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Evaluation of Deblur Methods for Radiography  

Wm Monty Wood, P-23 

Introduction 

Radiography is used as a primary diagnostic for dynamic experiments, providing time-
resolved radiographic measurements of areal mass density along a line of sight through the 
experiment.  It is well known that the finite spot extent of the radiographic source, as well as 
scattering, are sources of blurring of the radiographic images.  This blurring interferes with 
quantitative measurement of the areal mass density.  In order to improve the quantitative utility 
of this diagnostic, it is necessary to deblur or “restore” the radiographs to recover the “true” areal 
mass density from a radiographic transmission measurement. 

Towards this end, I am evaluating three separate methods currently in use for deblurring 
radiographs.  I begin by briefly describing the problems associated with image restoration, and 
outlining the three methods.  Next, I illustrate how blurring affects the quantitative 
measurements using radiographs.  I then present the results of the various deblur methods, 
evaluating each according to several criteria.  After I have summarized the results of the 
evaluation, I give a detailed account of how the restoration process is actually implemented. 

Effects of Blurring on Quantitative Image Evaluation 

To aid in the quantitative evaluation of radiographs, a 
"wedge" of known material thickness is typically included 
in every experiment, to provide an in situ "transfer function" 
as a scale to determine the areal mass density of the 
unknown, experimental object in the radiograph.  The cross-
section of such a transmission wedge is illustrated in Figure 
1.  (The dimension into and out of the paper is extended; 
hence, I label this the “prism wedge.”)  The most important 
aspect of this design is that opposing sides of the wedge 
have different slopes; i.e. the length scale over which the 
areal mass density changes is different for different sides of 
the prism.  Using a synthetic radiograph of this type of 
prism wedge, one can see immediately the problem that 
blurring introduces into the quantitative analysis of the 
radiographs. 

In Figure 2 I show the transmission “measured” from a 
synthetic radiograph of the prism wedge.  The blurring of 
the synthetic radiograph was created to mimic the blur 
imposed in an actual radiograph.  The differences in measured transmission between the “steep” 
and the “shallow” slopes for identical thickness of the wedge illustrate the fundamental problem 
which the blurring introduces into a radiographed image.  The measured transmission value of a 
feature depends fundamentally on the length scale associated with the feature.  In other words, 
the blurring of the image limits the utility of the radiograph as a quantitative tool in identifying 
the areal mass density associated with a given transmission.  In order to rectify this situation, it is 
necessary to “restore” or “deblur” the image data. 

 

Figure 1:  Design of “Prism” 
transmission wedge for in situ 
measurement of transfer function. 
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The Deblur or “Restoration” Problem 

The basic problem of deblurring can be demonstrated with the following equation1.  If the 
image is denoted by I, the actual object denoted by O, the blurring Pont Spread Function or 
"PSF" denoted by P, and the noise in the measured image denoted by N: 

I =O!P + N  (1) 

This describes the resulting image as the convolution of the object with the blurring function, 
with noise added.  Written in this way, the problem assumes that the blurring within the image is 
the same at every point of the image.  Mathematically, this quality is called "stationarity," and 
the process is referred to as a "stationary blurring" process.  For the methods of deblurring 
evaluated herein, I am assuming a stationary blur process.  It can be shown easily that the 
blurring of the radiographs is not stationary; however, it is worth seeing how well the assumption 
can help us. 

In fourier space, the relationship between the fourier transforms of the various components is 
simpler: 

 

Figure 2:  Comparison of measured transmission values through the Prism test wedge versus designed 
value for the two different slopes. 
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 !I = !O i !P + !N  (2) 

Here, the tilde over the letter indicates the fourier transform.  Written in this way, the solution 
seems clear – simply divide the transform of the measured image by the transform of the PSF, 
and the resulting image will be the transform of the object.  However, the noise term is the 
problem.  Typical PSFs are peaked around low frequencies, and become very small at high 
frequencies.  As a result, the fourier division results in a disproportionate enhancement of the 
high-frequency noise, and the result is, typically, unuseable.  This is at the heart of the deblur 
problem:  how to deblur an image to get useful results, while controlling the noise. 

Three Restoration Methods to be Evaluated 

The three methods of deblurring which I will evaluate have all been used at some point in the 
standard suite of analysis tools.  I will refer to them as follows: 

FQ + δ:  Fourier Quotient with Delta Noise Control 
LFQ (for “Lutz Fourier Quotient”):  Fourier Quotient with Frequency Cutoff  
Tik:  Fourier Quotient with Tikhonov Regularization1 
 

The first of these, FQ, can be described with the following equation: 

 
!O =

!I
!P + k  (3) 

Here, k is a constant, whose effect is to add a Dirac δ-function to the PSF.  The noise is 
controlled by the magnitude of k.  The division represents a point-by-point division of the 2D 
data in fourier space. 

