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Evaluation of Deblur Methods for Radiography

Wm Monty Wood, P-23
Introduction

Radiography is used as a primary diagnostic for dynamic experiments, providing time-
resolved radiographic measurements of areal mass density along a line of sight through the
experiment. It is well known that the finite spot extent of the radiographic source, as well as
scattering, are sources of blurring of the radiographic images. This blurring interferes with
quantitative measurement of the areal mass density. In order to improve the quantitative utility
of this diagnostic, it is necessary to deblur or “restore” the radiographs to recover the “true” areal
mass density from a radiographic transmission measurement.

Towards this end, I am evaluating three separate methods currently in use for deblurring
radiographs. I begin by briefly describing the problems associated with image restoration, and
outlining the three methods. Next, [ illustrate how blurring affects the quantitative
measurements using radiographs. I then present the results of the various deblur methods,
evaluating each according to several criteria. After I have summarized the results of the
evaluation, I give a detailed account of how the restoration process is actually implemented.

Effects of Blurring on Quantitative Image Evaluation

To aid in the quantitative evaluation of radiographs, a
"wedge" of known material thickness is typically included 4mm flat
in every experiment, to provide an in situ "transfer function"
as a scale to determine the areal mass density of the
unknown, experimental object in the radiograph. The cross-
section of such a transmission wedge is illustrated in Figure
1. (The dimension into and out of the paper is extended;
hence, I label this the “prism wedge.”) The most important
aspect of this design is that opposing sides of the wedge
have different slopes; i.e. the length scale over which the
areal mass density changes is different for different sides of
the prism. Using a synthetic radiograph of this type of
prism wedge, one can see immediately the problem that
blurring introduces into the quantitative analysis of the
radiographs. Figure 1:  Design of “Prism”

In Figure 2 I show the transmission “measured” from a | transmission wedge for in situ
synthetic radiograph of the prism wedge. The blurring of | measurement of transfer function.
the synthetic radiograph was created to mimic the blur
imposed in an actual radiograph. The differences in measured transmission between the “steep”
and the “shallow” slopes for identical thickness of the wedge illustrate the fundamental problem
which the blurring introduces into a radiographed image. The measured transmission value of a
feature depends fundamentally on the length scale associated with the feature. In other words,
the blurring of the image limits the utility of the radiograph as a quantitative tool in identifying
the areal mass density associated with a given transmission. In order to rectify this situation, it is
necessary to “restore” or “deblur” the image data.

Wood - Evaluation of Deblur Methods for Radiography 1



LA -UR - 14 - 22041

Prism Wedge Transfer for Different Slopes, TO2 Wedge A
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Figure 2: Comparison of measured transmission values through the Prism test wedge versus designed
value for the two different slopes.

The Deblur or “Restoration” Problem

The basic problem of deblurring can be demonstrated with the following equation'. If the
image is denoted by /, the actual object denoted by O, the blurring Pont Spread Function or
"PSF" denoted by P, and the noise in the measured image denoted by N:

I=0®P+N (1)

This describes the resulting image as the convolution of the object with the blurring function,
with noise added. Written in this way, the problem assumes that the blurring within the image is
the same at every point of the image. Mathematically, this quality is called "stationarity," and
the process is referred to as a "stationary blurring" process. For the methods of deblurring
evaluated herein, I am assuming a stationary blur process. It can be shown easily that the
blurring of the radiographs is not stationary; however, it is worth seeing how well the assumption
can help us.

In fourier space, the relationship between the fourier transforms of the various components is
simpler:

Wood - Evaluation of Deblur Methods for Radiography 2
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Here, the tilde over the letter indicates the fourier transform. Written in this way, the solution
seems clear — simply divide the transform of the measured image by the transform of the PSF,
and the resulting image will be the transform of the object. However, the noise term is the
problem. Typical PSFs are peaked around low frequencies, and become very small at high
frequencies. As a result, the fourier division results in a disproportionate enhancement of the
high-frequency noise, and the result is, typically, unuseable. This is at the heart of the deblur
problem: how to deblur an image to get useful results, while controlling the noise.

Three Restoration Methods to be Evaluated
The three methods of deblurring which I will evaluate have all been used at some point in the
standard suite of analysis tools. I will refer to them as follows:
FQ + &: Fourier Quotient with Delta Noise Control
LFQ (for “Lutz Fourier Quotient”): Fourier Quotient with Frequency Cutoff

Tik: Fourier Quotient with Tikhonov Regularization'

The first of these, FQ, can be described with the following equation:

-
O Bk ®

Here, k is a constant, whose effect is to add a Dirac é-function to the PSF. The noise is
controlled by the magnitude of k. The division represents a point-by-point division of the 2D
data in fourier space.

