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First Passage Moments of Finite-State
Semi-Markov Processes

Richard L. Warr*and James D. Cordeiro*
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Abstract

In this paper, we discuss the computation of first-passage moments
of a regular time-homogeneous semi-Markov process (SMP) with a
finite state space to certain of its states that possess the property of
universal accessibility (UA). A UA state is one which is accessible from
any other state of the SMP, but which may or may not connect back
to one or more other states. An important characteristic of UA is that
it is the state-level version of the oft-invoked process-level property
of irreducibility. We adapt existing results for irreducible SMPs to
the derivation of an analytical matrix expression for the first passage
moments to a single UA state of the SMP. In addition, consistent point
estimators for these first passage moments, together with relevant R
code, are provided.

KEY WORDS: FIRST PASSAGE DISTRIBUTIONS; MARKOV RENEWAL PRO-
CESS; SPECTRAL RADIUS; STATISTICAL FLOWGRAPH MODEL; UNIVER-
SALLY ACCESSIBLE
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1 Introduction

Since the seminal works of Levy [17, 18] and Smith [26], semi-Markov pro-
cesses (SMPs) have been utilized as a framework for a wide variety of ap-
plications within the scientific literature. Much of the interest is due to the
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fact that the SMP relaxes the assumption of exponential sojourn times, yet
retains a measure of the tractability of classical continuous time Markov
chains. An area of study most frequently associated with SMPs is that of
survival analysis and reliability, for which the definitive reference is [3], and
which has been continued by the likes of [1, 5, 19] and others. Of special
note are the areas of semi-Markov decision processes and P H-distributions
[11, 28], often used in reliability, but which also appear in the context of
SMP first passage moments, as in [29]. Other areas that have seen the ap-
plication of SMP models are DNA analysis [2], queueing theory [13, 21],
finance [9], artificial intelligence [28], and transportation [4, 16], to name
but a few.

In this article, we will show the existence of and then derive the moments
of first passage to states of a SMP with a finite state space that have the
property of being accessible from every other state. We call this property
universal accessibility (UA) and note that it can be likened to a state-level
version of the property of irreducibility. This comes as a consequence of
the fact that, as we will later show, UA of every state is a necessary and
sufficient condition for irreducibility to hold. In this sense, then, UA of a
subset of states of a SMP may be considered a natural relaxation of the
property of irreducibility, which has been the standard assumption in the
work of all researchers dating from Pyke [22, 23] onwards. Rather than
being a simple generalization, we will show here that UA is, in fact, a min-
imal condition required for the existence of finite moments of first passage.
This demonstration requires an application of the Perron-Frobenius theorem
generalized to reducible matrices (and hence reducible processes) in order
to arrive at the existence of the required matrix inverse. For further de-
tails on the Perron-Frobenius theorem, and spectral theory in general, see
[7]. Although the proof of invertibility is somewhat convoluted, one gains
the advantage of being able to consider only those first passage moments
to a given universally accessible state, thus reducing the dimensionality of
the problem. In addition, the expression that we derive does not suffer the
presence of inverses of singular matrix terms. Contrast this to the situation
of Hunter [8] and later researchers, whose expressions for first passage mo-
ments involved a noninvertible matrix, thus requiring a generalized inverse
approach. Another significant advantage is that we are able to discard the
somewhat strong assumptions of positive recurrence, and thus irreducibility,
thereby increasing the class of SMPs for which a unified analytical approach
to computing the first passage moments is available.

Explicit time-domain formulas for the first two moments of the first pas-
sage distribution of a irreducible ergodic SMP with a finite state space have



long been known. Pyke [23] inverted Laplace-Stieltjes transform matrices
under restrictive non-singularity conditions in order to derive the first and
second moments. Hunter [8] repeated this analysis by means of Markov re-
newal theory, and then solved for the matrix of first passage moments M of
the SMP through multiplication of the matrix I — P by its generalized in-
verse, where P is the transition probability matrix of the embedded discrete
time Markov chain. Although the role of the fundamental matrix of the em-
bedded DTMC in solving the problem of finding the first passage moments
was recognized since at least Kemeny and Snell [10], it was Hunter [8] that
recognized its fundamental importance by proving that the fundamental ma-
trix is a generalized inverse for I — P. Some years later, Yao [27] was able
to use the generalized inverse to find all moments of first passage. Zhang
and Hou [29] likewise employed the generalized inverse method in order to
derive exact first passage moments for SMPs with phase- (P H-)distributed
sojourn times between states, thus capitalizing on the robust interest in the
reliability community for these somewhat exponential-like statistical distri-
butions. All of these previous investigations assumed irreducibility, and are
thus useful background for, though not directly applicable to the type of
reducible process that we consider here.