The second method, LFQ, uses a constant to control the noise in a slightly different way: 

 
!O =

!I
! !P (k)  (4) 

Here, the constant k is used to make the frequency content by greater than (or less than) a fixed 
value: 

 

!!PRe( f ) =

!PRe( f ) : !PRe( f ) > k
k        : 0 < !PRe( f ) < k
!PRe( f ) : !PRe( f ) < "k
"k      : 0 > !PRe( f ) > "k

#

$

%
%

&

%
%

'

(

%
%

)

%
%

 (5) 

Note that, in general, we are working with symmetric PSFs, so the transform is real.   Essentially, 
the value of the transform is cut off at some minimum absolute value, while the positive/negative 
behaviour is preserved.  Again, the magnitude of k determine the amount of noise control. 

Finally, the third method (Tik) is expressed in the following way: 
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!O =
!P* !I

!P
2
+ k !H

2

 
(6) 

In this expression, the P* represents complex conjugation, and the H is a high-pass filter.  As 
with the other expressions, k expresses the noise control.  (One can picture the effect of the high-
pass in the denominator becomes, effectively, that of a low-pass in the overall equation.)  Note, 
also, the similarity in appearance of this last expression to that of a Wiener filter. 

Requirements 

In order to be considered as a candidate for deblurring data for quantitative evaluation, 
several requirements must be met.  These are the following four items, and these are the four 
things which I will use to evaluate the methods. 

 

Consistency 

When deblurring a scene, the values obtained for areal mass density after processing should 
be insensitive to the chosen noise control parameter, k. 

Noise Control 

Obviously, the chosen method must enable control of the noise amplification inherent in the 
deblur process.  In other words, the resulting, deblurred image must be useable. 

Edge Restoration 

The deblurring method should be able to deblur the image of an edge, and result in a better 
Modulation Transfer Function. 

Accuracy 

Finally, the image resulting from the deblur must represent accurately the actual data. 

Images for Use in Evaluation 

  For evaluating the first two requirements of Consistency and Noise Control, I will use the 
data from Gemini shots 1625-1631.  These data include all the parts for the “standard analysis:”  
a flat field, a rolled edge, and the scene to be deblurred, which in this case is a Ta step wedge.  
Images of the step wedge (both synthetic and measured,) are shown in Figure 3.  For the other two 
requirements, i.e. Edge Restoration and Accuracy, I will use two synthetic data images, Test 
Object 1 (TO1) and Test Object 2 (TO2,) illustrated in Figure 4.  The square sections in the step 
wedge at top and bottom of TO1 have the same transmission values, but are arranged differently.  
These transmission values correspond roughly to those from the actual data Ta wedge.  In 
addition, I have included a smaller step wedge which is placed at different positions within the 
image. 
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Appearance of Restored Images 

To give an idea of the appearance of the restored images, and how the noise control appears 
visually, I present a series of restored images.  In Figure 5 I show a section of the raw, blurred 
image, as well as three deblurs with low, medium, and high noise control, using the Tikhonov 
method.  One can readily see the characteristic mottling associated with the deblur, as well as the 
“ringing” at the edges.  In addition, it is clear that there is a trade-off between the “sharpness” of 
the image, and the amount of noise control.  This type of appearance does not depend on method. 

 

Figure 3:  Measured radiograph of Ta step wedge, for evaluating deblur methods. 

 

 

Figure 4:  Synthetic Radiograph “Test Object 1” on the left, and  “Test Object 2” on the right, not blurred, for 
evaluating deblur methods. 
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Consistency 

The first test for evaluating the restoration techniques is that of consistency.  Using each 
restoration method, the image is restored, using several values for the noise control constant.  
The region where each step wedge segment shows within the image is defined, and the mean and 
variance of the pixel transmission values is measured in the region.  This is done for wedge 
values “0” (outside the wedge) through “10,” the thickest wedge segment.  These values are then 
plotted to illustrate the consistency (or lack thereof) in the values obtained for each wedge 
segment transmission.  Without any a priori knowledge of the transmission, these values must be 
consistent between deblurred images. 

