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Modeling the Fracture of Ice Sheets on Parallel Computers

Haim Waisman, David Keyes
School of Engineering and Applied Science, Columbia University, New York, NY

Ray Tuminaro, Erik Boman
Sandia National Laboratories, Albuquerque, NM

1 Objectives and Accomplishments (Sep 15, 2009-Sep 14, 2013)

The objective of this project was to investigate the complex fracture of ice and understand its role
within larger ice sheet simulations and global climate change. This objective was achieved by
developing novel physics based models for ice, novel numerical tools to enable the modeling of
the physics and by collaboration with the ice community experts.

Fracture of ice is important in several fields of which the most visible and certainly the most
significant is global warming. This has recently received international attention due to the collapse
of some significant ice shelves [1, 2, 3]. Ice fracture, however, is also important in other areas
including oil and gas exploration and production within ice-infested waters [4, 5], materials science
research and length scales in ice [6, 7] and microbiology [8].

At the present time, ice fracture is not explicitly considered within ice sheet models due in
part to large computational costs associated with the accurate modeling of this complex phenom-
ena. However, fracture not only plays an extremely important role in regional behavior but also
influences ice dynamics over much larger zones in ways that are currently not well understood.
Dramatic illustrations of fracture-induced phenomena most notably include the recent collapse
of ice shelves in Antarctica (e.g. partial collapse of the Wilkins shelf in March of 2008 and the
diminishing extent of the Larsen B shelf from 1998 to 2002).

(b) Wilkins ice shelf (c) Larsen B diminishing shelf

Figure 1: Recent collapse of ice shelves in Antarctica

Other fracture examples include ice calving (fracture of icebergs) which is presently approxi-

1



mated in simplistic ways within ice sheet models, and the draining of supraglacial lakes through a
complex network of cracks, a so called ice sheet plumbing system, that is believed to cause accel-
erated ice sheet flows due essentially to lubrication of the contact surface with the ground. These
dramatic changes are emblematic of the ongoing change in the Earth’s polar regions and highlight
the important role of fracturing ice.

To this end, our research findings through this project offers significant advancement to the
field and closes a large gap of knowledge in understanding and modeling the fracture of ice sheets
in the polar regions. Thus, we believe that our objective has been achieved and our research
accomplishments are significant. This is corroborated through a set of published papers, posters
and presentations at technical conferences in the field. In particular significant progress has been
made in the mechanics of ice [9, 10, 11], fracture of ice sheets and ice shelves in polar regions
[12, 13, 14] and sophisticated numerical methods that enable the solution of the physics in an
efficient way [15, 16, 17, 18].

2 Collaborations between Columbia University, Sandia National Labs and the ice commu-
nity

The collaborating groups from Columbia University and Sandia National Labs have had very good
interactions during the past four years of the project. The team held conference calls to exchange
and share research ideas, results, administrative issues concerning the project, hiring staff, etc. We
have also had code exchanges to explore ideas on the same platform. The groups hired two post-
doctoral fellows (Dr. Axel Gerstenberger who was located at Sandia Albuquerque and currently is
back in Germany and Dr. Ravindra Duddu who was located at Columbia University and currently
an assistant professor at Vanderbilt University. The hiring was coordinated by both teams so that
the work objectives of the postdocs was complementary and inline with the project goals.

Throughout the project co-PI Ray Tuminaro visited Columbia University, attended joint meet-
ings and served on a PhD committee for Badri Hiriyur (former student at Columbia University
and currently at Weidlinger Associates Inc.). Similarly, co PIs Haim Waisman and David Keyes
visited at Sandia Labs in Livermore, CA to enhance collaboration and discuss research activities
related to this project. Two students from Columbia University interned several summers at Sandia
Albuquerque and Livermore to enhance the collaboration between the groups. The teams also met
at conferences, e.g. the International Congress on Industrial & Applied Mathematics which was
held in July 2011 (ICIAM 2011). During these meetings we discussed technical issues related to
the project and other aspects of the project.

This project period has led to a truly fruitful collaboration with several important journal papers
published, conference proceedings, posters and presentations at various conferences for example:
Domain Decomposition 2011, Copper Mountain Conference on Multigrid Methods 2011, Land Ice
Working Group 2011 (at Boulder CO), United States Computational Mechanics Conference 2011
(at Miniannapolis, MN), XFEM 2011 conference (at Cardiff University, UK), Engineering Me-
chanics Institute 2011 (at Boston MA), International Congress on Industrial & Applied Mathemat-
ics 2011 (Vancouver, BC, Canada), American Geophysical Union 2012, Engineering Mechanics
Institute conference 2012 (Boston, MA) and World Congress on Computational Mechanics 2012
(Sao Paulo, Brazil).

It is also important to mention the interaction of the team with the ice modeling community.
In particular the team had several idea exchanges with Dr. Bill Lipscomb (LANL) and Dr. Jeremy
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Bassis (U. of Michigan). Partial data given to the group (by Dr. Bassis) has allowed us to generate
the mesh for the Amery ice shelf (located in Antarctica) as illustrated in Figure 2.

(a) Satellite image showing giant rifts (b) Finite Element Mesh

Figure 2: Amery ice shelf in Antarctica

Moreover, the Columbia team continued to work closely with Dr. Jeremy Bassis, which re-
cently resulted in a paper on the numerical investigation of surface crevasse propagation in glaciers
and published by the Geophysics Research Letters [12] and poster presentations at the American
Geophysics Union fall meeting in 2012 [14] and the World Climate Research Programme Open
Science Meeting in 2012 [13].

We note that the collaboration with the ice community has also led to a couple of NSF proposals
(one is currently pending) that were based on this project and expand some of the research ideas to
tackle more interesting work in fracture of ice.