The second method, LFQ, uses a constant to control the noise in a slightly different way:

I

0=

Here, the constant £ is used to make the frequency content by greater than (or less than) a fixed
value:

R B (> k

k  :0<P (f)<k
Pee(f): B (f) <=k
~k 1 0>P (f)>—k

BL(f)= (5)

Note that, in general, we are working with symmetric PSFs, so the transform is real. Essentially,

the value of the transform is cut off at some minimum absolute value, while the positive/negative

behaviour is preserved. Again, the magnitude of k& determine the amount of noise control.
Finally, the third method (Tik) is expressed in the following way:

Wood - Evaluation of Deblur Methods for Radiography 3
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In this expression, the P* represents complex conjugation, and the H is a high-pass filter. As
with the other expressions, k expresses the noise control. (One can picture the effect of the high-
pass in the denominator becomes, effectively, that of a low-pass in the overall equation.) Note,
also, the similarity in appearance of this last expression to that of a Wiener filter.

Requirements

In order to be considered as a candidate for deblurring data for quantitative evaluation,
several requirements must be met. These are the following four items, and these are the four
things which I will use to evaluate the methods.

Consistency

When deblurring a scene, the values obtained for areal mass density after processing should
be insensitive to the chosen noise control parameter, £.

Noise Control

Obviously, the chosen method must enable control of the noise amplification inherent in the
deblur process. In other words, the resulting, deblurred image must be useable.

Edge Restoration

The deblurring method should be able to deblur the image of an edge, and result in a better
Modulation Transfer Function.

Accuracy
Finally, the image resulting from the deblur must represent accurately the actual data.
Images for Use in Evaluation

For evaluating the first two requirements of Consistency and Noise Control, I will use the
data from Gemini shots 1625-1631. These data include all the parts for the “standard analysis:”
a flat field, a rolled edge, and the scene to be deblurred, which in this case is a Ta step wedge.
Images of the step wedge (both synthetic and measured,) are shown in Figure 3. For the other two
requirements, i.c. Edge Restoration and Accuracy, I will use two synthetic data images, Test
Object 1 (TO1) and Test Object 2 (TO2,) illustrated in Figure 4. The square sections in the step
wedge at top and bottom of TO1 have the same transmission values, but are arranged differently.
These transmission values correspond roughly to those from the actual data Ta wedge. In
addition, I have included a smaller step wedge which is placed at different positions within the
image.

Wood - Evaluation of Deblur Methods for Radiography 4
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Figure 3: Measured radiograph of Ta step wedge, for evaluating deblur methods.

Figure 4: Synthetic Radiograph “Test Object 1” on the left, and “Test Object 2 on the right, not blurred, for
evaluating deblur methods.

Appearance of Restored Images

To give an idea of the appearance of the restored images, and how the noise control appears
visually, I present a series of restored images. In Figure 5 I show a section of the raw, blurred
image, as well as three deblurs with low, medium, and high noise control, using the Tikhonov
method. One can readily see the characteristic mottling associated with the deblur, as well as the
“ringing” at the edges. In addition, it is clear that there is a trade-off between the “sharpness” of
the image, and the amount of noise control. This type of appearance does not depend on method.

Wood - Evaluation of Deblur Methods for Radiography 5
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Figure 5. Various levels of noise control in deblurring using Tikhonov method. From left to
right, and top to bottom, raw blurred image; deblurred image with low noise control; deblurred
image with medium noise control; deblurred image with high noise control.

Consistency

The first test for evaluating the restoration techniques is that of consistency. Using each
restoration method, the image is restored, using several values for the noise control constant.
The region where each step wedge segment shows within the image is defined, and the mean and
variance of the pixel transmission values is measured in the region. This is done for wedge
values “0” (outside the wedge) through “10,” the thickest wedge segment. These values are then
plotted to illustrate the consistency (or lack thereof) in the values obtained for each wedge
segment transmission. Without any a priori knowledge of the transmission, these values must be
consistent between deblurred images.

FQ+5

The first method, FQ+9, yields the results shown in Figure 6. Because the addition of the 5-fn
results in a change of the effective normalization of the PSF, the resulting restored image is
multiplied by a constant to bring the value of the un-attenuated beam up to 1.0, or 100%
transmission. This improves the results. In the “post-norm” results, the values from the raw data
are also graphed. One can see readily the effects of the noise control; the variance of each step
value diminishes as the noise is controlled. The variance of the step transmission values,
averaging across different noise control constants, is larger than the variance of the measured
raw step value variance, for the thicker wedge steps. This means that the deblur technique
cannot produce consistent quantitative values in the deblurred images.

