 and 8, the 

components of the specific discharge are found to be 

𝑢 = 1 +
𝒱𝒱 sin(2𝜋𝑥) cosh(2𝜋𝑧)

sinh(2𝜋𝐿)                                             (11) 

𝑤 = −
𝒱𝒱 cos(2𝜋𝑥) sinh(2𝜋𝑧)

sinh(2𝜋𝐿)                                                (12) 
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From Equation 12 it can be deduced that 𝒱𝒱 = 𝑤(0, −𝐿). 

 

The dimensionless flowrate Q is found by integrating u over the 

dimensionless channel cross section.   

𝑄 = � 𝑢𝑑𝐴 = 𝑏 � 𝑢𝑑𝑧

𝑧𝑠+

𝑧𝑠−𝐴

= 2𝑏 � 𝑢𝑑𝑧

𝑧𝑠+

0

 

 

where b is the dimensionless breadth of the channel, i.e. in the y direction. 

Substituting Equation 11 for u and integrating gives. 

 

𝑄
2𝑏 = � �1 +

𝒱𝒱𝑠𝑖𝑛(2𝜋𝑥)𝑐𝑜𝑠ℎ(2𝜋𝑧)
𝑠𝑖𝑛ℎ(2𝜋𝐿) � 𝑑𝑧

𝑧𝑠+

0

                               

= [𝑧𝑠+ − 0] + 𝒱𝒱
𝑠𝑖𝑛(2𝜋𝑥)

2𝜋 𝑠𝑖𝑛ℎ(2𝜋𝐿) [𝑠𝑖𝑛ℎ(2𝜋𝑧𝑠+) − 𝑠𝑖𝑛ℎ(0)] 

Replacing zs+ from Equation 9  

 

𝑄
2𝑏 = �𝐿 − 𝒱𝒱

𝑠𝑖𝑛(2𝜋𝑥) 𝑠𝑖𝑛ℎ(2𝜋𝑧𝑠+)
2𝜋 𝑠𝑖𝑛ℎ(2𝜋𝐿) � + 𝒱𝒱

𝑠𝑖𝑛(2𝜋𝑥) 𝑠𝑖𝑛ℎ(2𝜋𝑧𝑠+)
2𝜋 𝑠𝑖𝑛ℎ(2𝜋𝐿)  

 

leads to the simple result that 

𝑄 = 2𝑏𝐿                                                                     (13) 

Dividing Q/b by the dimensionless channel aperture, 2𝑧𝑠+ , gives the 

dimensionless average specific discharge 𝑢 in the x direction. 

𝑢(𝑥) =
𝐿

�𝐿 − 𝒱𝒱 sin(2𝜋𝑥) sinh(2𝜋𝑧𝑠+)
2𝜋 sinh(2𝜋𝐿) �

                                 (14) 

 

 Substitution of Equations 11 and 12 into the dimensionless forms of 

Equations 2 and 3, followed by partial integration enables the determination of the 

dimensionless piezometric head distribution. 

ℎ(𝑥, 𝑧) = ℎ(0,0) −
𝑥
𝐾 +

𝒱𝒱[cos(2𝜋𝑥) cosh(2𝜋𝑧) − 1]
2𝜋𝐾 sinh(2𝜋𝐿)                 (15) 
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where it is assumed that the dimensionless head at the origin is known.  The 

corresponding dimensionless pressure distribution is given by 

𝑝(𝑥, 𝑧) = 𝑝(0,0) − 𝜌𝑔[𝑥 cos(𝜁, 𝑥) + 𝑦 cos(𝜁, 𝑦) + 𝑧 cos(𝜁, 𝑧)]                

−
𝜌𝑔𝑥

𝐾   +    
𝜌𝑔𝒱𝒱[cos(2𝜋𝑥) cosh(2𝜋𝑧) − 1]

2𝜋𝐾 sinh(2𝜋𝐿)                     (16) 

 

 

3 Results 

 The dimensionless width parameter L and the dimensionless amplitude 

parameter 𝒱𝒱 determine the shape of the flow passage.  Inspection of Equation 9 

shows that the boundaries reduce to parallel planes for 𝒱𝒱 = 0.  This corresponds 

to uniform parallel flow in the x direction and a constant rate of head loss in the x 

direction.  The value of 𝒱𝒱 is bounded because the x component of the specific 

discharge cannot become negative.  It appears that there is no exact closed form 

expression for this limit, but for small L it is very closely approximated by 

𝒱𝒱 < tanh(2𝜋𝐿)                                                          (17) 

For large values of L the upper limit is considerably less than tanh(2πL).  Values 

of 𝒱𝒱 which exceed the limit cause divergence of the solution for zs+.   
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Figure 2 shows that for fixed L, the walls are small amplitude sine waves 

when 𝒱𝒱 is small, but become increasingly nonsinusoidal as 𝒱𝒱 increases.  For large 

𝒱𝒱 the form of the channel approaches a series of long thin fissures separated by 

short bulging chambers. 