3 Research accomplishments

The collaborating groups from Columbia University (Haim Waisman and David Keyes) and Sandia
National Labs (Ray Tuminaro and Erik Boman) have made significant progress since the starting
date of this project (Sep. 15, 2009), in three main directions inline with our statement of work:
(i) material models of ice and fracture of ice sheets and ice shelves, coupled with global warming
effects (4 papers have been published [9, 10, 12, 11]) (ii) extended finite element methods for
modeling the fracture [19, 20, 21, 22], and (iii) sophisticated algebraic multigrid techniques to
solve the resulting systems robustly and efficiently [16, 15, 17, 18]. The next subsections briefly
summarizes our progress. Full details can be found in the references provided.

3.1 A temperature dependent creep damage model for polycrystalline ice

Understanding the temperature dependent creep response of ice under a multiaxial state of stress
is crucial for modeling the flow and deformation of glaciers, ice shelves and ice sheets. The
material response of ice is highly nonlinear, viscoelastic, and anisotropic. The response depends
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mainly on: the applied stress, the strain-rate, the temperature, the salinity, the porosity, the grain-
size, the external pressure, and the anisotropic effect of ice. Further, the creep response of ice at
later stages (tertiary creep) is enhanced due to the gradual accumulation of microcracks (damage)
with time. Experiments by Jacka [23] suggest that both the viscous strain rate and the damage
accumulation rate of ice are temperature dependent. Therefore, it is important that the material
model for polycrystalline ice is able to capture the dependence of creep response on temperature
in addition to strain-rate, external pressure, microcracking, etc.

The behavior of undamaged polycrystalline ice is assumed to be isotropic and viscoelastic
owing to the random orientation of its crystalline structure. Assuming small strains, the additive
decomposition of the total strain tensor into its components is assumed as,

εkl = εekl + εdkl + εvkl, (1)

where εekl, ε
d
kl and εvkl denote the elastic, delayed elastic, and viscous strain tensors. Throughout

this article we use the standard summation convention for repeated indices. The elastic stress-strain
relation is given by the generalized Hooke’s law,

σij = Ce
ijklε

e
kl, (2)

where σij is the Cauchy stress tensor and Ce
ijkl is the fourth order ”Elasticity” tensor. The Young’s

modulus of ice, generally derived from acoustic velocity measurements on ice specimens, depends
strongly on its density and slightly on temperature [24]. The Young’s modulus of laboratory ice is
observed to increase by 5% in the range of −38◦C to 0◦C from 8.93 to 9.39 GPa and the Poisson’s
ratio is observed to increase by about 1% in the same temperature range. For engineering purposes
these temperature dependencies may be described by simple linear relations [24]. The delayed

elastic strain rate, ε̇dkl =
∂εdkl
∂t

, is given by [25],

ε̇dkl = A

(
3

2
Kσdev

kl − εdkl
)
, (3)

where A and K are material constants, and

σdev
kl = σkl −

1

3
σiiδkl, (4)

is the deviatoric part of the Cauchy stress. The permanent viscous strain rate, ε̇vkl, is generalized
by the power-law creep equation as,

ε̇vkl =
3

2
KN

(
3

2
σdev
mnσ

dev
mn

)(N−1)/2

σdev
kl . (5)

where KN and N are viscous parameters. The dependence of the viscosity coefficient, KN , on
temperature, T , is given by an Arrhenius type relation,

KN(T ) = KN(Tm) exp

(−Q
R

(
1

T
− 1

Tm

))
. (6)

where Q is the creep activation energy, R is the universal gas constant (which is equal to the
Boltzmann’s constant) and KN(Tm) is the viscosity coefficient at temperature, Tm. The equations
(1)-(6) establish the generalized viscoelastic constitutive relations for undamaged, homogenous,
and isotropic polycrystalline ice.
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Remark 1 The creep rate equation given by (5) is a multi-axial generalization of the power-law
creep equation for the uniaxial case given by,

ε̇ = K0σ
Nexp

(−Q
RT

)
. (7)

where K0 is a constant and σ is the constant uniaxial stress. In the glaciological literature this
equation is known as the Glen’s creep law for ice [26]. The power exponent, N , is determined to
be ≈ 3 in most experimental and field investigations.

3.1.1 Damage evolution law

The damage evolution law describes the growth of damage that leads to eventual failure of the
material. An appropriate damage evolution law for ice should be able describe: (i) multi-axial be-
havior (ii) different failure behavior in tension, compression and shear (iii) temperature dependence
(iv) damage induced anisotropy (v) healing. Typically, in most engineering materials damage is
an irreversible process, but, when it comes to ice damage is reversible due to recrystallization
(healing). This is because the melting or freezing point of ice (0◦C) is much lower than most en-
gineering materials such as metals and polymers. However, we shall not consider healing in the
current model due to the lack of detailed experimental investigations of healing in ice. The present
temperature dependent creep damage model is based on the anisotropic damage theory given in
[27].

Rate of damage: In a Lagrangian framework assuming small strains, the damage evolution rate,

Ḋij =
∂Dij

∂t
, is given by,

Ḋij =

{
fij, if εij ≥ εth,
0, if εij < εth,

(8)

where fij(σ, T,D) is the damage evolution function that depends on the Cauchy stress tensor,
σ, on the temperature, T , and on the damage tensor, D; and εth is a strain threshold for damage
initiation.

Remark 2 The function, f , also depends on the macroscopic density of ice, ρ [28]. Since the
damage variable, D, represents an equivalent porosity, the variations in density due to variations
in porosity may be accounted by imposing some initial conditions on the damage variable, D, or
on the Young’s modulus, E. The function, f should depend on D since the presence of existing
damage reduces the potential sites for nucleation and growth. For laboratory grown ice the initial
condition is generally taken to be D(t) = 0.