The remainder of the paper will proceed as follows. In Section 2, we
define notation, terminology, and assumptions that guide the remainder of
the discourse. In section 3, we introduce the notion of universal accessibility,
as well as a result that explains its relationship to irreducibility. We then
present the main result in Section 4, which is the derivation of the formula
for the first passage moments under the condition of universal accessibility.
Finally, in Section 5, we present a method for estimating the first passage
moments of SMPs and a brief example.

2 Notation and Basic Definitions

In this section we introduce the the notation used in this paper. A boldface
symbol without indices refers to a matrix (e.g., F(¢) is a matrix with elements
F,;(t) in the ith row and jth column). We will sometimes drop the function
argument for simplicity’s sake; e.g., F = F(t). In the usual way, we define
the Dirac- function as
5 — 0 ifi£j
o1 ifi=j
Additionally, we will specify that the m-dimensional square matrices I and
J denote the identity matrix and the matrix whose entries consist of ones,



respectively. Finally, the matrix binary operator ‘o’ denotes Hadamard
(element-wise) multiplication; i.e.

[AOB] =A._B..

ij (%) i "

We now define a regular time-homogeneous SMP {Z(t) : t > 0} with a
finite state space S = {1,2,...,m}. Note that the assumption of regularity
implies that the process may transition only a finite number of times in
a finite time interval with probability 1. Let Sk, & = 0,1,2,... be the
transitional epochs of the SMP and let Z; = Z(S;). We define the kernel
matrix Q(z) = [Q,;(x)] of the SMP as

Q. (x) =P{Zky1 =17, Skp1 — Sk < x| Zp =i}
:P{Zl :j, 51§$|Z():Z},

which are the joint probabilities of waiting times and transitions from state
i € S to state j € S. The transition matrix of the embedded discrete time
Markov chain (DTMC) is thus given by p = Q(c0). In addition, we define
the matrix of distribution functions F(x) = [F,;(z)] of the sojourn times in
state ¢, given that the process transitions to state j as

F

ij

() =P{S1 <z|Zy =i, Z1 = j}, (1)
with associated rth moments

e =[], e= le,;] = e, r>1

i
from which it immediately follows that

or, alternatively, as the Hadamard matrix product Q = po F'.

The similarity in behavior of an SMP to a Markov chain at transition
epochs {S; : k =0,1,2,...} is due to the classification of these transitions
as Markov renewal epochs. These are times at which the process in question
possesses the Markov, or memoryless property:

P{Zy1=jlZr =1, Zp1,..., 21,20} = P{Zx11 = j| Zr = i} .

Define the random variable Ng(t) to be the number of transitions (Markov
renewals) of the SMP into state k up to and including ¢ > 0 and let

N(t) = [Nk()]res

4



be the vector consisting of the random counting variables Ni(¢). Also define
the scalar random variable

=
m
NE
z

k=1

to be the total number of transitions, or Markov renewals, of the SMP
up to t. We thus obtain the relationship Z(t) = Zy(;), between the SMP
{Z(t) : t > 0} and its embedded DTMC {Zj : k > 0}. The vector counting
process {N (t) : t > 0} is known as the Markov renewal process associated
to the SMP {Z(t) : t > 0}.

The state properties of the SMP such as irreducibility and recurrence
may be elicited from the properties of its embedded DTMC {Z,, : n > 0}.
We say that state j is accessible from state i (i — j) if there is a nonzero
probability that {Z,} may transition to state j in a finite number of steps,
given that it begins in state i. Mathematically, this means that there is
some n € Z, such that pg_l) > 0, where

P =P{Z, =j|Z =i}.

The matrix p™ = [pl(]”)] is called the nth-step transition probability matriz.
The ijth element of the matrix denotes the probability of the DTMC tran-
sitioning from state ¢ to state j in n stages and can be computed using the
identity p(™ = p™. On the other hand, we say that state j is not accessible
from state i (denoted i - j) if pg?) = 0 for all n. There may also exist a
state 0 € S known as an absorbing state, which is to say that, for any other
state 7 € S, 0 -» j. In this case, the SMP, having transitioned to state 0,
sojourns for an infinite amount of time in this state. Many applications in
survival and reliability analysis may be modeled using stochastic processes
with one or more absorbing states. Transitioning to an absorbing state is
tantamount to death or complete failure in the original process.

