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Abstract to be submitted to the International Conference on Advanced Materials" (ICAM-2011) 
PSG College of Technology, Coimbatore, India 
12-16 December, 2011 
LAUR 11-03317 

Predicting the properties of heavy elements: the Dirac equation in electronic structure calculations 

John M Wills(*) and Ann E Mattsson(**) 
(*) Los Alamos National Laboratory, Los Alamos, NM 87522 USA 

(**) Sandia National Laboratory 

The heavy elements -- rare-earths and actinides, and their compounds -- exhibit unique structural and electronic 
properties. The f-electrons in these materials change from localized to itinerant over a relatively narrow range of 
temperature, pressure, and chemical environment. The precise treatment afforded by an accurate first-principles 
calculation based on the full Dirac equation allows definitive predictions of material properties and provides a 
stringent test of new density functionals designed to accurately capture the behavior of heavy relativistic materials. 

In this talk we describe the use of electronic structure calculations based on the full Dirac equation to predict the 
structural properties of selected lanthanide and actinide elements. It has been demonstrated [1) that even the most 
basic property of these materials -- the equilibrium volume -- is impossible to predict with certainty without using the 
Dirac equation to produce semi-core p-bands. In this work we demonstrate the effect of full relativity on phase 
stability, elasticity, and electron energy spectra and compare with previous calculations obtained using less 
accurate approaches. 

[1) Nordstrom, L., et aI., Physical Review B 63,035103 (2001) 
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The heavy elements -- rare-earths and actinides, and their compounds -- exhibit 
unique structural and electronic properties. The f-electrons in these materials 

change from localized to itinerant over a relatively narrow range of temperature, 
pressure, and chemical environment. The precise treatment afforded by an 
accurate first-principles calculation based on the full Dirac equation allows 

definitive predictions of material properties and provides a stringent test of new 
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• Relativity is fine detail in most materials but an essential detail in heavy 
elements such as rare-earths and actinides. 
• Electron confinement -- localization -- is a fine detail in many materials, 
but an essential detail in materials such as oxides, rare-earths, and 
actinides. 
• Confinement is treated inaccurately by currently available 
approximations to the exchange/correlation energy in DFT. Hence 
materials where confinement is important in practice depend on ad hoc 
mergers ofDFT and phenomenology. Examples are LDA+U and LDA 
+U+DMFT. The interface between DFT and phenomenology is ill 
defined, leading to uncertainty in the accuracy and precise meaning of 
results of these calculations. An approximation to the exchange/ 
correlation energy that deals with confinement in a fundamental way 
would solve many problems in dealing with confined materials. 
• In order to develop such functional approximations, errors introduced 
by other approximations should be eliminated. 
• In this talk, different schemes of dealing with relativity are evaluated, 
including a full Dirac basis implementation of the FPLMTO code RSPt. 

A 
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In all electron codes, relativity is generally dealt with in one of three ways: 
• the Dirac equation: 

(HD + V - me2
) 'l/J = e'l/J, 1-lD = eLY • p + f3me2 

• the scalar Dirac equation: (the Koelling-Harmon equation) 

(HD + V - e)'l/J == (HSR - e)'l/J - Vso (r)o- . £ 
1 0 
o 0 'l/J 

D. D. Koelling and B. N. Harmon, Journal of Physics C: Solid State Physics 10,3107 (1977) 

the scalar relativistic approximation (SR) amounts to ignoring Vso. 

• SR + variational spin orbit (SO): solve the full Koelling Harmon equation 
with Vso treated variationally. 

In this presentation, we apply these equations to three materials (Th, AI, 
and Au) and examine the accuracy of each. 

,p., 
Los Alamos 
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Energy vs Volume for Th 

Comparing 
- Dirac, SR, and SO 
methods 
- three k-point sets. 

Interstitial volume is a 
fixed fraction (FF) of the 
total volume. 

PBE exchangel correlation 

Vexp = 220.00 bohr3 

a = 9.583 bohr = 5.071A 
(Haas2009) 

• The convergence pattern is the same for Scalar Relativistic (SR), Scalar Relativistic with 
variational Spin-Orbit coupling (SO), and Dirac treatments. 
• Since the Dirac treatment is the main focus in this article, further $k$-point convergence 
testing is done with this relativistic method. 

