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Smart Grid Data Integrity Attacks
and Grid Operations

Annarita Giani, Russell Bent
and Mark Hinrichs
Los Alamos National [.aboratories
Los Alamos, NM, 87545

Abstract—There is an cmerging consensus that the nation’s
electricity grid is vulnerable to cyber attacks. This vulnerability
arises from the increasing rcliance on using remote measure-
ments, transmitting them over legacy data networks to system
operators who make critical decisions based on available data.

Data integrity attacks are a class of cyber attacks that involve a
compromise of information that is processed by the grid opcrator.
This information can include meter readings of injected power
at remote generators, power flows on transmission lines, and
relay states. These data integrity attacks have consequences only
when the system operator responds to compromised data by re-
dispatching generation under normal or contingency protocols.
These consequences include (a) financial losses from sub-optimal
economic dispatch to service loads, (b) robustness/resiliency losses
from placing the grid at operating points that are at greater
risk from contingencies, and (¢) systemic losses resulting from
cascading failures induced by poor operational choices.

This paper is focussed on understanding the connections
between grid operational procedures and cyber attacks. We first
offer two examples to illustrate how data integrity attacks can
cause¢ cconomic and physical damage by misleading operators
into taking inappropriate decisions. We then focus on unobserv-
able data integrity attacks involving power meter data. These are
coordinated attacks where the compromised data are consistent
with the physics of power flow, and arc therefore passed by any
bad data detection algorithm. We develop metrics to assess the
economic impact of these attacks under re-dispatch decisions
using optimal power flow methods. These metrics can be use to
prioritize the adoption of appropriate countermeasures including
PMU placement, encryption, hardware upgrades, and advance
attack detection algorithms.

I. INTRODUCTION

Cybersecurity of critical infrastructures in general, and the
electricity grid in particular, is a subject of increasing research
interest [9], [10]. The economic consequences of successful
cyberattacks on the electricity grid are potentially staggering.
Energy Management Systems [EMS] are ubiquitous in electric
grid operations and present potential targets for cyberattacks.
These systems are based on SCADA [Supervisory Control
and Data Acquisition] hardware and software components
and are used to supervise, control, optimize, and manage
electricity generation and transmission systems. As the grid
evolves, legacy SCADA systems will co-exist and inter-
operate with new components [ex: smart meters], networks
[ex: NASPInet] [11], sensors [ex: phasor measurement units
ot PMUs] [14], and control devices [ex: intelligent relays] [13],
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[12]. Tomorrow’s Smart Grid will incorporate increased sens-
ing, communication, and distributed control to accommodate
renewable generation, EV loads, storage, and many other tech-
nologies. This substantial increase in actionable data transfers
will make the Smart Grid more vulnerable to cyber attacks
and is, in turn, driving the urgency of cybersecurity research
for electricity grids.

Many recent papers have explored various aspects of cy-
ber attacks on SCADA/EMS systems that impact the key
function of state estimation. These include computation and
characterization of the attacks, minimization of the number
of compromised meters, and various detection and mitigation
strategies [18], [16], [19], [L7], [15].

It was shown in [18] that the attack strategy identified in
[21] can be equivalently characterized by the property that
the power system becomes unobservable by the removal of
the compromised meters. See [20], [22] for a comprehensive
discussion of power system observability.

Much of this research has been focussed on identifying and
classifying cyber vulnerabilities, and developing countermca-
sures. There is a very limited body of work (to our knowledge)
on measuring the consequences of these attacks.

It is important to develop approaches to measuring the
consequence of the unobservable attacks when resource limi-
tations do not allow full deployment to cover all unobservable
attacks. Available countermeasure resources must be used to
thwart the most damaging attacks. This paper is a first attempt
to understand the consequences of different unobservable
cyber attacks.

This paper is focussed on understanding these connections
and developing quantitative methods to classify cyber attacks
on the basis of their consequence. We first offer two examples
to illustrate how data integrity attacks can cause economic
and physical damage by misleading operators into taking
inappropriate decisions. We then focus on data integrity attacks
involving power meter data. Of particular importance are un-
observable attacks. There are coordinated data integrity attacks
In this paper we first survey cxisting approaches to smart grid
cyber attacks, summarize grid operational procedures that are
relevant in the context of these attacks, and offer examples
of how the procedures can cause economic and/or physical
damage. We then focus on data integrity attacks involving
power meter data, and develop metrics to assess their economic
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impact under re-dispatch decisions. These metrics can be
usei to prioritize the adoption of appropriate countermeasures
including PMU placement, encryption, hardware upgrades,
and advance attack detection algorithms. Our approach to
security assessments goes beyond the standard n-1 model
which assures the normal operation under the failure of one
grid element.