FQ + δ 

The first method, FQ+δ, yields the results shown in Figure 6.  Because the addition of the δ-fn 
results in a change of the effective normalization of the PSF, the resulting restored image is 
multiplied by a constant to bring the value of the un-attenuated beam up to 1.0, or 100% 
transmission.  This improves the results.  In the “post-norm” results, the values from the raw data 
are also graphed.  One can see readily the effects of the noise control; the variance of each step 
value diminishes as the noise is controlled.  The variance of the step transmission values, 
averaging across different noise control constants, is larger than the variance of the measured 
raw step value variance, for the thicker wedge steps.  This means that the deblur technique 
cannot produce consistent quantitative values in the deblurred images. 

 

 

Figure 5:  Various levels of noise control in deblurring using Tikhonov method.  From left to 
right, and top to bottom, raw blurred image; deblurred image with low noise control; deblurred 
image with medium noise control; deblurred image with high noise control. 
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LFQ 

The second method, LFQ, yields the results shown in Figure 7.  For the same reasons as for 
the FQ+δ method, the resulting restored image is multiplied by a constant to bring the value of 
the un-attenuated beam up to 1.0, or 100% transmission.  Again, this improves the results 
dramatically.  As the noise control parameter is increased, the measured step value variance from 
the image decreases.  Again, when the step transmission values are compared for many noise 
control values, the variance of this average cannot be made smaller than the measured variance 
from the image in the thicker steps.  Again, this method does not pass the consistency test for 
quantitative image deblurring. 

 
 
 

 

Figure 6:  Comparison of wedge transmission values for FQ+δ restoration method.  First graph shows 
values after direct deblur, with the variance associated with each value plotted along the log axis on the 
right.  Bottom graph shows results after a “post-renormalization” procedure is applied, as well as the 
values obtained from the raw image with no processing.  In addition, the variance across average step 
transmission values for different “k” (after the post renormalization) is shown. 
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Tik 

The final method, Tik, yields the results shown in Figure 8.  Because both of the previous 
methods were subjected to a post-renormalization, the Tik results are, also.  In this case, the 
improvement is minimal.  The variation of the average values for different deblur constants is 
significantly less than the variance within each step, and is less than about 1%, except for the 
thickest step, which is 2%.  This result does not change significantly for high pass filters of the 
form (1 – (Hamming Window)N) across a wide range of “N” values.  A visual demonstration of 
this consistent convergence is shown in Figure 9, where I plot overlaid lineouts through the TO1 
step wedge for different values of the noise control parameter, k.  The reduction in noise is clear, 
as well as the consistency of the average across the wedge step. 

 

Figure 7:  Comparison of wedge transmission values for LFQ restoration method.  First graph shows 
values after direct deblur, with the variance associated with each value plotted along the log axis on the 
right.  Bottom graph shows results after a “post-renormalization” procedure is applied.  In addition, the 
variance of the average values for different “k” is shown. 
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It is interesting to note, however, that when I use the “trivial” high-pass filter which is 
constant, i.e. it passes all frequencies, the results are almost identical to those found using LFQ;  
this is illustrated in Figure 10. 

 

 
 
 

 

Figure 8:  Comparison of wedge transmission values for Tik restoration method.  First graph shows 
values after direct deblur, with the variance associated with each step value plotted along the log axis on 
the right.  Bottom graph shows results after a “post-renormalization” procedure is applied.  In addition, 
the variance of the average step transmission values for different “k” is shown. 
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Figure 10:  Comparison of wedge transmission values for Tik restoration method, using the “trivial” High Pass 
filter.  First graph shows values after direct deblur, with the variance associated with each value plotted along the 
log axis on the right.  Bottom graph shows results after a “post-renormalization” procedure is applied.  In addition, 
the variance of the average values after the renormalization is shown. 

 

Figure 9:  Lineouts of TO1 wedges for various values of noise control parameter in Tik Deblur. 
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Noise Control 

The second test of the quality of the restoration method is the control of the noise.  Again, 
each method is evaluated below. I present, first, a few images that show the actual noise present 
in the images. 

Noise figure in the Images 

In Figure 11 I show the comparison between the frequency power spectra of a raw edge 
image, compared to a flat-fielded image.  The raw image appears to display a significant amount 
of the frequency information associated with the actual edge.  The flat-fielded data appears to 
have had much of this information “washed out” by the noise within the figure.  Note 
particularly that in the direction along the edge, the power spectrum is significantly lower in the 
raw image, whereas the spectrum at high frequencies is commensurate in both directions for the 
flat-fielded image.  This indicates that the actual noise spectrum is dominating at the higher 
frequencies (as one would expect.)  In Figure 12, I show similar data for the synthetic edge 

images.  It appears that there is a more complex shifting of the energy through the frequency 
spectrum.  In general, however, it still appears that in flat-fielding the image, (in this case going 
from the green curve to the red curve,) the noise figure dominates the power spectrum as one 
moves towards the higher frequencies.  It also appears that my noise estimates are, perhaps, a bit 
conservative for the synthetic images. 