Wood - Evaluation of Deblur Methods for Radiography 6
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Ta Wedge T vs Step # for Different k Values in Fourier Quotient Deblur
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Figure 6: Comparison of wedge transmission values for FQ+9 restoration method. First graph shows
values after direct deblur, with the variance associated with each value plotted along the log axis on the
right. Bottom graph shows results after a “post-renormalization” procedure is applied, as well as the
values obtained from the raw image with no processing. In addition, the variance across average step
transmission values for different “k” (after the post renormalization) is shown.

LFQ

The second method, LFQ, yields the results shown in Figure 7. For the same reasons as for
the FQ+d method, the resulting restored image is multiplied by a constant to bring the value of
the un-attenuated beam up to 1.0, or 100% transmission. Again, this improves the results
dramatically. As the noise control parameter is increased, the measured step value variance from
the image decreases. Again, when the step transmission values are compared for many noise
control values, the variance of this average cannot be made smaller than the measured variance
from the image in the thicker steps. Again, this method does not pass the consistency test for
quantitative image deblurring.
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Ta Wedge T vs Step # for Different k Values in LFQ Deblur
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Figure 7: Comparison of wedge transmission values for LFQ restoration method. First graph shows
values after direct deblur, with the variance associated with each value plotted along the log axis on the
right. Bottom graph shows results after a “post-renormalization” procedure is applied. In addition, the
variance of the average values for different “k” is shown.

Tik

The final method, Tik, yields the results shown in Figure 8. Because both of the previous
methods were subjected to a post-renormalization, the Tik results are, also. In this case, the
improvement is minimal. The variation of the average values for different deblur constants is
significantly less than the variance within each step, and is less than about 1%, except for the
thickest step, which is 2%. Th1s result does not change significantly for high pass filters of the
form (1 — (Hamming Wlndow) ) across a wide range of “N” values. A visual demonstration of
this consistent convergence is shown in Figure 9, where I plot overlaid lineouts through the TO1
step wedge for different values of the noise control parameter, k. The reduction in noise is clear,
as well as the consistency of the average across the wedge step.

Wood - Evaluation of Deblur Methods for Radiography 8
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It is interesting to note, however, that when I use the “trivial” high-pass filter which is
constant, i.e. it passes all frequencies, the results are almost identical to those found using LFQ;
this is illustrated in Figure 10.

Ta Wedge T vs Step # for Different k Values in Tikhonov Deblur w/Hamming Window
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Figure 8: Comparison of wedge transmission values for Tik restoration method. First graph shows
values after direct deblur, with the variance associated with each step value plotted along the log axis on
the right. Bottom graph shows results after a “post-renormalization” procedure is applied. In addition,
the variance of the average step transmission values for different “k” is shown.
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Ta Wedge T vs Step # for Different k Values in Tikhonov Deblur No HiPass

-

0.9
0.8 1
—G5.e-2k
0.7 —1.e-2k
S
s —35.e-3k
2 06 ;01 le3k
k-]
2 3 Se-dk
€05 s
H S —le4k
= - Se-
Boa 001 5.e-2 o/Value
] - 1.e-20/Value
H
03 = 5.e-30/Value
1.e-30/Value
0.2 0.001 5.e-4 o/Value
= 1le-do/Value
0.1
0 0.0001
0 1 2 3 4 5 6 7 8 9 10
Wedge Number
Ta Wedge T vs Step # for Different k Values in Tikhonov Deblur No HiPass with Post Renormalization
1R 10
—35e-2k
—1le2k
—S5.e-3k
o le-3k
El
S Se-dk
§
2 o =ledk
2 s
£ s Average Value
H v
£ = 5.-20/Value
% = le2o0/Value
H = S5.e-30/Value
1.e-3 0/Value
5.e-4 o/Value

= le-40/Value
w=\/ariation of Average

= =Raw o/Value

0 1 2 3 4 5 6 7 8 9 10
Wedge Number

Figure 10: Comparison of wedge transmission values for Tik restoration method, using the “trivial” High Pass
filter. First graph shows values after direct deblur, with the variance associated with each value plotted along the
log axis on the right. Bottom graph shows results after a “post-renormalization” procedure is applied. In addition,
Ithe variance of the average values after the renormalization is shown.
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Figure 9: Lineouts of TO1 wedges for various values of noise control parameter in Tik Deblur.
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Noise Control

The second test of the quality of the restoration method is the control of the noise. Again,
each method is evaluated below. I present, first, a few images that show the actual noise present
in the images.