 

 
Fig. 2  Upper bounding surface shapes for 𝐿 = 1 E − 5 and 𝒱𝒱 = 1 E − 5 to 6 E −

5. 
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 Figure 3 shows that the effect of increasing L with 𝒱𝒱 fixed is to increase 

the aperture of the channel and also to reduce the deviation from a sinusoidal 

shape. 

 
Fig. 3  Upper bounding surface shapes for 𝐿 = 1 E − 5 to 2 E − 4 and 𝒱𝒱 = 6 E −

5. 
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 Figures 4 and 5 show the streamline patterns for different values of L and 

𝒱𝒱.  Increasing 𝒱𝒱 from 3 E-5 to 6 E-5 and increasing L from 1 E-3 to 1 E-5  greatly 

magnifies the difference between the largest and smallest apertures while 

increasing the proportion of the channel occupied by the small aperture regions. 

 
Fig. 4  Dimensionless streamlines for flow between wavy surfaces for  𝒱𝒱 = 3 E −

5, 𝐿 = 1 E − 5. 
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Fig. 5  Dimensionless streamlines for flow between wavy surfaces for  𝒱𝒱 = 6 E −

5, 𝐿 = 1 E − 3. 

  

Figures 6 and 7 show the variation in centerplane dimensionless 

piezometric head and dimensionless specific discharge with x for the same cases 

as Figures 4 and 5, respectively.  As seen from Equation 15, the head depends also 

on the dimensionless hydraulic conductivity and the head at the origin, which 

have the same values in these two figures.  As expected, the centerline specific 

discharge goes through a much wider excursion in the more extreme channel.  In 

both cases, the head drops in a noticeably nonlinear fashion, but the deviation is 

far more pronounced in the more extreme channel.  The head drops more rapidly 

in the narrow aperture reaches where the specific discharge is greater and much 

less steeply  through the chambers. 
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Fig. 6   Dimensionless centerplane head, centerplane specific discharge, and 

aperture for 𝒱𝒱 = 3 E − 5, 𝐿 = 1 E − 5, 𝐾 = 1, ℎ(0,0) = 2. 

 

 
Fig. 7   Dimensionless centerplane head, centerplane specific discharge, and 

fracture width for 𝒱𝒱 = 6 E − 5, 𝐿 = 1 E − 3, 𝐾 = 1, ℎ(0,0) = 2. 
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 Figure 8 shows that for a fixed value of L, increasing 𝒱𝒱 escalates the 

amplitude of the specific discharge averaged over the cross section of the channel.  

When 𝒱𝒱 is held constant, increasing L decreases the amplitude of  𝑢 as illustrated 

in Figure 9.  

 

Fig. 8  Average dimensionless specific discharge 𝑢(𝑥) for 𝐿 = 1 E − 5 and 𝒱𝒱 =

2 E − 5 to 6 E − 5. 
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Fig. 9  Average dimensionless specific discharge 𝑢(𝑥) for 𝐿 = 1 E − 5 to 2 E −

4 and 𝒱𝒱 = 6 E − 5. 
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because the amplitudes of u and z differ greatly for the case shown. 
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Fig 10  u(x, z)-u(x, 0) for x = 0, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 

0.50, with L = 1 E - 5, V = 3 E - 5 
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Fig 11  u(x, z)-u(x, 0)  for x = 0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 

0.95, 1.00  with L = 1 E - 5, V = 3 E - 5 
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Figure 12 is a graph of the dimensionless transverse specific discharge w at 

the upper wall and at specified fractions of the channel half width.  This 

demonstrates that the flow moves toward or away from the centerplane in phase 

with the wall, but with an amplitude that decreases to zero as the centerplane is 

approached. 

 
Fig. 12  Dimensionless transverse specific discharge w at specified fractions of the 

channel half width as a function of x for 𝐿 = 1 E − 5 and 𝒱𝒱 = 6 E − 5. 

 

 

4 Conclusions 

This paper presents an analytical solution for the steady flow of an incompressible 

fluid through a homogeneous, isotropic porous medium filling a channel bounded 

by symmetric wavy walls.  The channel walls change from parallel planes, to 

small amplitude sine waves, to large amplitude nonsinusoidal waves as certain 

parameters are increased.  The direction of gravity is arbitrary.  A plot of 

piezometric head against distance in the direction of mean flow changes from a 

straight line for parallel planes to a series of steeply sloping sections in the reaches 

of small aperture and high specific discharge alternating with nearly constant 

sections in the large aperture, low specific discharge bulges.  Expressions are 
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given for the stream function, specific discharge, piezometric head, and pressure. 

These conclusions can be useful in investigating the effect of velocity variations 

along a fracture on reactive transport properties of the fracture due to migration of 

CO2-saturated brine in a carbon storage application. 
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