These comparisons of the autocorrelations suggest that it might benefit the analysis if the 
detector response were measured with low noise in a different way than through a flat-field 
procedure, and thus reduce the noise introduced into the data.  For example, it might be worth 
averaging a number of flat fields together, or perhaps measuring the detector/CCD system 
separately using different methods. 

 

Figure 11:  Comparison of autocorrelation line-outs for data image.  Black curve is for the raw (de-starred and 
background subtracted) image; red curve is for the flat-fielded image.  Left shows the frequency power spectrum 
“across” the edge; right shows the spectrum “along” the edge.  Image power normalized to 1.0. 
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FQ + δ 

Referring again to Figure 6, the increasing value of the noise control constant does, indeed, 
reduce the value of the variance associated with each wedge step.  However, even using a 
constant that begins to degrade the larger wedge step values (before renormalization,) the 
variance is significantly larger than that associated with the raw data.  It is important to note that, 
within  the raw data, the edges of the step region exhibit a significant curvature away from a 
constant value, so the comparison of the noise figure is actually, perhaps, worse than the graph 
indicates. 

LFQ 

Referring to Figure 7, the noise control appears to be a little bit better than that that afforded 
by the first method.  At the largest values of the noise control constant, i.e. those equal to 1.0 or 
above, the noise figure remains identical, and is actually the same as the raw data. 

Tik 

Looking again at Figure 8, it is seen that, using this method, the noise control is clearly much 
better than either of the other two methods.  In addition, though not shown on the graph, further 
increase of the control constant brings the value of the variance down, without sacrificing the 
consistency of the wedge step value, up to a control constant value of 10 (this is as far as I have 
tested.) 

 

Figure 12:  Comparison of autocorrelation line-outs for synthetic edge image.  Black curve is for the simple edge; 
blue curve is for the blurred edge; green curve is the blurred and “detected” image with noise added; red shows the 
line-out for the flat-fielded image.  Left shows the frequency power spectrum “across” the edge; right shows the 
spectrum “along” the edge.  Image power normalized to 1.0. 
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Edge Restoration 

In order to evaluate the performance of the restoration techniques with a rolled edge, I 
consider both the actual data, and an ideal edge from the synthetic data.  For both cases, I 
compare the actual lineout across the edge, as well as the MTFs for a series of deblurred images.  
In this section, all the techniques are presented overlaid upon each other. 

Data Edge Restoration:  Shot 1629 

Edges 

In Figure 13, I show lineouts of restrored edge, using the various techniques outline above.  It 
is clear that the edge itself is significantly sharper in each case, but there is also an overshoot on 
the high side, and an undershoot on the low side.  The other oscillations are due to the left-over 

 

Figure 13:  Reconstructed edges and original edge for different restoration techniques and noise control parameters. 

 

Figure 14:  Modulation Transfer Functions from the edges reconstructed in Figure 13. 
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noise from the noise-control of the restoration.  Part of this can be reduced by smoothing (which, 
in fact, makes the edge less steep,) but the overshoot problem remains. 

Modulation Transfer Functions 

In Figure 14 I show the Modulation Transfer Functions, or MTFs, associated with the edges in 
Figure 13.  Note that the edge which shows the least overshoot is that restored using the FQ + δ 
method, and this has apparently the worst MTF.  The other edge restorations all have MTFs with 
a notable "corner" as they turn away from 1.  Based on the standard interpretation of the MTF, 
the deblurred images display better resolution than the blurred image. 

Synthetic Edge Restoration:  Hard Edges 

Edges 

Using an appropriate high-pass filter in the Tikhonov regularization, I see again the 

consistency; as the noise is controlled more, the value of the edge away from the transition 

 

Figure 15:  Reconstructed synthetic edges compared to the original, blurred, edge using a (1 – Hamming50) high 
pass filter, for different noise control parameters. 

  

Figure 16:  Reconstructed synthetic edges compared to the original, blurred, edge using a Wiener high pass filter, for 
different noise control parameters. 
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settles to a ‘limiting’ value, both at the transmissive side, and the non-transmissive side of the 
edge.  To tie the choice of high pass to other, perhaps more familiar, methods, I have followed 
the condition described by a “Wiener” filter for one of the restorations. 