If 7 and j are mutually accessible (that is, i — j and j — 4, otherwise
denoted as i <> j), then they are said to communicate. Since communi-
cation fulfills the axioms of reflexivity, transitivity, and symmetry, it is an
equivalence relation, and thus defines a partitioning of the state space S
into various disjoint communicating classes. If S is itself comprised of a
single communicating class, then the SMP is called irreducible; otherwise,
it is known as reducible. On the other hand, a nonnegative m X m matrix
A = [a;] is an irreducible matriz if, for each ¢ and j, there exists some
0 < 1 < oo such that the ijth element of A" is greater than 0. The alge-
braic and probabilistic definitions of irreducibility coincide if the irreducible



matrix is the transition probability matrix p, for then the ijth element of
pM = p7 is strictly positive if and only if j is accessible from state ¢ in a
finite number 7 of steps with nonzero probability. This last statement can
be made precise by reference to the digraph associated to A, denoted G(A).
This is the digraph with vertices in the set V(G(A)) = {1,2,...,m} such
that the directed arc, or edge, (i,j) exists if and only if a;; > 0. G(A) is
said to be strongly connected if, for each ordered pair i,j € V(G(A)), there
exists a (directed) path in G(A) from i to j. In either case of there being an
edge or directed path from 4 to j, the implication is clearly ¢ — j. The final
connection between irreducibility and connectedness is made in the following
Proposition:

Proposition 2.1 Let A be a nonnegative square matriz. A is irreducible if
and only if G(A) is strongly connected.

Proof See Shao [25].

We next address the first passage times of an SMP. To this end, define
the random variable

=inf{t > S1: Z(t)=j},j €S,

which represents the time of first passage from an initial state ¢ to state j if
i # j, and the time of first return to j otherwise. The distribution function
Gi;(t) of first passage, conditioned on being in the initial state i € S, is
defined as

G, (t)=P{T <t|Z(0) =i},
and for which the corresponding rth moments ug), r > 1, if they exist, are
given by

u? = E [Tj’“ 1 Z(0) = z} .

We thus define G(t) and p(") = [,ul(;)] to be the matrices of first passage

distribution functions and moments.

As stated in Proposition 5.15 of [24, pgl04] and Lemma 4.1 of [29], the
moments of first passage for an irreducible SMP may be computed as the
finite solution to the systems of equations given by

me RYTRESTN (3)

meﬂ Z( > ZI% e Mkj ,  r>2 (4)

k#j



Clearly, a necessary condition for uf’f) < oo is that ¢ — j, which is certainly
true if the SMP is irreducible. In contrast, we observe that G (o0) < 1
(and p,; = oo) might occur for a pair of states i, j € S if i = j. As we will
later show, (3) and (4) still hold under the somewhat weakened assumption
of universal accessibility for the terminal state j.

The recurrence properties of a SMP may be explained in terms of the
distribution of the first passage of a SMP from a given state ¢ € S back to
itself, otherwise known as the time of (first) return to a state i € S. The

crucial step is to define
fn‘ :P{N(Tz) <OO|Z0:i},

which is the probability that the number of steps required for the embedded
DTMC {Z,, : n > 0} to return to state 7 is finite. If f,, < 1, then the state
1 € S is called tramsient; otherwise, it is known as recurrent. If, in addition
to recurrence, we have u,, < oo, then the state is called positive recurrent.
The SMP itself is deemed recurrent, transient, or positive recurrent as a
process if the corresponding condition holds for every state i € S. For an
irreducible SMP with a finite state space, it is well-known that the process is
automatically positive recurrent. This is not true, in general, for a reducible
process, but may be evaluated on a state-by-state basis.