The remainder of this paper is organized as follows: In
Section II we summarize key results on unobservable attacks
and their countermeasures, and in Section III we survey
grid operations under normal and contingency conditions.
Following this, in Section IV we present two examples that
illustrate consequences of unobservable attacks in the context
of operator actions. Section V contains our main results:
metrics to assess the economic impact of unobservable attacks
using optimal power flow methods. We draw conclusions and
close with a discussion of future research directions.

II. SECURITY ATTACKS AND COUNTERMEASURES

Our paper {3] addresd 'unobservable attacks where the
number of meters compromised is low. We offer an efficient
algorithm to find all unobservable attacks involving the com-
promise of exactly two power injection meters and an arbitrary
number of power meters on lines. We call these type of
attack k—sparse when they involve & meters. Our approach
differs from all previous approach since it only consider the
underlying network graph so it can be applied in the case of
DC or AC. We then give canonical forms for 3, 4, 5-sparse
unobservable attacks in term of the topology of the graph of
the power system. We consider strategic placement of Phasor
Measurement Units (PMUs) as countermeasure.

The advantages of PMUs have been investigated in many
articles. For example [5] considers the placement of Phasor
measurement Unit to improve state estimation results in terms
of minimizing the state estimation errors. Optimal location of
PMUs using genetic algorithm for complete and incomplete
observability have been formulated in [6]. A comprehensive
literature review on PMU placement effort can be found
in [7]. Comparison between different placement algorithms
have been studied. In [8] Integer Linear programming and
Matrix Manipulation are considered. They conclude that ILP
is the best option since converges to the optimal solution very
quickly both for small or big networks.

We assume that data coming from these device is reliable,
for this reason they are considered known secure sensors [4].
We show that p-+ 1 PMus are sufficient to thwart a collection
of p attacks and we give an algorithm to determine their
placement.

If the number of PMUs available is limited we need to
make the choice on which are the attacks to neutralize frst.
This choice depends on which attacks cause more damage. So
we want to assign a metric to attacks based onconsequences.
Data integrity attacks do not cause any immediate physical
or economic consequence since they consist of manipulation
of data. But compromised data are part of the information
available to the operator to dispatch loads and generation. Bad

decisions, based on bad data, can cause line congestions, loads
not met or generators to run over their nominal capacity. A
comprehensive analysis of cyber security threats to power grid
must therefore include operating practice, both under normal
and contingency operations.

The following sections describe how grid operators take
actions and how they can be misled by corrupted data.

II1. GRID OPERATIONS

ISOs and Regional Transmission Organizations (RTOs) are
not-for-profit organizations responsible for the day to day
reliable operation of the electric power system in a region.
They dispatch generation, schedule for economic advantage,
identify equipment outages, redirect power to manage conges-
tion, coordinate with the neighboring areas, facilitate effective
markets and promote infrastructure expansion. In order to
maintain system reliability, achieving equal treatment of all
market entities, these organizations are independent of utilities
or other market participants [1].

An American ISO or RTO is under the direction of the
Federal Energy Regulatory Commission (FERC). The North
American Electric Reliability Corporation (NERC) is a larger
organization that also includes a Mexican utility and several
Canadian utilities [2]. The configuration of the generation
and tr@sion companies has changed over time and now
there are 10 distinct member-regions in NERC. The Western
Electricity Coordinating Council (WECC) covers the western
part of the United States including California.

Control centers are designed to help system operators fiake
decisions. Advanced software and visualization tools are used
to provide the operator with the timeliest and most accurate
grid data. System Operators follow a set of operating proce-
dures that establish criteria for actions during particular events.