In Figure 15 I show lineouts of the reconstructed, synthetic edge, for several noise control 
strengths, using a (1-Hamming50) high pass filter.  Note that, both on the transmissive, and on the 
obscured side, the transmission values have the same mean, and the variance depends on how 
tightly the noise is controlled.  The high transmission is 0.972, and the low transmission is 0.028.  
The reason these are not 1.0 and 0.0, respectively, is that there is a “room glow” in the image, 
which is an additive constant background that is proportional to the total exposure of the scene.  I 
will discuss this further in the next section. 

In Figure 16 I show lineouts from a similar edge deblurring, using a Wiener filter with 
differing strengths of noise control.  The actual edge slope in the restoration is higher using the 
Hamming window. 

Modulation Transfer Functions 

In Figure 17 and Figure 18 I show the MTFs associated with Figure 15 and Figure 16 .  Note that, 
using the Hamming-type window, the MTF is near 1.0 out to a higher frequency.  This is 
reflected in the better steepness of the reconstructed edges, as more frequencies are kept in the 

 

Figure 17:  MTFs associated with the edge restoration above in Figure 15. 

 

Figure 18:  MTFs associated with the edge restoration above in Figure 16. 
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deblurred image.  One can see in the MTF of the original edge that the “noise figure” turns on at 
a frequency of about 0.09 /pixel.  This represents visually the point where the spectrum of the 
noise overtakes the frequency spectrum of the signal of interest.  It is this cross-over point which 
is used in defining the Wiener filter. 

It should be noted that, using the Wiener filtration, one can actually extend the MTF 
significantly past the 0.09/pixel frequency.  This comes, however, at the expense of significant 
noise in the image.  In evaluating images, this cross-over point is an indicator of the useful 
frequency content of an image.  

Accuracy 

In order to test the ultimate accuracy of the deblurring methods, it is necessary to create a 
synthetic blurred scene which captures the salient features of blurring of the actual data from a 
radiograph.  Towards this end, I have created a set of "Test Objects," the details of which I 
describe in a separate document.  Beginning with a scene of known transmission, the scene is 
blurred to accurately reflect the image formation process.  Then, using the tools and methods 
which are used in actual data collection, i.e. measurement of a rolled edge in the object plane, as 
well as flat fields with nothing in the object plane, I deblur the resulting image, and compare the 
transmission values obtained to those in the un-blurred image.  Note that, because both the (FQ + 
δ) and the LFQ methods do not display the necessary consistency to serve as candidates for 
restoration, I only describe the results for evaluation of the Tikhonov method. 

Another issue which bears comment is that of “room glow,” or a constant background due to, 
presumably, some scatter source.  Evaluation of wedge transfer curves all show a need to have 
some background subtracted.  Implicitly, I have assume that there is a constant background, and 
that this background is proportional to the total exposure of the scene.  (This assumption of 
proportionality to the exposure recorded in the image is reasonable, since the collimation limits 
the exposure anywhere near the detection system to gamma rays that pass through the detector, 
or through the cone defined by the source and the illumination of the detector.) 

Test Object 1:  Large Wedge 

Using TO1, I explore the ability to obtain the original starting values of the step wedges, 

using the standard analysis techniques applied to the blurred and “noised” image.  Wedge steps 
are approximately 250 x 250 pixels in the images. 

 

Figure 19:  Plots of measured vs. design values for the two step wedges in TO1.  Left plot shows the raw data in red 
and blue, with the variance in dotted.  In addition, orange and green show the results for a constant subtracted off of 
image, with highest transmission normalized to 1.0.  Right plot shows deblurred data, also with a background 
subtracted and high transmission scaled to 1.0.  Difference from design value shown with orange and green dashed. 
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Figure 19 shows the results of measuring wedge transmission values for the synthetic data.  
With the either image, it is possible to subtract a fixed background off, and scale the transmission 
where there is no material to 1.0.  In the case of the raw, blurred data, the background level can 
be chosen so that the difference in the wedge transmission value from the original design value is 
within the measured variance of the data.  It is clear, however, that both wedges cannot be well 
matched for a single value of the background. 

When the data has been deblurred, the results are a little better than the raw.  However, when 
the fixed background and the scaling are applied, the results are significantly better.  Besides 
being significantly closer to the design values than the inherent variance across the wedge, the 
difference from the design value is less than 1% of the actual value for most of the wedges, with 
the exception of the thickest part, where the error is about 8%, and one of the middle wedges 
(T=0.06, with measured error of 2.5% of this.) 