Strain threshold: The strain threshold is a mesoscale parameter proposed here to model the
experimentally observed behavior of ice given in [29, 23]. A general form of the scalar creep
damage evolution function, f , for isotropic damage and uniaxial loading is,

f = B σr (1− d)−k, (9)
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whereB, r, k are the damage evolution parameters, d is the scalar isotropic damage variable, and σ
is the applied uniaxial stress. Later, Murakami and Ohno [30] generalized this model for multiaxial
loading and orthotropic damage by replacing σ with the Hayhurst criterion and d with a second-
order tensor damage variable, D. This generalized form of f is given by,

fij(σ, T,D) = B(T ) 〈〈χ(σ̃)〉〉r (ωkk)
k(σij)

[
(1− γ)δij + γξ

(1)
i ξ

(1)
j

]
,

χ(σ̃) = ασ̃(1) + β

√
3

2
σ̃dev
mn σ̃

dev
mn + (1− α− β)σ̃kk,

(10)

where α, β are the material parameters; σ̃(1) is the maximum eigenvalue of σ̃; ξ(1) is the eigenvec-
tor associated with σ̃(1); χ is an equivalent stress measure. The function 〈〈χ〉〉 is defined as,

〈〈χ〉〉 =

{
χ, if χ ≥ 0,
0, if χ < 0.

(11)

Remark 3 The equivalent stress measure, χ, is a linear combination of the effective maximum
principal stress, σ̃(1), the first invariant, Iσ̃ = σ̃kk of the effective stress tensor, σ̃, and the second

invariant, IIσdev =
1

2
σ̃dev
mn σ̃

dev
mn , of the deviatoric part of the effective stress tensor, σ̃dev.

3.1.2 Model calibration and Model predictions

In this subsection we briefly present a few calibration and prediction results as compared with
published experiments.

Uniaxial tension at T = −10◦C: Experiments on laboratory grown ice samples were performed
by Mahrenholtz and Wu [31] at T = −10◦C for three different values of uniaxial tension, σ =
0.93, 0.82, 0.64 MPa. Using this experimental data the viscosity and damage parameters in tension
are calibrated at T = −10◦C (see Figure 4).

Uniaxial compression at T = −5◦C: Experiments on laboratory grown ice samples were per-
formed by Mellor & Cole [29] at T = −5◦C for a range of uniaxial compressive loading, σ = 1−4
MPa. Using this experimental data the viscosity and damage parameters in compression are cal-
ibrated at T = −5◦C (see Figure 8). The experimental data coordinates shown in Figure 8 are
obtained by measuring the plots in [29]. The viscosity coefficient, KN , is assumed from [25]. The
damage parameters, B and k are calibrated by fitting the data of log-log plots of strain rate vs
strain when the strains are greater than 1%. The parameter, k, calibrated here works for low stress,
3.06 < |σ| < 0.6 MPa. For higher compressive stresses (|σ| > 3.06 MPa), we shall assume, k = 0,
owing to the lack of experimental data. The experiments on ice under compression do not suggest
any critical damage condition and the failure is ductile. The parameters are Hayhurst’s criterion
are assumed as α = 0.0 and β = 0.84.

Discussion The behavior of material ice is complex and it dependent on many factors. The
proposed model is based on idealized material laws namely: the Glen’s creep law, Murakami’s
damage evolution law and the Arrhenius law for temperature dependence. This model does not
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Figure 3: Uniaxial tension data of [31] used to identify the damage evolution parameters and their
corresponding fits.
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(a) Time evolution of damage

Figure 4: Uniaxial tension data of [31] used to identify the damage evolution parameters and their
corresponding fits.

consider the strong dependence of material properties on grain size and density. The parameters
evaluated in compression from data in [29, 23] are different probably because the values of grain
size and density of ice reported in these studies are different from one another. More detailed and
accurate experiments are needed to include the dependencies on grain-size and density. We note
that the proposed model for ice is only applicable for low stresses and deformation rates which is
often the case for ice in polar regions.

Model Predictions In this paragraph we briefly present some of the model predictions for uni-
axial and multi-axial loading. The model predictions match well with experimental and numerical
results in the literature. The numerical examples considered here illustrate the viability of the
model for studying failure of ice-sheets occurring at low strain rates. The model results for uniax-
ial compression at low applied strain rates at T = −5◦C (see Figure 10(a)) match well with those
in [29]. The results diverge for high strain rates (> 10−5) because the Glen’s creep exponent, N ,
increases with strain rate. The results at low strain rates show that ice strength is lower in tension
than compression (see Figure 10(b)). The results also capture the ductile behavior of ice under
tension at low strain rates.

3.1.3 Application of the nonlocal continuum damage mechanics to investigate surface crevasse
propagation in glaciers

We use the nonlocal viscoelastic damage model to investigate the conditions that enable water-
free surface crevasse propagation in grounded marine terminating glaciers. Our simulations, on
idealized rectangular ice slabs in contact with the ocean, show that crevasses propagate faster
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Figure 5: Uniaxial compression data of [29] used to identify the damage evolution parameters and
their corresponding fits.
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Figure 6: Uniaxial compression data of [29] used to identify the damage evolution parameters and
their corresponding fits.

in thicker ice slabs. We find that: (1) the fraction of ice slab thickness penetrated by surface
crevasses decreases with increasing seawater depth near the terminus; (2) a no slip (fixed) basal
boundary condition retards crevasse growth; (3) crevasses form closer to the terminus when the
seawater depth is larger or when the glacier base is fixed to the bedrock, which could lead to
calving of smaller icebergs. However, water-free surface crevasses can penetrate (nearly) the entire
ice thickness only in thicker ice slabs terminating in shallow seawater depths. This leads us to the
conclusion that surface crevasses alone are not responsible for calving events in marine terminating
and thin glaciers.

