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H. Matt Reiche, 214237 11/28/2011

Advanced Sample Environments for Neutron Diffraction Experiments

Abstract

A basic introduction to neutron scattering is presented. Current state-of-the-art of sample environments
is compared with examples of Neutron Experiment User Facilities such as LANSCE, HFIR and SNS. A
detailed explanation is given regarding the existing sample changer on the HIPPO flightpath at LANSCE.
A robotic arm is the core of a new concept of a sample changer for HIPPO outlined in this presentation
as well. A novel resistive furnace is presented using a graphite tube to reach temperatures in excess of
2300°C. The last sample environment presented is a load frame combined with a furnace up to 1000°C.
Rotation in both furnaces allows for the study of in-situ texture development. As an application of the
graphite furnace the formation of Uranium carbide is elucidated.
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Neutron Properties

Properties:

No charge

Almost no electric dipole moment

Spin-1/2

Short range nuclear
force(10°m)
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Neutron Radiation Properties

Non- ionizing
* Neutrons tightly bound in nuclei - =
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Neutron Scattering

Born approx. describing scattering of neutron by a

. . ,
single nucleus: V() = 2 7th bS(r)
m

* bis material dependent coefficient called Scattering

= S retron spin
+ binc . [ .. ..

/ / \/[ ([ +1) nucleus spin
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Background
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Neutron Scattermg Types

[ Coherent scattering ] [ Incoherent scattéring
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Neutron Diffraction
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Neutron Radiography and Tomography
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Neutron Radiography and Tomography

A rose in a lead container used for transporting
radioactive materials.

Vogel, Priesmeyer, 2006
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Thermal Neutron Flux (n/cm?-sec)
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J —PARC after Earthquake
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Any combination

Sample Environments:

Cryogenic Temperatures:
» Liguid He Cryostats (“Orange Cryostat”) ~ 1.5 K
> Closed Cycle Refrigerators (Joule expansion cycles) ~ 2-4K
» Dry Dilution Fridge ~ 25mK
High Temperature/ Furnace:
» ILL-Furnace (V: ~1100°C; Nb: ~1800°C)
Magnetic Fields:
» Pulsed
» Continuous: <16T superconducting (SNS)
Pressure: Vacuum - 20GPa = 200kbar

Controlled Atmosphere:
» Specific gas composition and pressure
» Humidity level
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SMARTS Furnace

Max. Uni-Axial - .
~ deformation = 250kN - i
Max. T = 1500C SRR




Equivalent

SNS, TN, USA POWGENS3
ISIS, UK ENGIN-X
ILL, France XX
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300 MeV protons
With H, cold source

Lujan Center at LANSCE
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High Pressure — Preferred Orientation

Rotating a
. . Collimator g;Sr?els

Environmental
sample chamber

90°
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40°
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HIPPO: New Detector Arrangement

Sample Chamber Ring of Detector Panels at

40°, 60°. 907, 120", 145°
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HIPPO Sample Changer

* H.M. Reiche, S.C. Vogel, A versatile automated sample changer for
texture measurements on the high pressure-preferred orientation
neutron diffractometer, REV SCI INSTRUM 81 (2010) 93302

* Need: average measuring time 15min/orientation -> 45min/sample

* Availability: No commercial available sample changer for neutron
diffraction experiment. Custom build versions:

— Shah, 1991, Physica B

— Rix el al., 2007, Rev. Sci. Instrum,
1 No preferred orientation / texture
 space limitations
d => Custom Solution necessary!
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High Temperature Furnace

* Heat distribution:
1. Conduction ¢=-kVT
2. Convection
3. Radiation
 Sample protection from Oxidation:
1. Cover Gas
2. Vacuum

* Safety Interlock
1. Water, Vacuum loss
2. Over Temperature at Multiple Locations

27



Beam Alignment

Alignment with Image Plates:
1. 1>’/Gd irradiated with Neutrons
2. B-particles with 5um range in silver halide

3. Capture reaction results in semi-stable
excitation state

4. De-excited by laser stimulation

7/



Max T=2300°C
Max Rate=10°C/s
360° Sample Rotation

50mm Sample Height
Adjustment
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Load Frame with Furnace and Rotation

Buckling of Quartz

Max. T = 1000°C (Quartz Push Rods, Vanadium)
Max. uni axial stress = 2.7kN (Rotation Stage)
Sample Deformation via Motor Steps

Sample Pressure via Load Cell

LabView Controlled

3



Rotation

Stages

N

.-

b

acuum Feedthroughs

Load Frame

Load Frame

— Quartz Push Rod

Heating Element

Heat Shields iIs :