At this point, the subtraction of the fixed background begs the question, “How do we 
determine the fixed background?”  I will discuss below a method for estimating the fixed 
background, which I am calling “room glow.”  To illustrate how this room glow value will be 

used, I present Figure 20 which shows the same results as the previous figure, with the difference 
that the right hand figure shows the results of subtracting off the “known” room glow value from 
the images as part of the processing.  On can see that the difference between the averaged value 
and the design value is smaller by an order of magnitude than the sigma of the averaged wedge 
value ( obviously, this sigma can be reduced by more noise control, at the expense of the 
sharpness of the edges.)  For comparison’s sake, I also compare the result of subtracting off a 
uniform background and scaling;  the results are actually worse than the image straight from the 
deblurring.  The greater error at the low transmission end is due to the larger relative noise, 
coupled with the fact that the image only contains positive values. 

Test Object 1:  Small Wedge 

I can investigate the same set of criteria for accuracy, using the small step wedges in the 
images.  Steps here are approximately 30x30 pixels.  With the smaller length scales involved, 
there is more of an effect of the limits on the useable bandwidth of the restored images. 

 

Figure 20:  Plots of measured vs. design values for the two step wedges in TO1.  Left plot shows the raw data in red 
and blue, with the variance in dotted.  In addition, orange and green show the results for a constant subtracted off of 
image, with highest transmission normalized to 1.0.  Right plot shows deblurred data, also with a background 
subtracted and high transmission scaled to 1.0.  Difference from design value shown with orange and green dashed. 
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In Figure 22 I show a series of images of one of the small step wedges from TO1.  The 
original blurring can be seen in the left image.  Following this, there is a series of images starting 
with little noise control, with increasing noise control as the images go from left to right.  Here is 
seen again the trade-off between the degree of the noise control, and the sharpness of the edge.  

Also, at these smaller length scales, the noise plays a large role within the interior of the wedge 
steps.  When the noise figure appears to be well-controlled, the edge seems nearly as blurred as 
the original image. 

In Figure 21 and Figure 23 I show the results corresponding to the comparisons of the larger 
wedges above, for measurement of the small wedges.  Wedge 1 is located near the center of the 
image.  Wedge 2 is located near the edge of the collimation.  With the raw data, the mismatch of 
the measured compared to the design value is significantly worse than was observed for the large 
wedges.  Even when a background is subtracted and the 100% transmission is scaled, it is 
impossible even to match one wedge accurately, much less both at the same time.  The difference 
between the design and measured values is larger than the sigma associated with the wedge value 
measurement.  On the right of Figure 21, I graph the results of measurement after deblurring.  For 
this case, the difference between measured and design value is right about equal to the sigma of 
the measurement.  When the uniform background and scaling are applied, the results become 
significantly better. 

In Figure 23 I show the same results, but now the deblur process in the right side graph has 
been applied to the images with the room glow subtracted.  As above with the larger wedges, the 

 

Figure 22:  Images of small wedge, starting with the raw, flat-fielded image on the left, and proceeding through 
deblurs using increasing noise control going from left to right. 

 

Figure 21:  Plots of measured vs. design values for two of the small step wedges in TO1.  Left plot shows the raw 
data in red and blue, with the variance in dotted.  In addition, orange and green show the results for a constant 
subtracted off of image, with highest transmission normalized to 1.0.  Right plot shows deblurred data, also with a 
background subtracted and high transmission scaled to 1.0.  Difference from design value shown with orange and 
green dashed. 
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measured values of the deblurred wedges are significantly closer to the design values than the 
sigma of the measurements.  In addition, with a background subtract and scaling, some wedge 
values improve, while others get worse; overall, the result of subtraction and scaling seems not to 
improve these results significantly. 

It should be noted that appears to be a slightly greater discrepancy between the two wedges, 
which I am inclined to ascribe to the fact that one is significantly closer to the collimation of the 
image.  That being said, I would still claim that the deblurred results are still acceptable, given 
the constraints imposed by the presence of noise in the detection system. 

 

Test Object 2:  Prism Wedges 

The prism wedges can be studied in much the same way as the step wedges.  I show the 
transmission plots of lineouts for the raw and deblurred TO2 in Figure 24.  As expected, the 
deblurred images can be matched well by subtracting a uniform background, and scaling the 

 

Figure 23:  Plots of measured vs. design values for two of the small step wedges in TO1.  Left plot shows the raw 
data in red and blue, with the variance in dotted.  In addition, orange and green show the results for a constant 
subtracted off of image, with highest transmission normalized to 1.0.  Right plot shows deblurred data with the room 
glow subtracted, also with a background subtracted and high transmission scaled to 1.0.  Difference from design 
value shown with orange and green dashed. 