The Perron-Frobenius theorem adapted to finite-dimensional irreducible
and nonnegative matrices is very useful for characterizing the set of eigen-
values of such matrices. As we will see later, the theory may be (indirectly)
extended to even reducible nonnegative matrices by leveraging their distinc-
tive canonical form. Let A € RT"™ for some positive integer m. We define
the spectrum of A, denoted o 4, to be the set of its eigenvalues. Its spectral
radius, denoted p(A), is given by

p(A) =max{|A\|: A€ oa} €R,,

which indicates the maximum radius of the disc that contains o4 in the
complex plane. Of particular interest is the case of a finite-dimensional
stochastic matriz A, which is a nonnegative square matrix such that A1 = 1,
where 1 is a column vector of ones. Perron-Frobenius theory, via Proposition
2.4 for the reducible case, implies that the spectral radius is likewise an
eigenvalue of A, denoted the Perron root of A. Stochastic matrices comprise
the boundary of the unit ball A = {A € RT"™ : [|A[|c < 1} of finite-
dimensional nonnegative matrices in the normed linear space induced by
the infinity norm || - ||s, which is given by the maximum absolute row sum



of A=1a,], or

V)

n
[|A]|oe = miaxz la,,| = max(AL).
j=1
As the next Proposition will show, we may classify certain elements of A €

A with spectral radius p(A) < 1 as substochastic, which is to say that
0 < min(A1) < 1.

Proposition 2.2 Suppose that A € A. If p(A) < 1, then A is substochas-
tic.

Proof Clearly, since A € A, it must be either stochastic or substochastic.
Therefore the only thing that must be proved is that A is not stochastic.
Assume A is stochastic; i.e. A1 = 1. This implies 1 is an eigenvalue, which
contradicts p(A) < 1. Therefore, A must be substochastic.

For an irreducible nonnegative matrix A, it is, in fact, sufficient for A to have
a spectral radius that is strictly less than unity in order to be substochastic,
as the next Proposition shows.

Proposition 2.3 If A € RTX"L s an trreducible substochastic matriz, then
p(A) < 1.

Proof See Theorem 7 in [14].

For such reasons, among others, it is very convenient to work with irre-
ducible processes. Results for irreducible matrices (processes) may still be
applied to the reducible case via an important consequence of the mathemat-
ical notion of reducibility. From the definition given above for a reducible
matrix A, it can be shown that there exists a permutation matrix P such
that PAP~! is in upper block triangular form as follows:

Ay A o A | Ay Aipo - A
0 Ay - Ay | Ayrnr Asrio - Aoy
0 o --- A A A .. A
A~ PAP—l _ rr ror+1 rr+2 rM
0 o0 0 |Asi,n 0 0
0 0 0 0 AT+2,7“+2 T 0
0 o --- 0 0 0 o Ayu

(5)




This is known as the canonical form for a reducible matrix. The canonical
form is not unique, meaning that there may be two or more permutation
matrices P such that a matrix PAP™! is in canonical form. Its utility de-
rives from several highly useful properties, which we will now discuss. First,
the canonical matrix has the property such that every block matrix on the
diagonal, A,,, v € {1,..., M}, is either [0]1x1 or is irreducible. Moreover,
the eigenvalues of A are invariant under the permutation transformation
PAP~!. From a stochastic process perspective, we observe that transform-
ing a reducible stochastic matrix P into its canonical form is equivalent to
relabeling the state space of an associated (reducible) DTMC. The states are
organized in the canonical transition matrix P in such a way that, for some
r € Z,, the transient state transitions are represented within the diagonal
blocks A,, for 1 < v < r, while the blocks A,, for r+1 < v < M represent
recurrent-state transitions. Additionally, as shown in Equation 8.4.7 of [20],
p(A,,) < 1 for all 1 < v < r, which, by Proposition 2.3, further shows
that the first r diagonal sub-blocks of A are substochastic. The following
Proposition rounds out this list of useful properties by relating the spectral
radius of the sub-blocks of the canonical matrix to that of the entire matrix.

Proposition 2.4 Suppose A € R™*™ s a reducible matriz in canonical
form. Then p(A) = max, p(A,,) for1 <v < M.

Proof See Lemma 1 in [12, pg. 303] with an additional induction argument
to get the result or as argued in [7, pg.115].

Table 1 summarizes the important notation that we will use throughout this
paper.

3 Universal Accessibility

In this section, we introduce the property of universal accessibility of state
j € S. As we will later demonstrate, universal accessibility is a sufficient
condition for the existence of a well-defined first-passage moment to a given
state of the SMP.

Definition Let P be a stochastic process with state space S. State j € S
is said to be universally accessible (UA) if, for every state i € S, we have
1= 7.

If a proper subset of S is UA, then it is clear that the SMP is reducible. On

the other hand, if every state is UA, then all states must communicate, as
the next Proposition asserts.