Haas 2009: P. Haas, F. Tran, and P. Blaha, Phys. Rev. B 79, 085104 (2009) 
Los Alamos .... 
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Energy vs Volume for Th 
using the Dirac method. 

Comparing 
- linear interpolation and 
- special points (Gauss) 

o 
~ 10 

Interstitial volume is a 
fixed fraction (FF) of the 
total volume. 
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PBE exchangel correlation 

Vexp = 220.00 bohr3 

a = 9.583 bohr = 5.071A 
(Haas2009) 

• Within a specified size of the $k$-point sampling (same color), decreasing the width of the 
Gaussian sampling from O.025Ry to 0.015Ry shows convergence towards the tetrahedron 
method. 
• The tetrahedron method converges faster. 
• 123/2 sampling is not converged. P-, 

Los Alamos 
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• The 163/2 sampling size is converged, and used in what follows. 

Energy vs Volume for Th 
using the Dirac method. 

Convergence of the 
tetrahedron method. 

Interstitial volume is a 
fixed fraction (FF) of the 
total volume. 

PBE exchange/correlation 

Vexp = 220.00 bohr3 

a = 9.583 bohr = 5.071A 
(Haas2009) 

los Alamos 



~ 

;>-.. 
~ 

40~1 .~------~------~--------~--------~------~--------~--------~~ 

30 

20 

.~ 
~, 

" 

o Fixed Radius (Scalar Relativistic) 
Double basis 

o Fixed Volume Fraction (Scalar Relativistic) 
Full Basis 

• Fixed Radius (Variational SO) 
• Fixed Volume Fraction (Variational SO) 
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3 
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Energy vs Volume for Th 
using SR and SO. 

Comparing fixed radius 
(FR) and fixed fraction 
(FF) treatments of the 
interstitial, and a triple 
basis with a double basis. 

PBE exchange/correlation 

Vexp = 220.00 bohr3 

a = 9.583 bohr = 5.071A 
(Haas2009) 

• Th full (triple) basis: 2(6s6p) 3(7s7p) 2(6d5f); Th double basis: 2(6s6p) 2(7s7p6d5f). 
• A full basis in RSPt gives converged results (FF and FR are the same) 
• A double basis isn't converged; 
• With a double basis the FF method gives the correct shape, and should be used. 

A 
Los Alamos 
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Vexp = 220.00 bohr3 

a = 9.583 bohr = 5.071A 
(Haas2009) 

• SR and Dirac differ considerably in energy, but differ only in detail with respect to shape 
and minimum energy. 
• In contrast, while the SO energy is comparable to Dirac, the shape and minimum volume 
are very different. 

los Alamos 
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TABLE I: Thorium equilibrium volumes in cubic bohrs and bulk moduli in GPa calculated with 

scalar relativistic, scalar relativistic with variational spin-orbit, and full Dirac methodologies, using 

AM0516 , PBE2 , and PW17 functionals as described in the text. The zero temperature experimental 

volume, with zero point motion subtracted, is 220.00 bohr313 . Reference 13 gives 205.14 for AM05. 

21S.02 for PBE, and 200.S9 for PW. 

Vja5 B (GPa) 

AM05 PBE PW AM05 PBE PW 

Scalar Relativistic 204.55 217.36 199.S9 5S.9 54.5 65.5 

Scalar Relativistic+Spin Orbit lS9.62 201.21 lS6.45 74.1 6S.6 SO.4 

Full Dirac 205.9S 217.9S 201.54 62.4 5S.3 6S.0 
--

~ 
los Alamos 
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I Energy vs Volume for Th 
using a double basis and 
the AMOS functional. 

Dirac, SR, and SO are 
compared using a (FF) 
treatment of the 
interstitial. 

Vexp = 220.00 bohr3 

a = 9.S83 bohr = S.071A 
(Haas2009) 
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Energy vs Volume for Th 
using a double basis and 
the PW functional. 

Dirac, SR, and SO are 
compared using a (FF) 
treatment of the 
intersti tial. 

