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Title: Visualizing Trade-ofts Between Multiple Objectives: Tools to Help Decision-Makers 

Invited Speaker: Christine M. Anderson-Cook, Los Alamos National Laboratory, Los Alamos, 

New Mexico, USA 

Abstract: 

When decision-makers make important decisions, they are often forced to balance 

competing objectives that require weighing the importance of different alternatives and 

assessing the merits of different choices. We present a suite of graphical tools, based on the 

Pareto front multiple criteria optimization method, which allow the trade-offs between choices 

to be compared and assessed. The tools are presented in the context oftwo examples: a 

designed experiment where good estimation and protection against model misspecification are 

considered; and a resource allocation problem about what future data to collect when 

evaluating reliability for a population of systems based on several different data types. 
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A Very Brief History of Design of Experiments 

Textbook designs 
- only some N 
- regular regions 
- good general 
performance 

"Optimal" designs 
- flexible N, region, 
criterion 

Criterion 2 

"Multiple Criteria" designs 
- flexible N, region 
- consider multiple objectives 
- Pareto front based 

A I 
• LosAlamos 

CornEllter Power increasing dramaticallY :> 
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Two Non-Standard Design Problems 

• Problem 1: Run a 14-run designed experiment to estimate 
the model: 
Y = A + ~A + ~B +~C + ~D+ ~E 

& - N(O,a 2
) 

+ fl AB AB + flAC AC + flBD BD + flCECE + & 

We are worried that some of the other 2-factor interactions 
(AO,AE,BC,BE,CO,OE) might be active 

• Problem 2: We have already collected data to estimate 
system reliability using component and system data. Now 
we can collect more data, and want to leverage current 
understanding of the system to guide this choice 

• What design should we run? 
• What basis should we use for choosing? 

Outline 

1. Motivation - why should we consider more than one 
. objective during design construction and selection? 

2. Pareto front approach (2 criteria) 

3. Example 1 revisited 

4. Example 2 revisited 

5. Conclusions 

.Q Alamos 
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Metrics for Good Designs 

1. Result in good fit of the model to the data 
2. Provide good model parameter estimates 
3. Provide good prediction throughout the design 

space. 
4. Provide an estimate of "pure" experimental 

error. 
5. Give sufficient information to allow for lack of fit 

test. 
6. Provide a check on the homogeneous variance 

assumption. 
7. Be insensitive (robust) to the presence of 

outliers in the data. 
8. Be robust to to errors in the control of design 

levels. 
9. Allow models of increasing order to be 

constructed sequentialfy. 
10. Allow for experiments to be done in blocks. 
11 . Be cost-effective. 

Good estimation 
and prediction for 
chosen model 

Ability to test 
various aspects of 
the model 

Protection if things 
go wrong 

Flexibility to run and 
expand experiment 

Cost 

Anderson-Cook RSM (2009) 282 

The Weakness of Single Criterion Optimization 
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For Example 1 Design 
----------------------------

• If the model is correct: 
• Good estimation of model parameters 

• If the model is incorrect (some of AD,AE,BC,BE,CD,DE 
active) 
• Estimates for terms in model minimally affected 
• Estimation of variance minimally affected 

How do we quantify this? 

A 
• Los Alamos 
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Example - Choosing a "Best" Screening Design Based 
on Multiple Criteria 

Design requirements: 
• N = 14 runs 
• 5 factors 
• possible factor levels (-1, + 1) 
• estimate all 5 main effects (A - E) 
• estimate the following interactions: AB, AC, BD, CE 

experts suggest that remaining interactions unlikely 

32 possible design points: 
(±1 , ±1 , ±1, ±1 , ±1 ) 

A 
• Los Alamos 

N ATION .. l LAIOItATORY 

Operated by the Los A\amOS National Security, LlC lor the OOEINNSA 

.. ------. ..------. tH----. - ! .+--.! 
': I I I: I' 

i .---j--. i _----j--. 
.~-----." .~-----." 

Slide 7 

4 



Criterion to Consider - (1) D-Optimality 
-

Quantifies how well model parameters are estimated for the model 

~=A+~A+~B+~C+~D+~E+ 

flABAB + flACAC + flBDBD + flCECE +£ 

D-criterion 

maxImIze 1 M 1=1 X'X 1 / N P 

! 
p = # parameters 

design matrix expanded to model fonn 

*inversely proportional to the square of the volume of the 
A confiden~e region on the regression coefficients 
• LosAlamos Slide 8 
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Criterion to Consider - (2) Bias on Model Terms 

Assumed model: y = XIPI + E 

XI E {A, B,C, D,E,AB,AC, BD,CE} 

Model to protect against: y = XIPI + X 2P2 + E 

X 2 E {AD,AE,BC,BE,CD,DE} 

Bias if model incorrect: E(P,) - E(P,) = [PI + (X;XI r l X;X2P2] - PI 

E(SSbias) = E(IJ;A'AIJ2) = AP~ 
= E( tr( A' AIJ21J;» 

A = 0-:, tr(AA'). 

If these exist, then size unknown 

Therefore, minimize tr( AA') 
• Los Alamos 

NATIONAL LA.OItATORY UNCLASSIFIED 
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For same Xl E{A,B,C,D,E ,AB,AC, BD,CE} 

X 2 E {AD, AE, BC,BE, CD, DE} 

Bias on estimate of error, 

E(MSEuser )-a-2 = P~ [XIA-X2 HXIA-X2 ]P2 / PI 

= P~R'RP2 / PI 

Therefore, minimize tr(R' R) 

A 
• Los Alamos 
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Process for Selecting a Best Design 

• The process for finding a best design for our specific 
goals can be summarized by a multi-stage algorithm: 

1. Create designs, and measure the criteria for all designs. 

2. Construct the Pareto front, which consists of all designs 
which are not inferior to (Pareto dominated by) any other 
designs [OBJECTIVE] 

3 . Select a best design from the Pareto front which best 
suits the needs of the experimenter [SUBJECTIVE]. 