Crevasse propagation in a dry environment We first investigated the influence of ice thickness
on calving in a dry environment (hw = 0) by performing simulations with ice slabs thicknesses
h = 125, 250, 500 m. In each case, we prescribe a notch of depth d = 10 m at mid-length near the
glacier’s top surface to initialize the crevasse. We take the slab length l = 4h (in all the simulations)
so that it is sufficiently long to develop the tensile stresses at mid-length, due to differential creep
flow of the slab across the thickness. Figure 8 shows a crevasse opening within the contour plots of
the horizontal displacement for the thickest glacier (h = 500 m) computed using a free slip basal
boundary condition. The surface crevasse penetrates (nearly) the entire ice thickness over a period
of approximately 33 hours (≈ 1.5 days).

Figure 9 shows normalized crack length to slab thickness versus time curves. Simulations sug-
gest that crevasses propagate much faster and penetrate to greater depths in thicker ice slabs, which
is in agreement with the theoretical findings of [32]. However, we are faced with the conundrum
that crevasses only penetrate (nearly) the entire ice thickness for the thickest slabs (h = 500 m)
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predictions match well with the experimental data.
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Figure 8: Contour plots of the displacement component in x direction (in meters) showing crevasse
opening at times: (a) t = 16 hours; (b) t = 22 hours; (c) t = 33 hours. Depth varying flow velocity
field is evident from these plots particularly near the terminus. The deformations and crack opening
displacements are not drawn to scale.

whilst observations indicate that calving occurs for much smaller ice thicknesses [33, 32]. This
suggests that additional mechanisms, such as meltwater enhanced hydrofracture, basal crevassing
or shear failure must be considered to explain full thickness failure.

Influence of seawater depth and basal boundary condition Next, we estimated the depth to
which surface crevasses penetrate in a marine terminating glacier as a function of water depth and
ice thickness. The problem set up is similar to that described in the previous section. The water
depth to slab thickness ratio (hw/h) is varied from 0 to 0.8 (corresponding to a range that varies
from fully grounded to near floatation) and the corresponding surface crevasse penetration ratios
(d/h) obtained are shown in Figure 10. The results indicate that surface crevasses propagate deeper
in thick grounded glaciers and that the (compressive) seawater pressure acts as a stabilizing force
retarding crack growth and preventing surface crevasses from penetrating as deeply into the ice
as in the land terminated case. Again, this study leads us to the hypothesis that surface crevasse
penetration alone is not sufficient to trigger iceberg calving, but it can lead to the faster flow of
glaciers.

We next performed a sequence of experiments with marine terminating glaciers of thickness
h = 500 m. We considered the extreme cases of the basal boundary condition: free slip (no
basal friction) and no slip (frozen or fixed to the bed), where the former condition gives the up-
per bound on the depth to which crevasses penetrate while the latter boundary condition gives the
lower bound. Additionally, the seawater depth is changed from hw = 0 to hw = 0.5h to investigate
the combined effect of water pressure and basal boundary condition. The curves of ice thickness
normalized crack length versus time are given in Figure 11. The predicted equilibrium crevasse
depth is d = 0.6h when hw = 0.5h and d = 0.94h when hw = 0 with free slip at the base, whereas
the equilibrium crevasse penetration depth is d = 0.28h when hw = 0.5h and d = 0.35h when
hw = 0 with no slip at the base. Thus, the basal boundary condition had a more prominent effect
on the equilibrium crevasse depth than the water depth for hw = 0.5h illustrating the importance
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(nearly) the entire thickness in thicker glaciers.
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of the sliding law in determining crevasse penetration depths. In Figure 11, we also compared the
equilibrium crevasse depth estimated directly from crack growth simulations with that from the
Nye zero-stress model [34]. To determine the Nye crevasse depths, we simulated the stress field in
notched rectangular ice slabs due to viscoelastic deformation without any creep damage evolution
and then found the depths at which the longitudinal stress vanishes. We found that the Nye zero
stress model predicted shallower crevasses compared to the direct crack growth simulations, illus-
trating the important role played by creep damage evolution and stress concentration effects in the
fracture of glaciers.
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Figure 11: Curves of normalized crack length (d/h) versus time showing the effect of hydrostatic
pressure and basal boundary condition on crevasse propagation. The corresponding Nye depths
are marked by dashed horizontal lines.

Size of icebergs In the previous set of experiments we initialized our simulations using a notch
at the mid-length at the top surface. We also investigated the most favorable location for crevasse
initiation and subsequent propagation in glaciers that is closest to the terminus as a function of
the applied/assumed boundary conditions. Since crevasse propagation is driven by tensile stresses,
we assume that the location of maximum tensile stress lmax that is closest to the terminus is the
most favorable location for crevasse initiation. The distance lmax gives us an estimate of the size
of the calving icebergs as a function of the boundary conditions. In the simulation experiments,
we considered an ice slab of thickness h = 500 m and varied the water depth from hw = 0 to
hw = 0.8h. From the simulation result shown in Figure 12, we can see that as the water depth hw
increases the distance lmax decreases. The results suggest that for a dry glacier (hw = 0) the iceberg
size is lmax > 2h, whereas for a marine terminating glacier with hw = 0.5h the iceberg size lmax <
h. This suggests that glaciers terminating in deep water would generate smaller icebergs than those
grounded in shallow water. We also investigated the effect of the basal boundary condition. We
performed full creep fracture simulations assuming free slip and no slip conditions on two identical
ice slabs with two initial notches placed at distances less than and greater than the thickness of the
slab from the terminus (right edge). The results shown in Figure 13 indicate that the crack farther
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away from the terminus grows under free slip basal conditions; whereas the nearer crack grows
under fixed basal conditions. This study suggests that basal boundary conditions and seawater
depth both play a prominent role in determining the size of the calving icebergs by establishing
favorable locations for crevasse propagation.
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Figure 12: Normalized distance of maximum tensile stress from the terminus (lmax/h) varies as a
function of the seawater depth ratio (hw/h).