Table 1: List of important symbols and notation.

n The number of states in the SMP
T The sojourn time in a state
t Calendar time, or the time since the process began
2 The probability that the next state in the process is j, given the
process entered state ¢
F,,(x) | The CDF of the waiting time distribution in state 4, given the
next transition to is state j
G,;(t) | The CDF of the first passage distribution from state 7 to state j
1 The m x m identity matrix
I(—j) | The m x m identity matrix with the ;% row and column set to 0
1 The m x m matrix of all 1s
A; The j column of matrix A
A o B | The element-wise product of two matrices
ez(;'.) f‘rrdFij’ € = 61(31')
:uz(;) fdeGijv Hij = /%(31‘)
p(A) | The spectral radius of the matrix A
HAHOO The infinity norm of a matrix

10



Proposition 3.1 A SMP {Z(t) : t > 0} with state space S is irreducible if
and only if every j € S is UA.

The property of a state being UA is, in a sense, the minimal requirement for
the existence of all first-passage moments. In the next section, we demon-
strate the sufficiency of this condition by means of the Perron-Frobenius
theorem applied to the canonical form of the reducible transition probabil-
ity matrix of the embedded DTMC.

4 Moments of first passage time distributions

In this section, we derive a formula for determining the first and higher
moments of first passage times in reducible SMPs to special states j that
are UA. We begin with a technical result that will be needed in the proof
of Theorem 4.2 to demonstrate that the matrix formula for the moments of
first passage to a UA state j € S is well-defined. For notational convenience,
define I(—j) to be the identity matrix with the jth diagonal element set to
zZero.

Lemma 4.1 Let {Z(t) : t > 0} be a SMP with finite state space S and
embedded DTMC at transition epochs with transition probabilities contained
within the (stochastic) matriz p. Then the matriz [I — pI(—j)] is nonsin-
gular if and only if state j € S is universally accessible (UA).

Proof We begin with the observation that, since A = [A,.] = pI(—j) is
formed by setting each element of the jth column of p to 0, we essentially
remove all directed arcs (7,7) in the digraph G(p) for each i € V(G(p)) in
order to produce G(A). This means that G(A) cannot be strongly connected,
and thus A must be reducible. We may therefore assume that A is in
canonical form (5). Furthermore, because the j* column is zero, we will
assume without loss of generality that the canonical form of A corresponds
to the particular ordering of the states in § in which state j is re-designated
as state 1. We impose the same permutation and partitioning on p = [p,]
so that

A, = (6)

pur if (k) €{1,..., M} x{2,3,..., M},
0 if(v,k)e{l,...,M}x {1},

where, as in (5), M is the dimension of A. Notice that since p may be irre-
ducible, the above does not necessarily imply that p can be put in canonical
form, but rather is element-wise equivalent to A, save for the first column,

11



which, unlike that of A, may contain positive entries. Stated succinctly, we
have that
O:Aylgpyl, V:L...,M.

Assume that [I — A] is nonsingular, which directly implies that 1 ¢ o 4;
that is, 1 is not an eigenvalue of A. Since p is a row-stochastic matrix, and
because of the equivalence given in (6), the Gerschgorin Circle Theorem
(see [20, Eqn. 7.1.13]) indicates that the spectral radius 6 = p(A) < 1.
Furthermore, the nonnegativity of A permits the use of Equation 8.3.1 of
[20] to then assert that the Perron root 0 < ¢ < 1 exists. However, since
we have shown that 1 ¢ o4, it must then be the case that 6 < 1. This
implies by Proposition 2.4 that p(A,,) < 1 for all v € {1,...,M} and
hence, by Proposition 2.3, each diagonal block A,,, v € {1,..., M} must
be substochastic.

We now consider the vth diagonal block in the canonical form of A,
where v € {2,..., M}, and proceed to show that each state i associated to
the vertex set V(G(A,,)) can access state 1. Because p is a row-stochastic
matrix and A,, is substochastic, either or both of the following may hold:

L. Du1 7é 07 or
2. A, # 0 for some Kk > v.

For 1), p,1 # 0 indicates the existence of states i, € V(G(A,,)) (with i, =1
possible, but not necessary) and 1 € V(G(A;1)) for which there is a directed
arc (iy,1). Moreover, the irreducibility of A,, gives a directed path from 14
to 7,. We thus obtain

T =1, — 1.

In other words, there is a directed path from ¢ to 1.