A. Data Available

Grid operators rely on an enormous amount of real time
and historical grid information. The ISO monitors data from
the buses and substations in the region to maintain reliable
operations and determine what energy source will be the
most economical for any given location at any given time.
The grid data available includes, at minimum, the apparent,
real and reactive power, voltage, current and frequency at
every bus and line terminal, and the power flows that each
transmission line is carrying. Operators constantly monitor
critical system parameters, on numerous computer display
screens. Data arrives to the Supervisory Control And Data
Acquisition (SCADA) and Enegy Management System (EMS5)
master stations from the numerous Remote Terminal Units
(RTU) including other master stations and RTUs that collect
data from the field located in the substations and other remote
power system locations.

B. Software Tools Available

Automated modeling tools give the operator a compre-
hensive view of the grid and how it evolves from dynamic
occurrences. A state estimator analyzes real-time conditions
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of the grid. Tens of thousands of data points from the
power grid are fed into computer algorithms to develop a
series of contingency analyses for potential events that could
compromise system reliability so that the operator knows
how the grid evolves in real time. As an example the Mid-
west ISO state estimator collect data from 30,000 buses and
87,000 control points every 30 seconds [Add citation]. Video
projection systems, alarming display systems show real-time
power-grid data from thousands of endpoints that assist the
operator in decision-making to ensure safety and reliability
of the transmission system. Power flow models describe the
physics of the system and include real and reactive power,
voltage angles and magnitudes. They are used to check the
feasibility of a dispatch and to optimize real and reactive power
dispatch. Other important software tools are load forecasting,
unit dispatch and economic commitment, voltage and transient
stability analysis, intermittent and renewable resources mod-
eling. Each ISO has information about day-ahead real time
markets through tools like the real time market look ahead
and the day-ahead market to schedule generation with lengthy
start-up times.

C. Dispatch Under Contingency

When faced with unexpected circumstances, the power
system operator first relies upon automated control sequences
programmed into the numerous levels of system dynamic
control. The automation is intended to rescue the power
system network from an unexpected contingency that occurs
faster than a human can respond. After the automated control
sequences achieve a new stable system operating point, the
operating personnel step in with pre-defined manual operal-
ing procedure intervention. The system operator necessarily
coordinates with system operators of other portions of the
interconnected network to coordinate restructuring the overall
power system network to the desired configuration.

D. Integrity attacks to grid data

However, power system data can be compromised. The
attack can take place at the analog measurement level or during
digital transmission through the communications circuits. Sig-
nals can be compromised at the generation or substation level.
The physical quantities can be changed so that the sensing tool
measures unreliable or corrupted data. For example, voltage or
current can be modified before being measured. The corrupted
data is then transmitted to the RTU in the feld and then
the control room. If the data alteration is done wisely it can
pass the bad data detection algorithms and is provided to the
operator as if it were reliable. He/she acts consequently and,
given the fact that the real grid conditions are different from
the corrupted information, potentially serious grid problems
can be generated. In the same way breaker and relay status
can be altered.

Another way to compromise the signals that the SCADA
master receives consists in disturbing the data format while
on travel. The communication channel from the substation to

thc control room could be fiber optics, telephone wire, radio
frequency or the message might be carried by the power line.

If the data alteration is done wisely it can pass the bad
data detection algorithms and is provided to the operator.
He/she acts consequently and, given the fact that the real grid
conditions are different, potentially serious grid problems can
be generated.

The following section shows a set of data integrity attacks
that cause damage to the normal grid operation only after the
grid operator takes action.

IV. EXAMPLES OF ATTACKS AND THEIR CONSEQUENCES

As seen in the previous section grid operators strongly rely
on grid data to make decisions. If the data is corrupted their
decision can lead to enormous problem to grip operation. In
this section we show how data integrity attacks can be used
to force the grid operator to take apparently good decisions
(based on the data he/she sees) but that instead create damage
to devices or expected loads.

A. Line

This is an example of data integrity attack in which the
attacker forces the operator to congest a power line,

Let us consider an unobservable attack [3] in which exactly
two power injection meters and the line connecting the two
buses are compromised. The line is a cutset of the power
system graphic. Consider that the goal of the attacker is to
overload the line due to excessive current flow. He/she cannot
under normal circumstances force more current to flow through
the line but the launched attack can cause the grid operator
unknowingly to overload the line.

100MW G, 400MW
OP: OMW : OP: S00MW

200MW
OP: 300MW
L y ) ) \ )
300MW 200MW
ATT: 200MW ATT: 400MW
Fig. 1. Attack to a linc.