Noise figure in the Images

In Figure 11 I show the comparison between the frequency power spectra of a raw edge
image, compared to a flat-fielded image. The raw image appears to display a significant amount
of the frequency information associated with the actual edge. The flat-fielded data appears to
have had much of this information “washed out” by the noise within the figure. Note
particularly that in the direction along the edge, the power spectrum is significantly lower in the
raw image, whereas the spectrum at high frequencies is commensurate in both directions for the
flat-fielded image. This indicates that the actual noise spectrum is dominating at the higher
frequencies (as one would expect.) In Figure 12, I show similar data for the synthetic edge

Comparison of Autocorrelation Power Spectra for Data Edge Comparison of Autocorrelation Power Spectra for Data Edge
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Figure 11: Comparison of autocorrelation line-outs for data image. Black curve is for the raw (de-starred and]
Jbackground subtracted) image; red curve is for the flat-fielded image. Left shows the frequency power spectrum
“across” the edge; right shows the spectrum “along” the edge. Image power normalized to 1.0.

images. It appears that there is a more complex shifting of the energy through the frequency
spectrum. In general, however, it still appears that in flat-fielding the image, (in this case going
from the green curve to the red curve,) the noise figure dominates the power spectrum as one
moves towards the higher frequencies. It also appears that my noise estimates are, perhaps, a bit
conservative for the synthetic images.

These comparisons of the autocorrelations suggest that it might benefit the analysis if the
detector response were measured with low noise in a different way than through a flat-field
procedure, and thus reduce the noise introduced into the data. For example, it might be worth
averaging a number of flat fields together, or perhaps measuring the detector/CCD system
separately using different methods.

Wood - Evaluation of Deblur Methods for Radiography 11
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FQ+5

Referring again to Figure 6, the increasing value of the noise control constant does, indeed,
reduce the value of the variance associated with each wedge step. However, even using a
constant that begins to degrade the larger wedge step values (before renormalization,) the
variance is significantly larger than that associated with the raw data. It is important to note that,
within the raw data, the edges of the step region exhibit a significant curvature away from a
constant value, so the comparison of the noise figure is actually, perhaps, worse than the graph
indicates.

LFQ

Referring to Figure 7, the noise control appears to be a little bit better than that that afforded
by the first method. At the largest values of the noise control constant, i.e. those equal to 1.0 or
above, the noise figure remains identical, and is actually the same as the raw data.

Comparisons of Autocorrelation Power Spectra for Synthetic Edge Comparisons of Autocorrelation Power Spectra for Synthetic Edge
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Figure 12: Comparison of autocorrelation line-outs for synthetic edge image. Black curve is for the simple edge;
blue curve is for the blurred edge; green curve is the blurred and “detected” image with noise added; red shows the
line-out for the flat-fielded image. Left shows the frequency power spectrum “across” the edge; right shows the

spectrum “along” the edge. Image power normalized to 1.0.

Tik

Looking again at Figure 8, it is seen that, using this method, the noise control is clearly much
better than either of the other two methods. In addition, though not shown on the graph, further
increase of the control constant brings the value of the variance down, without sacrificing the
consistency of the wedge step value, up to a control constant value of 10 (this is as far as I have
tested.)

Wood - Evaluation of Deblur Methods for Radiography 12
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Edge Restoration

In order to evaluate the performance of the restoration techniques with a rolled edge, I
consider both the actual data, and an ideal edge from the synthetic data. For both cases, I
compare the actual lineout across the edge, as well as the MTFs for a series of deblurred images.
In this section, all the techniques are presented overlaid upon each other.

Data Edge Restoration: Shot 1629
Edges
In Figure 13, I show lineouts of restrored edge, using the various techniques outline above. It

is clear that the edge itself is significantly sharper in each case, but there is also an overshoot on
the high side, and an undershoot on the low side. The other oscillations are due to the left-over

Deblurred Data Edge

RS=AN /_,/'; /\_/// \

=
0.9

0.8
0.7

0.6
——Data ESF

05 ——Tik PSF1,35,7e-11
Tik PSF1,50,5e-11
0.4 \ —LFQPSF1,2,2.5e-5

LFQ PSF1,2,2.0e-5
0.3 Del FQ PSF1,2,0.11

0.2

) S

-0.1
1350 1360 1370 1380 1390 1400 1410 1420
Pixel

Transmission Value

Figure 13: Reconstructed edges and original edge for different restoration techniques and noise control parameters.
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Figure 14: Modulation Transfer Functions from the edges reconstructed in Figure 13.
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noise from the noise-control of the restoration. Part of this can be reduced by smoothing (which,
in fact, makes the edge less steep,) but the overshoot problem remains.