3.1.4 Summary

We have developed a 3D continuum damage model for the temperature dependent creep response
of polycrystalline ice under a multiaxial state of stress. The viscoelastic constitutive model captures
the nonlinear viscous behavior of polycrystalline ice that constitutes glaciers, ice-sheets and ice-
shelves. The constitutive model is coupled with a meso-scale damage model that accounts for
the material degradation at low stresses ranges (< 1.0 MPa). All model parameters of this visco-
elastic damage model are calibrated using published data of uniaxial tension tests [31] and uniaxial
compression tests [29, 23]. The model predictions are then compared to experimental data from
constant strain-rate tests including uniaxial tests [29] and biaxial tests [35, 36]. They are also
compared to previous numerical results of triaxial tests [25, 37]. The predictions are consistent
with both experimental and numerical results in the literature.

By employing the viscoelastic constitutive damage model, we have also studied surface crack
propagation in grounded slabs of ice. Our results suggest that surface crevasses propagate deeper
in thicker grounded glaciers and seawater pressure retards surface crevasse propagation. The basal
boundary condition and seawater depth not only affect the crevasse propagation rate, but also affect
the favorable location for surface crevasse formation. Our study suggests that crevasses form closer
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Figure 13: Contour plots of the longitudinal stress in x direction (in MPa) showing different
preferred locations for crevasse opening with: (a) free slip at the base; (b) no slip (fixed) at the
base. The deformations and crack opening displacements are not drawn to scale.

to the terminus when the seawater depth is larger or when the glacier base is fixed to the bedrock,
highlighting the important role basal sliding plays in iceberg calving. Our computations suggest
that crevasses can propagate deeper than those predicted by the Nye zero stress model, illustrating
the dominant role of creep damage (fracture) evolution. However, even in the case of dry thick
glaciers, water-free surface crevasses do not propagate the full glacier thickness. This suggests
that melt-water pressure driven surface crevasse propagation or seawater pressure driven basal
crevasse propagation may be plausible mechanisms that lead to the break-up of glaciers. The main
advantage of our computational model is that it is not constrained by any simplistic assumptions
and it can help consider realistic scenarios so as to gain new insights into the processes leading to
ice fracture and glacial calving.

For more results and discussions the reader is referred to the following published work [9, 10,
12, 11].

3.2 Progress with modeling fracture using extended finite elements

3.2.1 Brief introduction to the Extended finite element method

The ice shelf model described in the previous section gives a general description of how critical
stress sections are generated and propagated but cannot model the fracture explicitly. Model-
ing cracks as they propagate in solids is a severe limitation of conventional finite elements as
re-meshing is not a trivial task, in particular if many cracks are interacting and propagating at the
same time. The situation is further complicated by the addition of “double nodes” (two nodes shar-
ing the same spatial point) along the crack line which is often needed to facilitate crack opening.
This limitation may be circumvented by the extended finite element approach which allows one to
employ regular meshes to model cracks and holes. The extended finite element method (XFEM)
offers great flexibility in modeling weak and strong discontinuities [38, 39]. XFEM alleviates the
need for meshing the domain such that it is aligned with the discontinuities modeled, and conse-
quently standard structured or unstructured meshes may be employed. The key idea of XFEM is
to locally enrich the standard FEM approximation with local partition of unity enrichment func-
tions chosen according to the physics of the problem at hand. As a result, discontinuities may not
only be better approximated, but also geometrical features (e.g. cracks, holes and inclusions) can
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be separated from mesh generation. For crack problems, two types of enrichment functions are
typically used: Branch functions for nodes associated with tip elements, and a Heaviside function
for element nodes fully cut by the crack.
Consider a domain Ω ⊂ Rn (n = 1, 2, 3), discretized by Nel elements. The approximated dis-
placement field uh(x) via extended finite elements is given by

uh(x) =
∑

I∈N

NI(x)uI +
∑

J∈Ncr

NJ(x)(H(x)−H(xJ))aJ+ (12)

∑

K∈Ntip

NK(x)
4∑

α=1

(Fα(x)− Fα(xK))bαK

where, NI and uI are the standard shape functions and the displacement solution with respect to
node I , respectively. N is the set of all nodes. H(x) is the Heaviside step function given by

H(x) =

{
1 x ≥ 0

−1 x < 0
(13)

and used to enrich all element nodes cut by the crack (element behind the crack tip denoted by the
nodal set Ncr), as illustrated in Figure 14 (nodes enriched by the function H(x) are often referred
to as jump enriched nodes and are marked by circles in Figure 14). aJ are the additional degrees
of freedom added to the jump enriched nodes. Fα are the Branch functions given by

Fα(r, θ)α=1,2,3,4 = {√r sin
θ

2
,
√
r cos

θ

2
,
√
r sin

θ

2
sin θ,

√
r cos

θ

2
sin θ} (14)

where r is the distance between any point in the mesh to the crack tip and θ is the angle to the
crack tip in local crack coordinates. These Branch functions are used to enrich tip element nodes
denoted by the nodal setNtip (In Figure 14, the crack tip nodes are marked by squares), and bαK are
the additional degrees of freedom added to tip elements. Multiplication of the Heaviside function
and the Branch functions by the standard shape function is used to obtain the partition of unity
property.

Figure 15 depicts the implementation of XFEM on a multiple crack problem and the corre-
sponding stresses.