Consider that loads L; and Lo are served by the power
generated by G and G, Gy is in the same island as [ and
Gy is in the same island as Lo. Suppose that G5 is much
cheaper than G, for example G is a coal power plant and
G is a nuclear power plant. The maximum capacity of the



transmission line connecting the two buses is 200MW. Under
the following grid situation:

» (1 produces 100 MW

o (G produces 400 MW

o L) demands 300 MW

e Lo demands 200 MW

200MW of power is carried through the transmission line.
The line is running at maximum capacity.

Let us suppose that an attacker want to overheat the line
causing it to trip off the system. He modifies the data the
grid operator sees so that he/she does not know the real grid
variables. The corrupted data are in red.

¢ [, demands 200 MW

o Lo demands 400 MW

Since G2 costs less than G the new generation dispatch,
given the corrupted data is the following:

o () produces 0 MW

¢ G4 produces 500 MW
But the real variables are such that 300MW of power flows
through the transmission line. This is above its capacity so
that it overheats.

Usually there are protection devices at the extremity of the
line that trip off the line from the grid if the power exceed the
limit. We suppose the attacker hacks those devices also.

This is an example of an attack that has consequences only
after the grid operator takes action based on the manipulated
data,

B. Generator

We give now an example of a data integrity attack that forces
the grid operator to damage a nuclear power plant.

Suppose a nuclear power Plant G — 1 generates at the
maximum capacity of 200 MW. Suppose the attacker falsify
the reading and the grid operator thinks that the plant generates
only 150MW. To make the plant run at the maximum capacity
increases generation of 50 MW to get to 200MW. The AGC
is told to increase generation and the nuclear power plant tries
now to generate 250MW which is over its capabilities.

V. MAIN RESULTS

In this section we discuss an analytical approach to measur-
ing the consequence of the unobservable attacks discussed in
[3]. Assessment of consequences is important when resource
limitations do not allow full deployment of countermeasures
to cover all unobservable attacks. To measure consequence, we
consider the DC Optimal Power Flow (DCOPF) as a model
of operator behavior and operator response to data integrity
attacks. More formally, the DCOPF is stated as follows:

min D ieB Cibi (D

such that Gy <g: <Gf VieB (2)
Li=1L; VieB (3
Siesbii(li—0;)=gi—l; VieB 4

bij(0; — 0;) < Qi Vivj € B (5)

where B is the set of all buses in the power system, [; is the
load at bus 2 and g; is the generation at bus %. ¢; is the cost
to produce power at bus ¢. G; and G are the minimum and
maximum generation at bus 4. L; is the amount of load served
at bus 4. 8; is the phase angle at bus 4. b; ; is the susceptance
between buses ¢ and j and (), ; is the capacity between buses
1 and j. Equation 1 provides the objective function, which is
to maximize the amount of load and second, minimize the
cost of generation. Equation 2 constrains the generation to
be within operating limits. Equation 3 ensures the specified
amount of load is served at each bus.' We do not allow load
shedding in this model, as a data integrity attack that indicates
a shedding requirement to the operator would likely invoke a
different response protocal than assumed here. However, we
could encorporate load shedding by changing constraint 3 into
an inequality constraint and add the cost of shedding to the
objective function. Equation 4 ensures conservation of flow at
each bus. Equation 5 constrains the amount of flow on each
line in the network. For simplicity, we denote the flow on
aline 4,7 as f;; = b;;(8; — 6;). We also use o to denote
the solution to the DCOPF and o(z) to denote the value of
variable x in solution o.

In this section we consider 3-sparse attacks where an
attacker may falsify demand information such that net demand
remains constant. For example, given buses ¢ and j with
demand /; and I}, the attack, A (3, j), may falsify the demands
as l; + A and [; — A, for some value A.

The linear program solution to the DCOPF provides im-
portant insight into the sensitivity of the power system to
data integrity attacks. In the solution, the shadow price (dual
variable) of the constraints provide the degree to which the
objective value changes should the righthandside of the con-
straint be modified. In this context, the shadow price provides a
measure of the economic impact to the system should demand
data be falsified. Given a shadow price on [;, denoted by [;
and an attack of size A, the economic impact of Aa(7,7) is
calculated as

LA =LA

The second piece of information in the solution is the range
of the righthand side for which a shadow price is valid. The
boundaries of the range are the points where a constraint
becomes tight or loose. In the physical system, it represents
the point where the operator will change its behavior. More
importantly, perhaps, within this range, the variation, p, of
all decision variables can be described with a single linear
function.

