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Objectives

Gaussian process models for spatial and spatiotemporal data are ubiquitous in
scientific and engineering applications. Likelihood-based methods for fitting such
models, which includes all Bayesian methods, have desirable statistical properties
and are thus the methods of choice when feasible. However, calculating the like-
lihood function even once can be a challenge for N irregularly sited observations
from such a process, requiring O(N2) memory and O(N3) complexity. Thus,
there is a need for fast and accurate likelihood approximation even for N on the
order of 105, not to mention the 1015 implied by petascale data. The main objec-
tive of this research was to develop computational tools for the statistical analysis
of massive spatiotemporal datasets based on Gaussian process models. Another
important objective was the development of appropriate statistical models for
specific spatiotemporal processes arising in the physical sciences.

Accomplishments

We explored the suitability of a large number of approaches to reducing compu-
tations related to the statistical analysis of Gaussian processes. Our work has
led to a better understanding of the strengths and weaknesses of various existing
approaches and the development of a number of new approaches. For example,
we showed in [8] that low rank methods, while efficient in terms of both com-
putation and storage, can be disastrous statistically in situations that frequently
occur in practice. Furthermore, in these situations, very simple composite like-
lihood methods can be equally computationally efficient while producing much
more accurate estimates of the parameters describing the covariance structure of
the Gaussian process. In [3] and [6], we showed via both theory and numerical
experiments, that stochastic approximations to the score function (the gradient
of the loglikelihood function) yields procedures that are both computationally
and statistically efficient.
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Our work has included theoretical investigations of the properties of spa-
tiotemporal covariance functions [1], [4]. However, even these works have a bear-
ing on computational issues, as the types of models these papers advocate, in
which spectral densities are “well-behaved” at high frequencies, are also models
for which certain approximations such as composite likelihoods and fast multipole
methods will perform well.

[6], [7], [9], [10] and [11] all consider applications to environmental data, with
[7], [9] and [10] having the strongest applied components. [7] deals with the devel-
opment of appropriate nonstationary process models and computational methods
for high-frequency meteorological data taken from the DOE-run ARM SGP site.
[10] also looks at ARM data, developing spectral methods for the simultaneous
modeling of temperature and dew point. [9] develops an extension of composite
likelihood methods that is suitable for data taken from a polar-orbiting satellite,
which is a major and expanding modality for environmental monitoring.

Research contributions

Research supported by this grant has resulted in twelve papers, seven of which
have been published, two more are in press and the last three have been sub-
mitted. These papers represent a range of efforts to address computational and
modeling issues related to large spatiotemporal datasets.

[3], [6] and [12] describe a major focus of our research: matrix-free methods
for approximating score functions with a variety of unbiased estimating equa-
tions. The first two papers make heavy use of iterative methods to solve systems
of linear equations. As in many problems with iterative solvers, precondition-
ing is crucial to the success of these methods. In [3], results on equivalence of
Gaussian measures are used to prove that simple filters can sometimes yield a
preconditioner that transforms a sequence of matrices with rapidly growing con-
dition numbers to matrices with bounded condition number. In [6], we prove
that the statistical efficiency of our method is related to the condition number of
the covariance matrix of the filtered observations. Thus, effective preconditioning
plays a central role in both the computational and statistical properties of the
stochastic score approximations. [12] describes unbiased estimating equations
that do not require solving large systems of linear equations as well as leading to
easier optimization problems in some circumstances. Thus, this procedure can
lead to much faster parameter estimation schemes than the procedures in [3] and
[6], although the losses in statistical efficiency may be greater.

[11] represents somewhat related work on likelihood methods for stationary
processes observed on a partial grid. The idea here is that if this stationary pro-
cess can be embedded in a periodic process, then Monte Carlo methods become
natural because all likelihood computations for a periodic process on a grid can
be done exactly using the fast Fourier transform. This approach is also matrix-
free and was used successfully both to find maximum likelihood estimates and
MCMC simulations of posterior distributions for problems for which direct meth-
ods would not be feasible. In contrast, it is not clear how our methods that only
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compute the score function and not the likelihood function itself could be used
in a feasible MCMC scheme.

[5] and [8] look at two popular methods for reducing computational require-
ments for large spatial datasets: covariance tapering and low rank methods. The
common message in these papers is that they are often dominated by a very sim-
ple likelihood approximation based on dividing the data into contiguous blocks,
computing the loglikelihood for the observations in each block and then adding
these blockwise loglikelihoods. This simple approach would give the exact loglike-
lihood if observations in different blocks were independent. Despite the simplicity
of this approach, for purely spatial data, it often works quite well both statisti-
cally and computationally. Its extension to spatiotemporal data is not so clear,
however, due in part to the lack of commensurability of space and time.

[2], [7] and [10] consider nonstationary Gaussian processes. [2] develops an
analog to nonparametric regression estimation via kernel methods for Gaussian
processes that are nearly stationary over small regions. This method was mo-
tivated by a problem in cosmology in which the presence of a massive object
will create small distortions in the observed cosmic microwave background. [7]
considers modeling temperature data measured every minute by nonstationary
Gaussian processes in time, using a spectral representation with a time-varying
mixture of spectral densities. Computational innovations include accurate and
fast approximations to the likelihood function for such processes and the use of
genetic algorithms to handle the rather nasty optimization problem that results
from this model. [10] models temperature and dew point in a way that respects
the constraint that dew point cannot be higher than temperature. It then de-
scribes changes in the time-evolving bivariate spectrum of dew point and tem-
perature in terms of time of day, variability in wind direction and a smoothed
version of relative humidity. This work illustrates some of the difficulties that
will arise in modeling of multivariate environmental processes, especially at high
frequencies.