Fused Quartz Push Rods:

eAmorphous -> no Bragg Reflexes

*High Temperature Resistance (~1100°C)
*High Compressive Strength (1100MPa)
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Uranium Carbide

* Significance:

— Nuclear Fuel Rod in Reactor
* Melting Point:

— U:1132°C

— UC: 2790°C

1Yy



Diffraction Pattern

Run# 20552; Winkler, dU+C.Ambient, ca.20C
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Overview of Phase Changes in Uralu
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Neutrons vs. X-rays

Fe S S A Mg O

b ..Qooo o
Neutrons. . o O @ .. ..;j::ﬁ

(3}

H

Atom Bound Coh. Scatt. Incoherent scatt.
H -3.7 80.3
D 6.7 2.1
C 6.6 0.0
O 5.8 0.0
N 9.4 0.5
S 2.8 0.0
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Nuclear vs. Magnetic Scattering

Nuclear scattering
1

S(Q.0) =~ [dr ™~ p(0)p (1)

27th N

S7(Q, ) =

Nt 7

Magnetic scattering
| P . .

——Jdt e — 3R < §2(0)Sh.(2) >
2 ngz'e g (0)Sk.(7)
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Scattering Factors f, cont’d

* For x-rays the magnitude of f is proportional to Z

* For neutrons nuclear factors determine f, thus no regular with Z (different
isotopes can have different f s)

X-rays ;
X _cays (sin6)/A=05R" 10%m.5 |
£5r
'.‘-u 4t
o4- )
' g
55k = 3}
= £
£ Potential -
o2 N Neut scattering =4
g Sc 5%Fe eulrons  fcontribution 5 2
£l r | / " s
2 ML AN g
§ 0 ‘A ‘‘‘‘‘ 1 1 1 1 L. i ] 1 ) I
“ /3. 20 40 VﬂéoV O 1}
—1;1}1 v n M’Z’Ni romic weld (i) Neutrons
0 R S B T
GinB)/A 10%m:t

For neutrons conventionally f=b
(Scattering length - constant for an element)



Neutron Reflectivity

Snell’s Law:

Index of refraction:
n=1-0+if n,cos 6, =n,, cos 0,,
Q — kf o kl
1 — — 2
k k| =k, |= "
A Q=ks-k /1
< ef ~
< ei - 4
T .
‘ 0.|=——sin 0
A 4 /1

42



Intensity recorded by detector from a powder

[ e S(Q) = A[LISFI[GIM][TF][LF][AF][PO][EE]|AA¥]

— I = Incident intensity
— [SF] = Overall scale factor (det. efficiency, everything else you forgot)
— [G] = Geometrical factors of instrument and sample (e.g., density)

— [M] = Multiplicity of reflection [# cooperating planes, ¢.g. 8 (111)]

— [TF] = Debye Thermal Vibration Factor = ¢2V = - —f ( : ](Slzej
— [LF] = Lorenz geometrical factor LF = 1/(2sin’6cos6) [A ﬁxedf
LF =d*sinB [TOF]; LF = 1/sin?26 [plate geom., A fixed]

— [AF] = Absorption factor AF = eA* [varies as 1/v] [AF very large for x-rays,
small for neutrons except Gd, B, Li, Cd, ...]

— [PO] = Preferred Orientation factor (compensates for non-random crystallite
orientation in sample)

— [EE] = Primary extinction correction [non-uniform illumination of all reflecting
planes]

— [AA*] = Complex square of scattering amplitude

43



Neutron Detectors

e S3He+n —3H +H + 764 keV
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Distance Traveled from Moderator [meters)

Frame overlap problem
at pulsed neutron source
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150 Time {ms)

Hyer and Pynn 1990
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Neutron Guides

e Refractive Index

2
n=1- A N-b,,
27
* Critical Angle
& = i\/N .bcoh
7T

* Concave(!) lenses (Eskildsen et al., 1998)
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Time Of Flight

Equating quantum mechanical momentum (de Broglie relation) with
classical mechanics momentum, we find:

h L ht
Do, = Bk =my = S —=m— <> A=—o
Pom Pcu A ; ml
With Bragg’s law, this becomes
. ht h
A=2dsin=—— ¢ d = — - ¢
mL 2mLsin®
const

7



U-C Phase Diagram

Weight Percent Uranium

Temperature, °C
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Health Physics

* 74 Bg/g (74 disintegrations per second per
gram), the limit accepted for shipping material
as “non-radioactive.”
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