For the load constraints (3), we denote the upper and lower
bound of the shadow prices range as [T and [ =, respectively.
The shadow price range is only valid for a single variation of a
constraint’s righthandside, however, there exists a conservative
bound for simultancous variations. As long as the sum of all

"The DCOPF does not need ihis constraint, as thc constant L; can replace
the {; variable in the formulation. However, we include this as a constraint
as it allows us to compute the shadow price of the load in order to measure
the cosequence of a data integrity attack at the loads.



the ratios of righthandside deviation to max deviations is <
1 then the shadow prices hold. More formally, for an attack
Aa(i,j) , the shadow price does not change if A is smaller
than

IF =+ 0) 5 =l —65)
argmax | == — |+ 1= = <1
or larger than
17—l + 5 I — (-9
argm_inll _( + )l+l7 _(] 7)I§l
s l7 —lz' l]- +—l]‘

where §; = —d; This range is denoted by A~ or A*.

To compute the p for each decision variable during attack
As(i,7), we choose a §; that falls within the shadow price
range and compute the solution to a new DCOPF, ¢5:

min ZiEB Cigs (6)
siich that G; <g: <G} vieB (7)
Iy =Ly + 0 VEeB (8)

Yjepbiilti—6)=gi—1L VieB (9
bij(0i — 0;) < Qi Vivj € B(10)

where &, = §; when @ = &, §; = -§; when 7 = k, and O
otherwise.

This model represents how the operator will respond to an
unobserved data integrity attack. The p values are derived by
computing the ratio between the original solution and this
solution. For example, p(g;) = ME—M

The system response to actions taken by the operator is

computed using the following DCOPF, oy:

min Y icB Cigi (1D

such that g = os5(9;) Vie B (12)
I = os(lx) Vk € B (13)

Y ienbii(0i—0;) =gi—1; VieB (14)

Thus, the system remains feasible if V,V;

|fil + 1A p(fi)] < Qi
and
| figl + 1A p(fi )l < Qi

In short, if at the boundaries of the shadow price range the

system remains feasible, it will remain feasible throughout the
shadow price range. This process can be iterated by finding
new shadow prices at the boundaries.
Empirical Studies In order to evaluate shadow prices we
consider two different case studies. The cases adopt the 24 bus
IEEE RTS-79 problem [?]. The fuel types for each generator
are discussed in [?]. Based on these fuel types, costs are
calculated based on reference [?]. These numbers are reported
in Table I. In the case of multiple generators at a bus, without
loss of generality, we average cost weighted by capacity.

TABLE [
GENLERATOR OPERATIONS COST ($ PER MWH)

Bus | Cost || Bus | Cost
| 142.0 16 101.0
2 142 .0 18 110.0
7 300.0 21 110.0
13 300.0 22 58.5
15 156.0 23 101.0

Impact of Integrity Attacks to Generation Costs
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Fig. 2. Impact of data integrity attacks at buses 7 and 8 on the cost to
produce power.

In this model there is one unobservable 3-attack based on
the approach by [3]. This attack occurs at buses 7 and 8 and the
power line between them. Bus 7 has generation with maximum
capacity 300 MW and a cost of $300 per MWH. Bus 7 has 125
MW of load and bus 8 has 171 MW of load. The power line
between 7 and 8 has capacity 175 MVA. Given that generation
at bus 7 is expensive and there is enough load at bus 7 and
capacity between 7 and 8 to accommodate all of 7°s generation
it is not expected that a data integrity attack on the loads at
7 and 8 will have much impact. However, we must determine
this. The shadow price on the loads for both 7 and 8 is 300, as
the only unuscd generation has cost $300. The shadow price
range for the load at bus 7 is (-9,30) and at bus 8 is (-171,13).
The change in price (as a % of the original price) is plotted
in Figure 2. Here it can be seen that even beyond that range,
the price of generation does not change (generation is shifted
from one $300 generator to another $300 generator). Thus,
we must resolve the DCOPF at each of these boundaries, and
recompute the shadow prices and ranges. Once we have done
this successive times, as seen in Figure 2, we start to see
economic consequences. Figure ?? plots the rate of change
(shadow price) for attacks of size A = £500.