Vexp = 220.00 bohr3 

a = 9.583 bohr = 5.071A 
(Haas2009) 
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Full basis results for SR 
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0" 
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VIVo 
1.2 

Vexp = 109.52 bohr3 

a = 7.595 bohr = 4.019 A 
(Haas2009) 

• As Al os a very non-relativistic element, all methods give the same answer. 
• The results show, as expected, that all methods produce energy curves that are essentially 
identical. 
• Also shown is the EV curve for a full basis. Note the similarity in scale of the difference in 
energy between double and full bases as in Th. 
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TABLE II: Gold equilibrium volumes in cubic bohrs and bulk moduli in GPa calculated with scalar 

relativistic, scalar relativistic with variational spin-orbit, and full Dirac methodologies, using the 

PBE functional. Results are obtained using a double basis as described in the text. Results for 

a full basis are also shown for the scalar relativistic method. The zero temperature experimental 

volume, with zero point motion subtracted, is 113.07 bohr313 . Note the poor agreement with 

experiments that PBE gives. Reference 13 gives 114.09 for AM05. 120.93 for PBE, and 111.84 for 

Pw. 

V/a5 B (GPa) 

Scalar Relativistic 123.07 135 

Scalar Relativistic Full Basis 122.39 137 

Scalar Relativistic+Spin Orbit 115.46 180 

Full Dirac 121.82 141 

los Alamos 
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Energy vs Volume for Au 
with only valence electrons 
and the semi -core kept in the 
core, comparing FF and FR 
and for SO, double and full 
bases for SR, and a double 
Dirac basis. 

PBE exchange/correlation. 

Vexp = 113.07 bohr3 

a = 7.676 bohr = 4.062A 
(Haas2009) 

• Confining the semi-core (5s5p) states to the core is a good approximation 
in Au, since the semi-core and valence states are well separated in energy. 
• All curves have a common zero of energy (energy offset). 
• The effect of relativity is much larger than the difference in energy between double and full base .... 
• Because the difference between FF and FR with SO is small, we concluded that the spin-orbit 
interaction is a small effect in Au. .J---, 
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Energy vs Volume for Au 
calculated with Dirac bases, 
with valence only and semi­
core+valence configurations. 

PBE exchange/correlation. 

Vexp = 113.07 bohr3 

a = 7.676 bohr = 4.062A 
(Haas2009) 

The small difference in energy, resulting from semi -core/valence hybridization, indicates that 
the semi -core is well separated from the valence, and there is no difference in shape, between 
the EV curves predicted by the Dirac method. 
In Figure \ref{Au.SR.scValence} we show the same results obtained using the SR method. 
There is a large difference in energy, resulting from using a different Hamiltonian on the semi-
core states, but ~ 
again we find essentially no difference in shape. 0 los Alamos 
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• The same results obtained using the SR method show a large difference in energy, 
resulting from using a different Hamiltonian on the semi-core states, but 
again we find essentially no difference in shape. 
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• This figure compares a calculation in which the semi-cores states are Dirac states, confined 
to the core and valence states are perturbed with the spin orbit calculation, with a calculation 
in which the semi-core and valence are perturbative. 
• When there is significant hybridization between semi-core and valence states, the separation 
breaks down and cannot be accomplished. 
• When the spin-orbit interaction is large, as for semi-core p-states, the perturbative tr:e'al)nent 
always fails. ., los Alamos 
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Conclusions 

The most reliable set of calculations in RSPt, or, in general, an all­
electron augmented method, comes with using 
• linear interpolation on a tetrahedral mesh for reciprocal space 
integration 
• keeping the interstitial volume a fixed fraction of the total volume, 
especially if the basis is not converged. 
• Accuracy requires using the Dirac equation to generate basis 
functions. 
• SO can be used when the spin-orbit interaction is a small effect is 
small. It can't be used when spin-orbit is a large effect. 
• The spin-orbit interaction is essential for describing semi-core p­
states. 
• To develop accurate functionals dealing with confinement, or to 
judge the accuracy ofDFT+phenomenological methods applied to 
heavy materials, Dirac bases are essential. 

Los Alamos .,. 