Modulation Transfer Functions

In Figure 14 I show the Modulation Transfer Functions, or MTFs, associated with the edges in
Figure 13. Note that the edge which shows the least overshoot is that restored using the FQ +
method, and this has apparently the worst MTF. The other edge restorations all have MTFs with
a notable "corner" as they turn away from 1. Based on the standard interpretation of the MTF,
the deblurred images display better resolution than the blurred image.
Synthetic Edge Restoration: Hard Edges

Edges

Using an appropriate high-pass filter in the Tikhonov regularization, I see again the
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Figure 15: Reconstructed synthetic edges compared to the original, blurred, edge using a (I — Hamming®®) high
pass filter, for different noise control parameters.
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Figure 16: Reconstructed synthetic edges compared to the original, blurred, edge using a Wiener high pass filter, for
different noise control parameters.

consistency; as the noise is controlled more, the value of the edge away from the transition
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settles to a ‘limiting’ value, both at the transmissive side, and the non-transmissive side of the
edge. To tie the choice of high pass to other, perhaps more familiar, methods, I have followed
the condition described by a “Wiener” filter for one of the restorations.

In Figure 15 I show hneouts of the reconstructed, synthetic edge, for several noise control
strengths, using a (1- Hammmg %) high pass filter. Note that, both on the transmissive, and on the
obscured side, the transmission values have the same mean, and the variance depends on how
tightly the noise is controlled. The high transmission is 0.972, and the low transmission is 0.028.
The reason these are not 1.0 and 0.0, respectively, is that there is a “room glow” in the image,
which is an additive constant background that is proportional to the total exposure of the scene. I
will discuss this further in the next section.

In Figure 16 I show lineouts from a similar edge deblurring, using a Wiener filter with
differing strengths of noise control. The actual edge slope in the restoration is higher using the

Hamming window.

Modulation Transfer Functions
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Figure 17:

MTFs associated with the edge restoration above

in Figure 15.
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Figure 18: MTFs associated with the edge restoration above in Figure 16.

In Figure 17 and Figure 18 I show the MTFs associated with Figure 15 and Figure 16 .

Note that,

using the Hamming-type window, the MTF is near 1.0 out to a higher frequency. This is
reflected in the better steepness of the reconstructed edges, as more frequencies are kept in the
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deblurred image. One can see in the MTF of the original edge that the “noise figure” turns on at
a frequency of about 0.09 /pixel. This represents visually the point where the spectrum of the
noise overtakes the frequency spectrum of the signal of interest. It is this cross-over point which
is used in defining the Wiener filter.

It should be noted that, using the Wiener filtration, one can actually extend the MTF
significantly past the 0.09/pixel frequency. This comes, however, at the expense of significant
noise in the image. In evaluating images, this cross-over point is an indicator of the useful
frequency content of an image.

Accuracy

In order to test the ultimate accuracy of the deblurring methods, it is necessary to create a
synthetic blurred scene which captures the salient features of blurring of the actual data from a
radiograph. Towards this end, I have created a set of "Test Objects," the details of which I
describe in a separate document. Beginning with a scene of known transmission, the scene is
blurred to accurately reflect the image formation process. Then, using the tools and methods
which are used in actual data collection, i.e. measurement of a rolled edge in the object plane, as
well as flat fields with nothing in the object plane, I deblur the resulting image, and compare the
transmission values obtained to those in the un-blurred image. Note that, because both the (FQ +
d) and the LFQ methods do not display the necessary consistency to serve as candidates for
restoration, I only describe the results for evaluation of the Tikhonov method.

Another issue which bears comment is that of “room glow,” or a constant background due to,
presumably, some scatter source. Evaluation of wedge transfer curves all show a need to have
some background subtracted. Implicitly, I have assume that there is a constant background, and
that this background is proportional to the total exposure of the scene. (This assumption of
proportionality to the exposure recorded in the image is reasonable, since the collimation limits
the exposure anywhere near the detection system to gamma rays that pass through the detector,
or through the cone defined by the source and the illumination of the detector.)