 

Figure 24:  Plots of measured vs. design values for lineouts of the two wedges in TO2, comparing raw with the 
deblur of the room glow corrected images. 
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100% transmission to 1.0.  The accuracy of the restored image compared to the designed value is 
around 1% of the transmission value near the thin part of the wedge, but this slowly gets larger, 
until the signal-to-noise is equal to 1, right about 0.001 transmission, and the delta between 
measured value vs. design value begins to intersect the design value.  This is a nice illustration of 
the signal-to-noise reducing to 1 at low transmission parts of the image.  Note, also, that at the 
low transmission values, the curves from the deblurred wedges show transmission higher than 
the design value.  This is a result of the fact that the detection system does not allow negative 
values, so we are, in some sense, folding the noise distribution over on itself near zero 
transmission. 

As with the step wedges, the restoration of the prism wedges displays the same consistency 
of average value.  At the transition from wedge to no wedge, there are varying degrees of 

overshoot.  The positive nature of the images is shown in the lineout in Figure 25.  The noise of 
the deblurred image “kisses” the design value, but a slight background subtraction is needed to 
make the average value equal the design value.  At the transition, the degree of overshoot is seen 
to change as the noise control parameter is varied.  For this illustration, the restoration associated 
with the 0.01 constant shows less than a 1% overshoot, with about 9 pixels after the transition 
before the overshoot settles back to the 100% transmission level (1.0.)  This sits well with the 
MTF graphs above, where the highest “useable” frequency was around 0.1 / pixel.  This inverts 
to 10 pixels.  Again, as with the hard edge, the overshoot seems to be systematic, and suggests 
that there may be a straightforward way to handle within images. 

Presence of “Room glow” 

As indicated above, there is evidence that, to first order, our images have a uniform 
background that is proportional to the total exposure of the image.  This background I have 
labeled “room glow,” implicitly assuming that its origin is scattering of the beam from whatever 
is in the path of the beam.  (These experiments typically where performed with the “get lost” 
hole in the camera box covered with a plate, e.g.)  In order to determine the proportionality 
constant, it is simply necessary to observe the values obtained when deblurring the rolled edge.  
Because the edge image has very close to one half the exposure of the flat field image, the dark 
side of the edge will deblur to the background value associated with the edge, and the bright side 
will deblur to 1.0 plus the edge background value, - the flat field value, which should be twice 

 

Figure 25:  Plots lineouts vs. position for the TO2.  Graph on left shows lineout of an averaged set of lines through 
both prism wedges.  Right graphs shows the thinnest part of the steepest edge of the deeper prism, as it transitions to 
no wedge. 
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that of the edge image.  In other words, the bright side of the edge will be as much less than 1.0 
as the dark side is greater than 0.0.  Clearly, adjustments in the actual data must be made to 
accommodate shot-to-shot variations in beam dose. 

Summary of  Evaluation Results 

To begin with, the use of Tikhonov regularization in the one-step deblur or “restoration” 
process is clearly the best of the three methods outlined above, based on the consistency of 
deblur values of step wedges as the noise control parameter is varied.  In addition, it is possible 
to control the noise so that the sigma associated with the deblurred image is comparable to, or 
smaller than, that associated with the raw data within a single step, while still improving 
accuracy of the measured value of the wedge.  This fact is true down to transmission levels 
where the signal-to-noise level is less than 1.  The only part of the images where greater care 
must be taken is in the presence of “edges,” i.e. discontinuities in the second spatial derivative of 
the transmission value.  One can think of this as related to a spatial resolution issue – i.e. the 
“overshoot” associated with the edge restoration limits the accuracy as one gets closer to the 
edge. 

Continuing Research:  Issues to be Addressed 

The primary issue of obvious concern is the overshoot at edges and discontinuities of the 
gradient in the restored images.  For a region that changes from one gradient to another suddenly 
(i.e. an effective δ-function second derivative,) the overshoot under reconstruction appears 
repeatable and predictable, even though the restoration may not look satisfying.  To quantify this 
statement, though, a more thorough investigation of the reconstruction of edges, and 
transmission gradients, is warranted.  It should be noted that, as the noise is controlled with more 
strength, the overshoot diminishes, as well as the steepness of the reconstructed edge, and the 
length scale over which the change in transmission slopes is fitted gets larger.  This points 
towards some sort of limiting procedure which could be applied to the problem, and which I will 
explore in a separate paper. 