3.3 Inexact Schwarz-AMG preconditioners for crack problems modeled by XFEM

Traditional algebraic multigrid (AMG) preconditioners are not well suited for crack problems mod-
eled by extended finite element methods (XFEM). This is mainly due to the unique XFEM formu-
lations which embed discontinuous fields in the linear system by addition of special degrees of
freedom. These degrees of freedom are not properly handled by the AMG coarsening process and
lead to slow convergence.
In the paper [16] we propose a simple domain decomposition approach that retains the AMG ad-
vantages on well behaved domains by avoiding the coarsening of enriched degrees of freedom. The
idea is to employ a multiplicative Schwarz preconditioner where the physical domain is partitioned
into a “healthy” (or unfractured) and “cracked” subdomains. The “healthy” subdomain, contain-
ing only standard degrees of freedom, is solved approximately by one AMG V-cycle, followed by

17



Figure 14: Enriched nodes in the extended finite element method for a given crack. Circles denote
nodes enriched by the Heaviside (jump) function and squares denote the tip element nodes enriched
by Branch functions.

then

uh(x) =

n∑

I=1

NI(x)uI +

nh∑

i=1

NIi(x) (H(x)−H(xIi)) aIi +

nf∑

i=1

NÎi
(x)

nJ∑

J=1

(
FJ(x)− FJ(xÎi

)
)
bÎiJ (2.5)

where n is the total number of nodes, nh is the number of nodes which define at least one element bisected by

a crack, nf is the number of nodes which define elements associated with crack tips, nJ is the number of tip

singularity functions, NI(x) are standard nodal basis functions, Ii gives the index of the ith node associated

with an element bisected by a crack, and Îi gives the index of the ith node associated with elements containing

tips. Discontinuities along the crack interface are modeled through Heaviside step functions

H(x) =





1 above Γc+

−1 below Γc−
. (2.6)

The FJ(x) are given in local polar coordinates (r, θ) as

FJ (r, θ) =





J=1︷ ︸︸ ︷
√
r sin

(
θ

2

)
,

J=2︷ ︸︸ ︷
√
r cos

(
θ

2

)
,

J=3︷ ︸︸ ︷
√
r sin

(
θ

2

)
sin(θ),

J=4︷ ︸︸ ︷
√
r cos

(
θ

2

)
sin(θ)





(2.7)

Enveloping H(x) and FJ(x) with standard basis functions provides local support near the crack and ensures

that the new set of basis functions define a partition of unity.

Figure 2.2 graphically illustrates the idea. Additional material can be found in [1, 2, 15–17].

(a) (b)

Fig. 2.2: (a) Red lines depict cracks. Green circles and red squares give nodes enriched by H(x) and FJ(x),

respectively. (b) Computed stress σyy.

2.3. Levelset Functions. Levelset functions are now described as they play a role in the proposed

multigrid algorithm. The XFEM enrichment functions are developed by utilizing a normal levelset function

ψ(x) and a tangential levelset function φ(x) for each crack. These functions represent a local coordinate

4

Figure 15: (a) Enriched Heaviside and branch nodes. (b) stresses σyy
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concurrent direct solves of “cracked” subdomains. This strategy alleviates the need to redesign
special AMG coarsening strategies that can handle XFEM discretizations. Numerical examples
on various crack problems clearly illustrate the superior performance of this approach over a brute
force AMG preconditioner applied to the linear system.

3.3.1 General Methodology

The proposed multiplicative Schwarz preconditioner begins with a special domain decomposition.
As shown in Fig. 16, we consider two possible partitioning strategies: (i) a single subdomain
containing all cracks (see Fig. 16(a)) and (ii) multiple crack subdomains (see Fig. 16(b)), where
each crack owns its own subdomain. In many cases the physics of the problem will determine
the partitioning scheme. For example, clusters of cracks and microcracks, e.g., formed due to
a localized impact or indentation loads, can be aggregated into a single subdomain, while more
isolated cracks, nucleating at far distances from each other, e.g. formed due to fatigue loads applied
to the whole structure, may be too far apart and will require their own subdomains. In any case,
the two strategies lead to the same type of systems.

In Fig. 16, we refer to the subdomain Ωh
1 that does not contain any enriched nodes (or cracks)

as a “healthy” subdomain (for simplicity of the presentation we will only consider one healthy
subdomain). The other subdomains containing at least one crack, and hence all enriched degrees
of freedom associated with that crack, are referred to as “cracked” subdomains and denoted by
Ωc
i . Cracked subdomains may also contain one or several layers of elements around cracks that

constitute the overlap with the healthy subdomain.
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Figure 16: Schematic representation of the “healthy” and “cracked” subdomains in the formu-
lation of domain decomposition. [a] multiple cracks share a single cracked subdomain [b] each
crack is assigned to a different cracked subdomain.
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The general formulation leads to a coupled set of linear systems associated with the healthy
and cracked subdomains. The coupling occurs through the boundary conditions and overlapping
elements. Note that in this formulation, cracked subdomains are decoupled from each other and
are only coupled to the healthy subdomain. This property is not an essential feature of the proposed
approach, but is adopted in the current work to keep the description of the method simple, without
any loss of generality.

Preconditioner setup and algorithm flow: Our proposed approach uses a domain decomposi-
tion algorithm with an inexact multiplicative Schwarz method as the preconditioner for the residual
obtained at each iteration of a global GMRES solver. This partitioning is only performed once and
is reused over successive iterations. The healthy subdomain is approximately solved using one
AMG V-cycle and cracked subdomains are solved concurrently with a direct solver. The two
solutions are then assembled back to be returned to the global GMRES solver. A schematic repre-
sentation of the algorithm is illustrated in Fig. 17 and shown in a condensed form in Fig. 18.

Figure 17: Schematic description of the inexact Schwarz-AMG preconditioner .