Test Object 1: Large Wedge

Using TOI, I explore the ability to obtain the original starting values of the step wedges,
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Figure 19: Plots of measured vs. design values for the two step wedges in TO1. Left plot shows the raw data in red
and blue, with the variance in dotted. In addition, orange and green show the results for a constant subtracted off of
image, with highest transmission normalized to 1.0. Right plot shows deblurred data, also with a background
subtracted and high transmission scaled to 1.0. Difference from design value shown with orange and green dashed.

using the standard analysis techniques applied to the blurred and “noised” image. Wedge steps
are approximately 250 x 250 pixels in the images.
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Figure 19 shows the results of measuring wedge transmission values for the synthetic data.
With the either image, it is possible to subtract a fixed background off, and scale the transmission
where there is no material to 1.0. In the case of the raw, blurred data, the background level can
be chosen so that the difference in the wedge transmission value from the original design value is
within the measured variance of the data. It is clear, however, that both wedges cannot be well
matched for a single value of the background.

When the data has been deblurred, the results are a little better than the raw. However, when
the fixed background and the scaling are applied, the results are significantly better. Besides
being significantly closer to the design values than the inherent variance across the wedge, the
difference from the design value is less than 1% of the actual value for most of the wedges, with
the exception of the thickest part, where the error is about 8%, and one of the middle wedges
(T=0.06, with measured error of 2.5% of this.)

At this point, the subtraction of the fixed background begs the question, “How do we
determine the fixed background?” I will discuss below a method for estimating the fixed
background, which I am calling “room glow.” To illustrate how this room glow value will be

Wedge Values vs Design Values for Raw TO1 Wedge Values vs Design Values for Deblurred (TO1 - Room Glow)
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Figure 20: Plots of measured vs. design values for the two step wedges in TO1. Left plot shows the raw data in red
and blue, with the variance in dotted. In addition, orange and green show the results for a constant subtracted off of
image, with highest transmission normalized to 1.0. Right plot shows deblurred data, also with a background
subtracted and high transmission scaled to 1.0. Difference from design value shown with orange and green dashed.

used, I present Figure 20 which shows the same results as the previous figure, with the difference
that the right hand figure shows the results of subtracting off the “known” room glow value from
the images as part of the processing. On can see that the difference between the averaged value
and the design value is smaller by an order of magnitude than the sigma of the averaged wedge
value ( obviously, this sigma can be reduced by more noise control, at the expense of the
sharpness of the edges.) For comparison’s sake, I also compare the result of subtracting off a
uniform background and scaling; the results are actually worse than the image straight from the
deblurring. The greater error at the low transmission end is due to the larger relative noise,
coupled with the fact that the image only contains positive values.

Test Object 1: Small Wedge

I can investigate the same set of criteria for accuracy, using the small step wedges in the
images. Steps here are approximately 30x30 pixels. With the smaller length scales involved,
there is more of an effect of the limits on the useable bandwidth of the restored images.
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Figure 22: Images of small wedge, starting with the raw, flat-fielded image on the left, and proceeding through
Ideblurs using increasing noise control going from left to right.

In Figure 22 I show a series of images of one of the small step wedges from TO1. The
original blurring can be seen in the left image. Following this, there is a series of images starting
with little noise control, with increasing noise control as the images go from left to right. Here is
seen again the trade-off between the degree of the noise control, and the sharpness of the edge.
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Figure 21: Plots of measured vs. design values for two of the small step wedges in TO1. Left plot shows the raw
data in red and blue, with the variance in dotted. In addition, orange and green show the results for a constant
subtracted off of image, with highest transmission normalized to 1.0. Right plot shows deblurred data, also with a

background subtracted and high transmission scaled to 1.0. Difference from design value shown with orange and
green dashed.

Also, at these smaller length scales, the noise plays a large role within the interior of the wedge
steps. When the noise figure appears to be well-controlled, the edge seems nearly as blurred as
the original image.

In Figure 21 and Figure 23 I show the results corresponding to the comparisons of the larger
wedges above, for measurement of the small wedges. Wedge 1 is located near the center of the
image. Wedge 2 is located near the edge of the collimation. With the raw data, the mismatch of
the measured compared to the design value is significantly worse than was observed for the large
wedges. Even when a background is subtracted and the 100% transmission is scaled, it is
impossible even to match one wedge accurately, much less both at the same time. The difference
between the design and measured values is larger than the sigma associated with the wedge value
measurement. On the right of Figure 21, I graph the results of measurement after deblurring. For
this case, the difference between measured and design value is right about equal to the sigma of
the measurement. When the uniform background and scaling are applied, the results become
significantly better.

In Figure 23 I show the same results, but now the deblur process in the right side graph has
been applied to the images with the room glow subtracted. As above with the larger wedges, the
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measured values of the deblurred wedges are significantly closer to the design values than the
sigma of the measurements. In addition, with a background subtract and scaling, some wedge
values improve, while others get worse; overall, the result of subtraction and scaling seems not to
improve these results significantly.