If 2) holds, there exists a directed arc from some state i, € V(G(A,,)
(again, with the possibility that i, = i) to a state i, € V(G(Akx)). From
here, we are again confronted with choices 1) and 2). If 1) holds, then
the previous argument gives us a directed path from i, to 1. Since the
irreducibility of A,, implies the existence of a path from 4 to i,, we have
the accessibility chain

T —> 1y, — 1 — 1,

and we are done. Otherwise, we proceed to the next diagonal block following
A and continue until v > r. If v > r then the process is in a state i, €
V(G(Ayy)). The only choice here, due to the this block being substochastic,
is 1); that is, p,1 # 0, for which we have already demonstrated the existence

12



of the connection i, — 1. Each of the preceding paths may then be combined
to form a single directed path from an arbitrarily selected i € V(G(A,,)) to
1 so that

T— 9 —> 0 > — iy — 1.

Thus, state 1 is UA.

For the reverse implication, we will assume that state 1 is UA, and then
proceed to show that [I — A] is nonsingular. The reducibility of A allows
us to assume that it possesses canonical form and, furthermore, that each
submatrix on the diagonal of the canonical matrix corresponding to A is
irreducible or zero. Consider an arbitrary nonzero, and hence irreducible,
diagonal submatrix A,, for some v € {2,..., M} (recall that A;; = 0 by
definition of A). By the assumption that state 1 is UA, there must be a
directed path from each state in the vertex set V(G(A,,)) to 1, which in
turn implies that A,, is substochastic. By Proposition 2.3, p(A,,) < 1.
Using this fact, and the fact that the spectral radii of the zero submatrix
blocks are 0, we may invoke Proposition 2.4, to state that p(A) < 1. Hence,
[I — A] is nonsingular, which completes the proof.

For the following main result, we will show, using Lemma 4.1, that state j
being UA is sufficient to derive a closed-form analytical expression for the

rth first passage moments p(" = {ug)}, for » > 1 and for any given state
icS.

Theorem 4.2 Let {Z(t) : t > 0} be a regular, time-homogeneous SMP with
a finite state space S. Further suppose that j € S is UA. Then the rth

moments of the first passage times from all states i € S to state j contained
in the m-vector (m = |S|)

p) = [u(”}m , r>1,

W li=1

are solutions to the system of equations given by
pj =l = I - pI(—j)] ™ (poe)l, (7)
i =1 - pI(—j)]™"

(P o e(r)) 1+ :z: (Z) [(p o e(r_s)) ((J —1I);o0 uﬁs))}

X , if r>1,

(8)

where 1 is a column vector of ones and the scalar entries ,ul(jl) and ug) for
r > 2 are defined as in (3) and (4), respectively.

13



Proof We first show, using induction on the rth moment, r > 1, that
the system of equations (3) and (4) give a valid relationship between the
first-passage moments to a given state j that is UA. For the mean time of
first passage given by the system (3), we observe the following at the first
transition epoch S7 of the SMP:

1. i -» kat S1 = the corresponding kth term drops out of the expression,
and

2.9 — kat S1 = i and py; are well-defined, the latter because j is
UA.

We thus conclude that a first-step analysis founded upon the state of the
SMP at the first transition epoch S; (c.f. Proposition 5.15 of [24, pg104]) still
holds for a terminal UA state j. Next, for the induction step, we consider
expression (4) for the (r+1)th moment, where r > 1. We likewise claim that
the original renewal argument given in Lemma 4.1 of [29] for the derivation
of (4) for the rth moments of first passage is valid. In order to see this, we
rewrite, for i € S, expression (4) as

(r‘+1 Zpk [ MI(;;H) +Mf£+1) + M, (9)

where
,
r
=30 (1) [ St
s=1 k#j

The inductive hypothesis and items 1) and 2) above guarantee that M, is
well-defined while the remainder of (9) is in exactly the same form as (3),
which has just been shown to have a finite solution via the base step.

Thus, for arbitrary ¢ # j, where i € S, we may transform (3) into the
equivalent matrix expression

p=uyl=p((J=T)op)+(poe)J .

In this form we are not able to solve directly for w, but, under the assumption
that j is a specific UA state in S, it is possible to solve for the j** column
of p, which we denote as p;. We then obtain,

pi=p[((J—Dop)], +(poe)l .
Next, we isolate (p o e)l so that

wi-p[((T-Dow), - (poe)t .
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Factoring out p; gives
[ —pI(—j)lpuj = (poe)l
which allows us to finally solve for p; as

=[I—pI(—j) " (poe)l .