While one could argue that the use of a direct solver on the cracked subdomains may be com-
putationally too expensive, we point out that cracked subdomains are relatively small compared
to the overall size of the problem and therefore, this step is fairly inexpensive. Moreover, linear
systems associated with cracked subdomains are factored before starting GMRES iterations, and
reused in successive iterations of the preconditioner.
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Step 1: Apply one AMG V cycle to the healthy subdomain

uh ← AMG(rh,Kh) for the healthy subdomain

Step 2: solve all cracked subdomains

uci ← Bi(r
h −Khuh) for all cracked subdomains i

Step 3: Update the residual and return to the GMRES solver

u← assemble(uh,uc1, . . . ,u
c
n)

Figure 18: GMRES preconditioned by an inexact Schwarz-AMG preconditioner.

One of the great interests of this process is that it is utterly simple to implement and provides a
way to apply the AMG method to the bulk of the domain, retaining its convergence properties for
crack problems modeled by XFEM.

3.3.2 Numerical examples

Numerical results comparing the inexact Schwarz-AMG preconditioner versus a brute force AMG
preconditioner within GMRES are provided in this section. In this report we only present two
examples, however for more results the reader is referred to [16, 18]. A brute force AMG method
is defined as an AMG method that is directly applied to the entire domain without redesigning the
AMG to take into account enriched degrees of freedom. The AMG method employed in our studies
is the one based on smoothed aggregation concepts and has been implemented in the MueMat
package at Sandia Labs.

Crack growth under pure mode I loading: The first example compares the convergence of the
AMG brute force preconditioner to the one obtained by the inexact Schwarz-AMG preconditioner
as a function of increasing crack size. The inexact Schwarz-AMG preconditioner is a multiplicative
Schwarz method in which the healthy subdomain is approximated with a single AMG cycle, and
the cracked subdomain is solved exactly. Note that in this problem the cracked subdomain grows
and follows the crack path as it propagates in the domain. The problem considered is a square plate
with dimensions of 1× 1 [m], and a crack propagating in mode I from one end to the other end of
the plate. As shown in Fig. 19(a), a uniformly distributed tensile load of 1, 000 [N ·m−1] applied
to its top and bottom edges. Crack propagation is performed quasi-statically from an initial crack
of length ainitial = 0.12 [m] to a final length of afinal = 0.71 [m]. A mesh of 30 × 30 elements
is chosen for this problem. Fig. 19(b) shows the number of iterations required by each method
as a function of the crack length. This numerical experiment reveals that the inexact Schwarz-
AMG preconditioner exhibits a faster convergence rate than the AMG brute force preconditioner
but when the size of the crack increases the difference between the number of iterations needed by
the two methods decreases.
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Figure 19: Convergence of the preconditioners on the length growth problem. [a] geometric
definition of the problem [b] number of iterations to converge as a function of crack length.

Multiple cracks with different lengths and orientations: In this example we investigate the
convergence of the preconditioners on a plate containing three cracks of different lengths and
orientations. Two strategies, illustrated in Fig. 16, are used to partition the domain into healthy and
cracked subdomains. In the first case the cracked subdomain owns all the cracks (a single cracked
subdomain) while in the second approach each crack owns its own local subdomain (multiple
cracked subdomains). In addition an Additive Schwarz method is investigated and compared with
the other methods. The plate dimensions, boundary conditions and loading is the same as given
in Fig. 19(a). The mesh and the partitioned domains are shown in Fig. 20, and the convergence
results are plotted in Fig. 21.
It is clear that both domain decomposition strategies give excellent results compared to the AMG
brute force preconditioner. The AMG performance is poor, which is mainly attributed to the cracks
having two sets of tip functions inside the domain, and in close proximity to each other. More-
over, the different orientation of the cracks makes it significantly harder for the AMG to generate
appropriate aggregates and the coarsening of these special functions, significantly deteriorates its
performance.

As expected, the multiplicative inexact Schwarz method with a single cracked subdomain gives
slightly better performance than its counterpart with multiple cracked subdomains. The single
cracked subdomain has converged in 50 iterations whereas it converged in 63 iterations when
multiple subdomains are introduced. This behavior is due to the fact that all the cracks are solved
concurrently in the single cracked subdomain case whereas solving them in a sequential manner
introduce a small delay in the coupling of these cracks.

Summary The paper presents an inexact Schwarz-AMG preconditioning approach for crack
problems modeled by XFEM, in order to retain the convergence properties of smoothed aggre-
gation AMG for elastostatic problems. The preconditioner is based on the domained partition into
“healthy” (or unfractured part), and a “cracked” part that includes all the XFEM enriched degrees
of freedom. While the solution in the “healthy” subdomain is approximated inexactly by a single
multigrid V-cycle, the “cracked” subdomains (single or multiple) are solved exactly. This allevi-
ates the need to redesign the AMG coarsening algorithms to handle enriched degrees of freedom.
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Figure 20: Domain decomposition and mesh of a plate with three cracks with different lengths
and orientations [a] Decomposition with multiple cracked subdomains [b] Decomposition with a
single cracked subdomain.
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Figure 21: Comparison of the convergence rate for the decomposition strategies shown in Fig. 20.
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Table 1: Summary of the convergence results for the problem considered in Fig. 20.

AMG Additive Multiplicative Exact
brute force Schwarz-AMG Schwarz-AMG Schwarz-AMG

Single ”crack”
190 68 50 48

subdomain
Multiple ”crack”

190 74 63 59
subdomains

Numerical examples on various crack problems clearly illustrate the superior performance of this
approach over a brute force AMG preconditioner, in particular when multiple random cracks are
fully embedded in the structure. This is one approach to apply AMG schemes to XFEM problems
with no adjustments of the original method. For more details the reader is referred to [16, 18].

4 Papers published under this DOE funding

The following papers are associated with this funding and have been already published, submitted
for publication, or are in preparation:

[A1] Haim Waisman, The extended stiffness derivative technique to extract the strain energy re-
lease rates, proceedings of the 16th US National Congress of Theoretical and Applied Mechanics,
State College, Pa, June 2010.