This model provides an example of what could be a low
impact data integrity attack. The attacker has to launch a
substational data integrity deviation (< 300 W) in order to
achieve any changes in the price for power? and is unable to
have a physical impact to the system.

We next consider a variation of the RTS-79 that constrains

[ndeed, this level of load deviation may raise red flags in other parts of
the security system
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Fig. 3. The shadow price for data integrity attacks at buscs 7 and 8.

the network in the region of buses 7 and 8 to present a case
where the shadow prices detect larger consequences. Bus 7’s
generation capacity is increased to 400 and its generation cost
is dropped to 1. The shadow price on the load at bus 7 is now
1 as it can obtain up to 100MW of additional power from the
generator at bus 7. The shadow price for the load at bus 8
is 300 as the power line from 7 to 8 is congested, so it can
only obtain generation from other parts of the network. The
shadow price ranges for the loads at bus 7 and 8 are (-4,100)
and (-6,330), respectively. Given the differences in shadow
prices, there is now an immediate economic impact for a data
integrity attack (Figures 3 and ??). In addition, in this model,
o(frs) = 175 and p(f73) = 1. Thus, within these shadow
price ranges, a physical violation will be observed. This effect
is seen in Figure 4, which tracks the amount of flow that
violates thermal limits on a line as ¢ is varied. This is not
unlike the example seen earlier in Figure 1.

Intuitively the physical violation occurs when the data
integrity attack increases load at bus 7 (decreasing load at bus
8). This causes the operator to think it can dispatch generation
at bus 7 to satisfy the extra load at bus 7. As this extra load
does not actually exist, the excess generation is shipped on
the already saturated line (7,8), causing a capacity overload.
In this case the consequence does not go beyond the physical
damage to the line. Even if the line were to fail, there is enough
available generation and capacity in this system to fully satisfy
all load without this line.

In short, given a DCOPF model of operator behavior,
the shadow prices and shadow pricc ranges of unobservable
attack vectors are a reasonable mechanism for determining
the consequence of an attack. The key point of this result is
to show that under linear response models, physical changes
and violations in a system under data integrity attacks can be
determined analytically by iteratively the shadow prices and
their ranges. Though we focus on the DCOPFE, the techniques
described here can be generalized to other models of operator
behavior, especially linear models. It remains for future work
to show how to use these measurements to priotitize the
deployment of countermeasures. Possible approaches include

Impact of Integrity Attacks to Generation Costs
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Fig. 4. Impact of data integrity attacks at buses 7 and 8 on the cost to
produce power.
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worst-casc conscquence within a specified range of integrity
attacks or minimum attack that causes a physical problem in
the system.

VI. CONCLUSIONS

Recent years have seen increased interest in understanding
the vulnerabilities of electric power grids to cyber attacks.
Indeed, recent work by [3] has shown that it is possible for
an attacker to falsify information sent to the grid operator so
that the incorrect information remains consistent with other
measurements reported to the operator. However, though a
power grid may contain a large number of possible unobserv-
able data integrity attack possibilities, it is clear that they are
not all equal in severity. This paper has shown that under the
linear DC dispatch model of grid operations, shadow pricing
information can be used to assess the economic and physical
impacts of data integrity attacks to power systems.

Though this paper has demonstrated how shadow price
information can be used measure the consequence of data in-
tegrity attacks, there remain a number of interesting directions
for future work. First, this paper has focused on data integrity
attacks related to metering information (the amount of load
demanded by part of the power grid). There are other types of
data integrity attacks that need to be considered, including the
on/off status of a power lines (either from direct measurements
or state estimation [?], [?], [?]), the output of generators, the
states of control devices, etc. Second, additional work needs
to be done to turn the measurements into a methodology
for prioritizing the deployment of countermeasures, such as
PMU place or hardware upgrades. For example, we could
posit a prioritization based on a certain level of attack and
ranking based on consequence severity within that threshold.
Or we could rank by minimum attack that violates physical
constraints in the system. Finally, it will be important to
develop analytical methods for assessing consequence in non-
linear operations models, as many of the important physical
issues (such as voltage and frequency) only occur in such
models.
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