By Lemma 4.1, the matrix I — pI(—j) is nonsingular. This proves that (7)
is, indeed, well-defined.

A general formula for the rth moment, where r > 2, is given in Lemma
4.1 of [29] as

=>4 3 () | S|
s=1

k#j

which is expressed in matrix notation as

W) = (poet )J+Z< ) [(poe™) (7 - Dou)]

Solving for the j** column gives

W = (poct )1+Z( ) [(poe<r—s>) (-1 ou<s>)j] |

Using e(®) = J (the identity under the Hadamard product), we extract the
rth term of the summation to obtain

uy)—p [(J—I)ou(r)} (poe )1—1—2( > [(poe )> ((J—I)Oﬂ(s))]} .
We further observe that
W =p [T =Dou?] = —pI)uf’.

which gives
(I = pI(-j) u” = (poe?) 1+Z ( ) [(p 0e™) ((F-1)0 W)J '
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Finally, we solve for ug-r) to obtain

W) = 11— pT(—)” [ (poe) 13 (1) [(poet) (170, 007)] ] |
s=1

As argued in the proof of formula, (7), the inverse [I — pI(—j)]" exists.
Hence, (8) is likewise well-defined.

We next investigate some statistical aspects in using Theorem 4.2 to estimate
the first passage moments to universally accessible states in a SMP.

5 Estimation

In this section we will derive consistent estimates for first passage moments
in SMPs. Since the SMP {Z(t) : t > 0} is time-homogeneous, we assume
without loss of generality that Z(0) =i € S. If we observe the SMP for a
period of time 7' > 0, then, for any j € S, we may then define the point
estimators p;; for the probability and ég) for the rth moment of the sojourn
time of the SMP as it transitions from i to j as:

) _ 1 r .
S e’ U d wk,  BLI€ES,
kes "k Y og=1

N N
Pij =

n;; = Number of observed transitions from state i to state j by time T,

TijK = K™ observed sojourn time from state i to state j by time 7.

We further assume T is large enough so that at least one transition from ¢
to j has been observed; in other words, n;; > 1. In order to make inferential
hypotheses using these estimators, it is useful to first show that they are
consistent. A point estimator én is said to be consistent if it converges in
probability to the true population statistic 8 as the sample size n increases;
that is, for each ¢ > 0,

lim P <|én -0 < e) =1.

n—oo

This condition is written in shorthand as
b, 5 6.
We now show that this condition holds for the matrix estimators p = [p;;]

and é = [é;;].

16



Lemma 5.1 The matrixz estimators p and € are consistent.

Proof Let {X,} be a sequence of Bernoulli random variables such that
X, =1 when a transition from ¢ to j occurs at the nth transition, and is 0
otherwise. Accordingly, if N > 0 transitions are observed in the time interval
(0,T], then the estimated probability of transition from i to j becomes

| X
Pij = 7 > X,
n=1

with the following equivalences

N
N = Znik, Ni; = ZXn
n=1

keS

The Markov property at transitions of the embedded DTMC of the SMP
implies that the X,, are independent and identically distributed (i.i.d.) ran-
dom variables. Hence, by the Weak Law of Large Numbers (see Theorem
5.5.2 of [6, p.232]), we have

. P

Dij = Pij>
which demonstrates consistency.

Likewise, we see that the x;;, are independent of ;;x, so long as K1 #

K5. Thus, the collection {%K}Z”:l is i.i.d. By the same reasoning as above,
we obtain the convergence in probability

. P
€ij — €is
Hence, the é;; are consistent.

We are now in a position to define the estimators of the rth moments of
first passage from state ¢ to state j € S. By replacing p and e with the
matrix estimators p and €, respectively, in formulas (7) and (8), we obtain
the natural estimators

fr = I —pI(—j)]™" (Poé)J;, (10)
) =11 - pI(—j) "

(pe) 3 5 (1) [oe2) (7 o)

X

As expected, estimators (10) and (11) are also consistent.
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Lemma 5.2 For a state j € S that is UA with respect to the digraph G(p),
(r)

the estimators [Lj , r>1, are consistent.

Proof By Theorem 2.1.4 in [15, pg. 51], a continuous function of consistent
estimators is itself a consistent estimator. By Lemma 4.1, and the assump-
tion that j is UA with respect to G(p) (i.e., every state in S is linked to the
state j in the digraph of p) we may assert the existence of [I — pI(—j)]™" .
The remainder of the terms in (10) and (11) are linear, and hence continu-
ous. We thus conclude that ﬂy), for moments » > 1 and for each UA state
j € 8, are consistent estimators.