It should be noted that appears to be a slightly greater discrepancy between the two wedges,
which I am inclined to ascribe to the fact that one is significantly closer to the collimation of the
image. That being said, I would still claim that the deblurred results are still acceptable, given
the constraints imposed by the presence of noise in the detection system.
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Figure 23: Plots of measured vs. design values for two of the small step wedges in TO1. Left plot shows the raw
data in red and blue, with the variance in dotted. In addition, orange and green show the results for a constant
subtracted off of image, with highest transmission normalized to 1.0. Right plot shows deblurred data with the room
glow subtracted, also with a background subtracted and high transmission scaled to 1.0. Difference from design
value shown with orange and green dashed.

Test Object 2: Prism Wedges

The prism wedges can be studied in much the same way as the step wedges. I show the
transmission plots of lineouts for the raw and deblurred TO2 in Figure 24. As expected, the
deblurred images can be matched well by subtracting a uniform background, and scaling the
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Figure 24: Plots of measured vs. design values for lineouts of the two wedges in TO2, comparing raw with the
deblur of the room glow corrected images.
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100% transmission to 1.0. The accuracy of the restored image compared to the designed value is
around 1% of the transmission value near the thin part of the wedge, but this slowly gets larger,
until the signal-to-noise is equal to 1, right about 0.001 transmission, and the delta between
measured value vs. design value begins to intersect the design value. This is a nice illustration of
the signal-to-noise reducing to 1 at low transmission parts of the image. Note, also, that at the
low transmission values, the curves from the deblurred wedges show transmission higher than
the design value. This is a result of the fact that the detection system does not allow negative
values, so we are, in some sense, folding the noise distribution over on itself near zero
transmission.

As with the step wedges, the restoration of the prism wedges displays the same consistency
of average value. At the transition from wedge to no wedge, there are varying degrees of
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Figure 25: Plots lineouts vs. position for the TO2. Graph on left shows lineout of an averaged set of lines throughj
both prism wedges. Right graphs shows the thinnest part of the steepest edge of the deeper prism, as it transitions to
no wedge.

overshoot. The positive nature of the images is shown in the lineout in Figure 25. The noise of
the deblurred image “kisses” the design value, but a slight background subtraction is needed to
make the average value equal the design value. At the transition, the degree of overshoot is seen
to change as the noise control parameter is varied. For this illustration, the restoration associated
with the 0.01 constant shows less than a 1% overshoot, with about 9 pixels after the transition
before the overshoot settles back to the 100% transmission level (1.0.) This sits well with the
MTF graphs above, where the highest “useable” frequency was around 0.1 / pixel. This inverts
to 10 pixels. Again, as with the hard edge, the overshoot seems to be systematic, and suggests
that there may be a straightforward way to handle within images.

Presence of “Room glow”

As indicated above, there is evidence that, to first order, our images have a uniform
background that is proportional to the total exposure of the image. This background I have
labeled “room glow,” implicitly assuming that its origin is scattering of the beam from whatever
is in the path of the beam. (These experiments typically where performed with the “get lost”
hole in the camera box covered with a plate, e.g.) In order to determine the proportionality
constant, it is simply necessary to observe the values obtained when deblurring the rolled edge.
Because the edge image has very close to one half the exposure of the flat field image, the dark
side of the edge will deblur to the background value associated with the edge, and the bright side
will deblur to 1.0 plus the edge background value, - the flat field value, which should be twice
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that of the edge image. In other words, the bright side of the edge will be as much less than 1.0
as the dark side is greater than 0.0. Clearly, adjustments in the actual data must be made to
accommodate shot-to-shot variations in beam dose.

Summary of Evaluation Results

To begin with, the use of Tikhonov regularization in the one-step deblur or “restoration”
process is clearly the best of the three methods outlined above, based on the consistency of
deblur values of step wedges as the noise control parameter is varied. In addition, it is possible
to control the noise so that the sigma associated with the deblurred image is comparable to, or
smaller than, that associated with the raw data within a single step, while still improving
accuracy of the measured value of the wedge. This fact is true down to transmission levels
where the signal-to-noise level is less than 1. The only part of the images where greater care
must be taken is in the presence of “edges,” i.e. discontinuities in the second spatial derivative of
the transmission value. One can think of this as related to a spatial resolution issue — i.e. the
“overshoot” associated with the edge restoration limits the accuracy as one gets closer to the
edge.