Conclusions 

The single step restoration process, described by equation (6), shows clear advantages over 
the other two methods which have been used as part of the standard data analysis suite for 
radiographs.  In the case of step wedges, the technique is more than adequate to provide the 
accuracy desired as part of the experiment.  Further improvements will entail improvements to 
the actual data collection hardware.  Because of the systematic nature of the overshoot of edges 
under restoration, it should be possible to improve the quality of hits aspect of the deblurring 
process as well.  This will be the topic of a second paper. 
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Appendix:  Details of Restoration Implementation 

Below I outline the step-by-step process for processing the radiographic image data.  In what 
follows, Iraw refers to the raw data image, F is the flat field, E is the edge image, P is the PSF 
image, Iproc is the processed image, M is the mask which follows the collimation in the image, 
and O is the “actual” image of the object. 
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Subtraction of Dark Field 

Along with each shot, a “darkfield” is taken, which is a data read of the CCD detector, with 
no x-rays applied to the system.  This image is subtracted off of the data image: 

 

 

I proc_DF = Iraw ! IDF
Eproc_DF = Eraw ! EDF

Fproc_DF = Fraw ! FDF

 

Destarring of Images 

X-ray photons that strike the CCD array directly can cause pixels to saturate, giving the 
appearance of “salt-and-pepper” in the image.  The effect of this is removed prior to further 
processing using a median filter.  At each point, a neighborhood around the point is compared.  If 
the value at the point is outside of several standard deviations of the average, the value of the 
point is assigned to the median of the neighborhood.  Several passes of this process appear to be 
effective at removing the stars in each of the images: 

I proc_DS = Destar(I proc_DF )  

Correction of Tile Glow 

The crystal detector which converts x-rays to visible light is pieced together, and there is a 
“glow” associated with visible light scattering within each separate panel of the detector.  This 
“tile glow” is approximately proportional to the total signal within the tile.  This signal removal 
is applied to each image. 

I proc_TG = (I proc_DF _Tn ! kT I proc_DF _Tn" )
n
#  

Subtraction of Room Glow 

In a way similar to the tile glow removal, the room glow is removed in each image: 

I proc_RG = (I proc_TG ! kR I proc_TG" )  

Flat Fielding of Images 

At this point, the detection spatial dependence, as well as beam profile, is removed by 
dividing by the flat field image in a pixel-by-pixel fashion.  The flat field image is constrained so 
that no pixel value is less than 1: 
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I proc_FF =
I proc_RG

Fproc_RG >1.0( )  

Determination of PSF from Edge Image 

With this step, the edge image is used to determine a line spread function, or LSF, by taking 
the derivative across the edge.  A subtle point here is to recognize that the image of the edge is 
not an infinite edge.  The process of going from LSF to PSF via derivative of the edge implicitly 
assumes an infinite edge.  To account for this, a synthetic edge is forward blurred with the PSF, 
the synthetic ESF compared to the data, and adjustment are made as needed to get a better PSF.  
Several iterations usually will do the trick. 

Because of the noise in the image, several rows of the edge image are averaged, and a 
functional fit is applied to the edge, which allows for a smooth derivative.  The fit used assumes 
a symmetric LSF.  This LSF is then Abel inverted to give the PSF.  The image of the PSF is then 
made from this PSF by assuming axial symmetry, and creating an image of PSF(r).  Implicit in 
this procedure is the assumption that the blurring of an object radiograph is the same as the 
blurring of an edge: 

Edge = Average(Eproc_FF )  

LSF = d(Edge)
dx

 

PSF = Abel!1(LSF)  

P = PSF(r)  

I have found that, for the edges that are typically measured, a functional form that works well is: 
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Note that, in keeping the analytic forms, computer time is minimized, and the Abel inversion 
process does not give the “limning” at large r because of the implicit truncation of the LSF due 
to a finite data set. 

Restoration of Image 

Finally, with the PSF in hand, I can perform the restoration of the image.  To begin with, the 
“convexity” across the image associated with the blurring of the flat field has been removed by 
division of the flat field.  This convexity is replaced by forward blurring a synthetic flat field, 
and multiplying the flat fielded image by this.  Second, the blur information outside of the 
collimation is, simply put, not there.  To approximate this information, the image is masked at 
the collimation boundary, and forward blurred using the PSF.  The blurred image outside the 
mask is then pasted to the processed image, and the deblur proceeds: 

 
!FSynthBlur = !M i !P  

 I proc_Final = I proc_FF i FSynthBlur  

 
!I proc_Blur = !I proc_Final i !P  

IToDeblur = I proc_Final!" #$ InsideMask + I proc_Blur!" #$OutsideMask  

 

!O =
!P* !IToDeblur
!P* !P + k !H

2  

 