[A2] Xia Liu and Haim Waisman, Computationally efficient micro crack modeling in statics and
dynamics based on simplified crack tip enrichments within the extended finite element method, pro-
ceedings of the 16th US National Congress of Theoretical and Applied Mechanics, State College,
Pa, June 2010.

[A3] Haim Waisman, An analytical stiffness derivative extended finite element technique for extrac-
tion of crack tip Strain Energy Release Rates, Engineering Fracture Mechanics 77 (16):3204-3215,
2010.

[A4] Xia Liu, Haim Waisman and Jacob Fish, A New Crack Tip Enrichment Function in the
Extended Finite Element Method for General Inelastic Materials, Accepted for publication, In-
ternational Journal for Multiscale Computational Engineering (2011).

[A5] Ravindra Duddu and Haim Waisman, A temperature dependent creep damage model for
polycrystalline ice, Mechanics of Materials 46: 23-41,2012.

[A6] Badri Hiriyur, Ray Tuminaro, Haim Waisman, Erik Boman and David Keyes A Quasi-
Algebraic Multigrid Approach to Fracture Problems Based on Extended Finite Elements, SIAM
Journal on Scientific Computing 34(2):A603-A626, 2012.
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[A7] Luc Berger-Vergiat, Haim Waisman, Badri Hiriyur, Ray Tuminaro and David Keyes, In-
exact Schwarz-AMG preconditioners for crack problems modeled by XFEM, International Journal
for Numerical Methods in Engineering 90(3):311-328, 2012.

[A8] Ravindra Duddu and Haim Waisman, A nonlocal continuum damage mechanics approach
to simulation of creep fracture in ice-sheets, Computational Mechanics, 51(6):961-974, 2013.

[A9] Axel Gerstenberger and Ray Tuminaro, An algebraic multigrid approach to solve extended
finite element method based fracture problems, International Journal for Numerical Methods in
Engineering 94(3):248–272, 2013.

[A10] Ravindra Duddu, Jeremy Bassis and Haim Waisman, A numerical investigation of surface
crevasse propagation in glaciers using nonlocal continuum damage mechanics, Geophysical Re-
search Letters 40(12):3064-3068, 2013.

[A11] Ravindra Duddu and Haim Waisman, On the continuum damage mechanics approach to
modeling of polar ice fracture: A reply, Journal of Glaciology, 59(216), 2013.

[A12] Haim Waisman and Luc Berger-Vergiat, An adaptive domain decomposition preconditioner
for crack propagation problems modeled by XFEM, Accepted, International Journal for Multiscale
Computational Engineering (2013).

5 Future Plans

While significant progress has been made there is still much to be done to close the knowledge
gap on fracture of ice sheets and ice shelves. We have recently submitted an NSF proposal (cur-
rently pending) on simulating iceberg calving from ice shelves using the damage mechanics model
which was developed in this project. Thus, we feel that this project is a significant milestone in
understanding and modeling the fracture of ice sheets and ice shelves.

The NSF proposed work, which builds upon this DOE project is as follows:
Mass loss from the Antarctic Ice Sheet occurs primarily through its ice shelves, which are

floating platforms of ice that extend into the ocean and surround the Antarctic ice sheet. Because
of the cold atmospheric temperatures, most of this mass loss comes from the combination of the
detachment of icebergs (calving) and the gradual erosion of ice by basal melting. The challenge
in predicting future ice sheet mass loss, however, is that many of the processes associated with ice
shelf demise remain poorly understood. Although progress has been made in our understanding
of basal melting, a quantitative understanding of iceberg calving from ice shelves remains elusive.
This is partly because calving requires that we understand and simulate the three-dimensional initi-
ation and propagation of fractures within the ice over timescales that range from seconds to decades
(or longer). Our primary objective is thus to improve our knowledge of iceberg calving using a
multi-faceted approach that addresses: (i) the physics of fracture initiation and propagation using
a continuum creep damage mechanics model that can simulate the time-dependent visco-elastic
failure of ice and; (ii) the thermo-mechanical evolution of fractures after inception due to freeze-
on and melting induced excavation of fractures. Both facets of our proposal are challenging and
computationally demanding so that concurrent fracture simulation in tandem with global ice sheet
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modeling will be prohibitively expensive and complicated, even with the latest parallel computing
platforms. Therefore, we propose to use our damage model to test existing parameterizations of
iceberg calving and seek improved representations of fracture propagation and iceberg calving that
can be more easily ingested into existing numerical ice sheet or ice shelf models.

Iceberg calving rates provide boundary conditions to global ice sheet models and thus are
extremely important. However, current models rely on empirical assumptions that are simplistic
and therefore cannot predict accurate rates due to global warming and other accelerating processes.
Our proposed fracture mechanics model will provide a physically based computational framework
that can be used to simulate iceberg calving from ice shelves. Moreover, given the fundamental
nature of this proposal and departure from current theories, especially our focus on thermodynamic
evolution of fractures, it is likely that new physics related to ice calving will be discovered and
knowledge about its overall effect on global climate will be gained.

The key socio-economic impact of this proposed work will be realized through the insights it
provides into the dynamics of ice shelves and their contribution to the freshwater budget and mass
budget of the Antarctica ice sheet in the coming centuries. The knowledge gained will impact
the field of glaciology, fracture mechanics and applied mathematics through the development of
novel translational methods for studying the multi-physics and multi-scale fracture of materials.
Our broader educations efforts also target education at the elementary school, high school, under-
graduate and graduate level with students at the latter two levels incorporated into our research
efforts.

6 Unexpended funds

Funding has being used to support students, a postdoc, PI’s summer salary, travel and software.
Currently all the funding has been spent.
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