Continuing Research: Issues to be Addressed

The primary issue of obvious concern is the overshoot at edges and discontinuities of the
gradient in the restored images. For a region that changes from one gradient to another suddenly
(i.e. an effective o-function second derivative,) the overshoot under reconstruction appears
repeatable and predictable, even though the restoration may not look satisfying. To quantify this
statement, though, a more thorough investigation of the reconstruction of edges, and
transmission gradients, is warranted. It should be noted that, as the noise is controlled with more
strength, the overshoot diminishes, as well as the steepness of the reconstructed edge, and the
length scale over which the change in transmission slopes is fitted gets larger. This points
towards some sort of limiting procedure which could be applied to the problem, and which I will
explore in a separate paper.

Conclusions

The single step restoration process, described by equation (6), shows clear advantages over
the other two methods which have been used as part of the standard data analysis suite for
radiographs. In the case of step wedges, the technique is more than adequate to provide the
accuracy desired as part of the experiment. Further improvements will entail improvements to
the actual data collection hardware. Because of the systematic nature of the overshoot of edges
under restoration, it should be possible to improve the quality of hits aspect of the deblurring
process as well. This will be the topic of a second paper.
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Appendix: Details of Restoration Implementation

Below I outline the step-by-step process for processing the radiographic image data. In what
follows, I, refers to the raw data image, F'is the flat field, E is the edge image, P is the PSF
image, I, is the processed image, M is the mask which follows the collimation in the image,
and O is the “actual” image of the object.
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Subtraction of Dark Field

Along with each shot, a “darkfield” is taken, which is a data read of the CCD detector, with
no x-rays applied to the system. This image is subtracted off of the data image:

Ipmc_DF = Iraw - IDF
Eproc;DF = Eraw - EDF
proc_DF = an - FDF

Destarring of Images

X-ray photons that strike the CCD array directly can cause pixels to saturate, giving the
appearance of “salt-and-pepper” in the image. The effect of this is removed prior to further
processing using a median filter. At each point, a neighborhood around the point is compared. If
the value at the point is outside of several standard deviations of the average, the value of the
point is assigned to the median of the neighborhood. Several passes of this process appear to be
effective at removing the stars in each of the images:

Iproc_DS = DeStar(Ipr<1c'_DF)

Correction of Tile Glow
The crystal detector which converts x-rays to visible light is pieced together, and there is a
“glow” associated with visible light scattering within each separate panel of the detector. This

“tile glow” is approximately proportional to the total signal within the tile. This signal removal
is applied to each image.

IprochG = Z(IprochFan - kT J.IprochFan)
n

Subtraction of Room Glow

In a way similar to the tile glow removal, the room glow is removed in each image:

Ipmc_RG = (Iproc_TG - kR J. Ipmc_TG)

Flat Fielding of Images
At this point, the detection spatial dependence, as well as beam profile, is removed by

dividing by the flat field image in a pixel-by-pixel fashion. The flat field image is constrained so
that no pixel value is less than 1:
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Determination of PSF from Edge Image

With this step, the edge image is used to determine a line spread function, or LSF, by taking
the derivative across the edge. A subtle point here is to recognize that the image of the edge is
not an infinite edge. The process of going from LSF to PSF via derivative of the edge implicitly
assumes an infinite edge. To account for this, a synthetic edge is forward blurred with the PSF,
the synthetic ESF compared to the data, and adjustment are made as needed to get a better PSF.
Several iterations usually will do the trick.

Because of the noise in the image, several rows of the edge image are averaged, and a
functional fit is applied to the edge, which allows for a smooth derivative. The fit used assumes
a symmetric LSF. This LSF is then Abel inverted to give the PSF. The image of the PSF is then
made from this PSF by assuming axial symmetry, and creating an image of PSF(»). Implicit in
this procedure is the assumption that the blurring of an object radiograph is the same as the
blurring of an edge:

Edge= Average(E,,. v)

d(Edge)
dx

LSF =

PSF = Abel " (LSF)

P=PSF(r)

I have found that, for the edges that are typically measured, a functional form that works well is:
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Note that, in keeping the analytic forms, computer time is minimized, and the Abel inversion
process does not give the “limning” at large » because of the implicit truncation of the LSF due
to a finite data set.

Restoration of Image

Finally, with the PSF in hand, I can perform the restoration of the image. To begin with, the
“convexity” across the image associated with the blurring of the flat field has been removed by
division of the flat field. This convexity is replaced by forward blurring a synthetic flat field,
and multiplying the flat fielded image by this. Second, the blur information outside of the
collimation is, simply put, not there. To approximate this information, the image is masked at
the collimation boundary, and forward blurred using the PSF. The blurred image outside the
mask is then pasted to the processed image, and the deblur proceeds:

2 =M-P

FSynthlur

1 F,

proc _Final = Iproc_FF ¢ SynthBlur
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