In this section we proposed consistent estimates for first passage mo-
ments of SMP. These estimates can be obtained if sufficient data is collected
from observing the process.

6 Example

We give an example of an SMP and show how the first passage moments
can be estimated. Therefore, given the process depicted in Figure 1 we have
3 transition distributions and a probability p. We will calculate the first
passage moments using the direct transition moments, e.

Fap) AP\

Good Health Diseased Death

Figure 1: An example SMP of a medical patient.

To begin we have

01 0 0 e2 O
p=|p 0 1—p ande= | ey17 0 e93
0 0 1 0 0 €33
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Therefore

-1

1 0 0 0 0 0 e12 0 1
n3 = 01 0f—-1|p 0 pear 0 (1—p)eas 1
0 01 0 0 0 0 €33 1

1
0
0
1 —1 1 0 €12
=——1|p 1 0 pear + (1 —p)eas
00 1—p €33
1
i peia+pear + (1 —p)eas (12)
—p
(1 —p)ess

Looking closely at the values in Equation 12 we see they are logical. As
p gets small we see 13 — e12 + ea3 and o3 — ez3. This simple example
demonstrates the theory discussed earlier; how even for large systems finding
the first passage moments is only constrained by the computational burden
of computing the inverse of I — pI(—j).

If numerical values are substituted then numerical computer programs
can handle these types of problems with relative ease. Now suppose we have

0 1 0 0 6 0
p=1]08 0 02 | ande=| 0.7 0 1.1
0 0 1 0 0 O

We get the following result

33.9
H3 = 279
0

The R-code for this example is included in the appendix. The methods
presented in this paper provide a fairly comprehensive method to determine
the first passage moments of a SMP.

7 Conclusion

In this paper we devised an exact time-domain approach to derive the mo-
ments p,; of first passage time distributions in irreducible or reducible SMPs,
given that the terminal state j fulfills the conditions of universal accessibility.
Beyond the expanded generality of this method, it also has the advantage of
obtaining the solution of first passage moments to only single UA states 7,
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rather than to all states, thereby reducing the computational load, particu-
larly for large SMPs. We have also demonstrated the existence of consistent
point estimators for the first passage moments of processes that may be
modeled as SMPs.
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A R-code

First_Passage_Moments <- function(j,p,E) {

# j is the state in the process of interest

# p is the transition probability matrix

# E is a list of r matrices containing 1st, 2nd,...,rth moments

# The output of this function is a list of vectors of first
passage moments

#checking for valid inputs
if (!is.list(E)) {stop("E must be a list of matrices")}
r <- length(E)
tl <- prod(c(unlist(lapply(E,is.matrix)),is.matrix(p)))
if(t1 != 1) {stop("p must be a matrix & E a list of matrices")}
n = unique(c(dim(p) ,unlist(lapply(E,dim))))
if ((n<2)==1 || length(n)!'!'=1) {
stop("p & the matrices in E must be nxn w/ n>1")}
W = prod(c(cbind(p) ,unlist(E))>=0)
if(is.na(W) || w!=1) {
stop("p & E must have valid nonnegative entries")}
j <- as.integer(j)
if (' (sum(j == 1:n))) {stop("j is not a valid state")}
if () (prod (ph*%rep(1l,n)==1)))
{stop("p is not a stochastic matrix")}

#calculating the first passage moments

J=rep(1,n); I=diag(n); Id=I; Id[j,j]=0
result <- vector("list", r+1); result[[1]]=rep(1,n)
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inv_matrix = solve(I-p%*%Id)
for (i in 1:r) {
result[[i+1]]=0
for (k in 0:(i-1)) {
result[[i+1]] = result[[i+1]] +
(choose (i,k) *p* (E[[i-k11))%*%(((J-I) [,j]) "k*result[[k+1]11)

}

result[[i+1]] = inv_matrix¥*xY%result[[i+1]]
}
return(result[2: (r+1)])
}

p <- matrix(c(0,1,0,.8,0,.2,0,0,1) ,nrow=3,byrow=T)
E <- matrix(c(0,6,0,0.7,0,1.1,0,0,0) ,nrow=3,byrow=T)
L <- list(E)

First_Passage_Moments(3,p,L)
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