[9] develops an approach to likelihood approximation that may have broad
scope for ungridded massive datasets. The basic idea is to estimate those param-
eters of the process relating to local behavior using moderately sized subsets of
the data, then interpolate these observations to a sparse grid and use these grid-
ded observations to estimate parameters related to large-scale behavior. Because
these interpolated “pseudo-observations” are gridded, methods that can take ad-
vantage of this regularity can then be used to reduce computations and storage.
The application (to Level 2 total column ozone levels as measured by the OMI
instrument) only considers observations in a narrow latitute band, but our ap-
proach offers what I believe to be the only realistic option to fitting suitably rich
spatiotemporal statistical models via likelihood-based methods to polar-orbiting
satellite data at the global level.

[1] and [4] focus on theoretical aspects of spatiotemporal models. [1] studies
the screening effect, which says that the conditional distribution of an observa-
tion given its nearest neighbors should be nearly independent of more distant
observations. Such a property seems quite natural, but it does not always hold.
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[1] proves that if the spectral density of a stationary Gaussian process is well-
behaved (in the sense that it changes relatively slowly at high frequencies), then a
screening effect will hold. When modeling spatiotemporal processes, it may often
be important to allow for the degree of smoothness in space to differ from the de-
gree of smoothness in time. It is not difficult to write down spectral densities for
processes that allow these different degrees of smoothness and are well-behaved
at high frequencies. However, it is generally then not possible to give explicit
expressions for the corresponding covariance functions, limiting the applicability
of these models. [4] shows that there is one fairly general class of such spec-
tral densities for which the (generalized) covariance functions can be written in
terms of H functions, which are a generalization of generalized hypergeometric
functions.

Impact on DOE

This work substantially expands the scope of problems to which likelihood-based
methods might reasonably be applied to the fitting of Gaussian process models. In
addition to the environmental and meteorological applications considered by us,
Gaussian process models can be used in engineering applications such as fluid flow
in tanks and are commonly used to model the output of computer experiments
(e.g., by Katrin Heitmann at ANL and David Higdon at LANL). Our work with
ARM data illustrates the power of Gaussian process models and models based on
Gaussian processes to capture the high-frequency behavior of these data which, we
believe, will eventually lead to a better understanding of meteorological processes
at fine scales. In the long run, we hope that our connection of computational
problems and the theoretical properties of spatiotemporal models will lead to
fundamental changes in how spatiotemporal processes are modeled and in how
one addesses the computational challenges that arise in the statistical analysis of
massive spatiotemporal datasets.

Presentations

Kansas State University, Department of Statistics, 2010. Invited as part of the
ADVANCE Distinguished Lecture Series, which was supported by an ADVANCE
grant from NSF to KSU to encourage the full participation of women in academic
science and engineering.
International Chinese Statistical Association 2010 Applied Statistics Symposium,
Indianapolis. Invited talk in session Spatial Statistics and Computation.
Rietz Lecture, Institute of Mathematical Statistics (IMS) Annual Meeting, Gothen-
burg, Sweden, 2010. This named lecture is given once every three years and is
intended “to clarify the relationship of statistical methodology and analysis to
other fields” (quote taken from IMS website). Only two named lectures are pre-
sented at IMS meetings in any given year. This talk turned into publication
[1].
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Keynote speaker, International Symposium on Statistical Analysis of Spatio-
Temporal Data, Kamakura City, Japan, 2010.
Invited speaker, New Trends in Kriging, meeting sponsored by ANR Costa Brava,
Toulouse, 2011.
Invited speaker, Modélisation pour l’environnement et expérimentation numérique,
meeting sponsored by GDR MASCOT-NUM (Research Group on Stochastic
Analysis Methods for COdes and NUMerical Treatments, Paris), 2011.
Invited speaker, 2011 Joint Statistical Meetings (Miami), session on Computa-
tional and Inferential Issues in Spatio-Temporal Modeling.
University of Miami Spatial Statistics Conference, 2012. Opening lecture. This
talk turned into publication [8].
Invited speaker, 8th World Congress in Probability and Statistics, session on
Composite Likelihood Inference. Istanbul, Turkey, 2012.
Short course at 2012 ENVR Workshop on Environmetrics.
Invited speaker, 2013 Joint Statistical Meetings (Montréal), session on Compu-
tational Statistics in the Atmospheric and Oceanic Sciences.
Invited speaker, 2013 American Geophysical Union (San Francisco), session on
Closing the Loop: Integrating Socio-Economic and Climate Scenarios in the As-
sessment of Global Change Impacts.
Invited speaker, 2014 AAAS meeting (Chicago), session on Statistical Methods
for Large Environmental Datasets.
Departmental/institutional seminars at Texas A&M, University of Minnesota
(joint seminar for Departments of Statistics and Biostatistics), University of
Michigan (student-invited seminar), Northwestern University, Georgia Tech, Illi-
nois Institute of Technology, Depaul, North Carolina State University, Ohio State
University, University of Illinois, Columbia University, NCAR (two talks).

Awards

Rietz Lecturer for IMS, 2010.
University of Chicago Faculty Award for Excellence in Graduate Teaching, 2011.
Elected fellow of AAAS, 2013.
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