Pareto Aggregating Point Exchange (PAPE) Algorithm: 
efficiently creates designs and builds Pareto front 

.Q Alamos Lu, Anderson-Cook, Robinson (2011 Technometrics) 
NATIONA L lAlOUTOlty UNCLASSIFIED 
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Pareto Front for Example 1 
~ • ... 
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Scaled 0 
on Pareto front 
(6.5 hours of run 
time on desktop) • 0 & tr(AAj 

• 0 & tr(R'R) 
• tr(Mj & tr(R'R) 
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System Reliability Case Study: What new data to collect? 

• Given the results of an existing rel iability analysis based on 
multiple sources of data, what new data should we collect 
to maximally improve our estimation? 

,.-----..,.......- Cost of new observation 
6 

Inltl.1 Rell.bliity Estimate. (95% Credible Interva l) 
0.4630 0.5781 0.6893 

• 
System 

12 15 20 24 30 27 

Amount of original data 

Total cost: 325 units 

• What new data should we collect? 
• What basis should we use for choosing? 

Goal of New Data Collection for our Example 

• Engineers would like to improve the precision of 
estimation for the following 3 quantities: 
• System reliability estimate 
• Mechanical Sub-system 
• Electrical Sub-system 

• Focus on the width of the credible interval: 
Goal: Reduce the width of each ofthese 3 
intervals as much as possible 

Baseline: 
Initia l Reliabi lity Estimate. (95% Credlble lnterv.l) 

0.7678 0.8737 0.9519 
Width: 0.1841 Mechanical . • 

0.5510 0.6617 0.7687 
Width: 0.2177 Electrical • 

A 0.4630 0.5781 0.6893 Width: 0.2263 • LosAlamos • NATIONAL U.IOIIATOIIY System 
Slide 15 
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Allocations Possible 

25 possible allocations: 
-All have same total 
cost 
- Good variety of 
where data are 
collected 

A . LoSAJamos 
NATIONA L l .... OIli ... TOlty 

operated by the Loa Alamos National Security. LlC for the OOE/NN: 
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0.1841 0.2177 0.2263 

Results of Analysis for 25 Allocations 

0 0 0 0 0 0 0 0 10 0.182896 0.208562 0.212798 

0 0 0 0 0 0 20 0 0.155939 0.217:;93 0.216135 
0 0 0 0 0 0 0 2" 0.186184 0.188425 0.205978 

0 0 0 0 0 10 0 4 0.167084 0.212652 0.213953 

0 0 0 0 0 0 0 12 0.183102 0.196996 0.208728 

0 0 0 10 12 0.169521 0.201595 0.208982 
15 15 0 0 0 0 7 0.160029 0.212583 0.211654 

0 15 15 15 15 0 0 8 0.184335 0.193014 0.20547 

7 0 0 0 9 0.163004 0.212A95 0.212505 

0 0 10 0.176321 0.202387 0.209188 

0 0 6 11 0.184579 0.196233 0.20n69 

0 0 0 0 0 12 0.171135 0.204599 0.20955 

6 7 0 0 13 0.172838 0.202!l6S 0.208023 

16 I" 0 0 0 10 0 14 0.150264 0.217789 0.214795 

8 9 10 0 15 0.158434 0.206712 0.20864 

0 18 16 12 I' 0 12 16 0.186341 0.185205 0.202329 

0 12 17 0.1n74 0.192642 0.203601 

0 0 0 5 12 11 0.166135 0.20157:; 0.207661 

0 12 19 0.178806 0.19274 0.205274 

0 9 10 20 0.169961 0.199462 0.207632 

7 0 0 0 10 21 0.159256 0.209364 0.211409 

30 30 0 0 0 0 0 22 g l~~g~ I g ZlZHl Q·~I~E1 
0 0 30 30 30 30 0 0 23 0.186722 I 0.18047 1 0.19=1 Slide 18 
15 15 15 15 15 15 0 0 24 0.163415 0.197407 0.203219 

Pareto Front for 25 allocations 
0.18 0 .19 0.20 0.21 
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• Example 3 (Screening Experiment) : 
• O-optimality A [maximize IX'XI] 
• Good estimation of purejjrror [maximize dfpE ] 

• Good estimation of lack~f fit [maximize tr(R'R) /(m-p)] 

• Example 4 (Robust Parameter Design Experiment) : 
• Good estimation of terms affecting the mean [max Os-mean] 
• Good estimation of terms affecting the variance [max Os-variance] 
• Size of experiment [min N] 

• Example 5 (Split Plot Design): 
• Good estimation of terms when WP to SP variance ratio is 

unknown [max 0(1) , max 0(10)] 
• Size of experiment [min N] 
• Number of Whole Plots [min #WP] 

Conclusions 

• Looking at multiple characteristics can lead to better choices of 
which design to run (do well for several priorities - not just one!) 

• Oifferent designs have different advantages and risks - select 
criteria to consider which best capture the important considerations 
for your experiment. It is now possible to focus on what is most 
important to the experimenter - and do well on those objectives. 

Slide 22 

• The Pareto front approach can divide possible designs into (1) those 
consider further and (2) those to el iminate, because they are 
dominated by other better choices. This objective step selects which 
designs are sensible to consider. 

• Once the Pareto front has been selected, there are multiple ways of 
selecting the final design - but the key is to examine and 
understand the trade-offs between the choices. This subjective 
phase allows experimenter needs to be emphasized 
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