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Public Executive Summary

To realize advances in power conversion technology, the research project investigated three
areas: ) new power semiconductor devices; 2) new magnetic materials and component designs;
and 3) new circuit architectures and topologies to realize higher degrees of miniaturization,
integration and performance. The application focus was on power converters for driving LED Page | 2
loads, encompassing ac-to-dc and dc-to-dc conversion from moderate voltage levels (to above
100 V) to low voltages (e.g., tens of Volts) at low to moderate operating power levels (e.g., tens
of Watts). Semiconductor device research focused on the performance, reliability and
improved design of devices based on Gallium Nitride (GaN). Magnetics research focused on
both development of new magnetic materials suitable to higher operating frequencies and on
microfabrication of magnetic components. Systems research focused on leveraging these
advances to attain higher operating frequencies, miniaturization and performance as compared
to the present state of the art. We summarize each of these thrusts below.

Devices. Many new fabrication technologies and device structures have been made over the
course of this program to improve the state-of-the-art of GaN. These advances were made to
address a wide variety of issues in GaN devices including threshold voltage control, field plates
for increased breakdown voltage, multi-finger layout for wide periphery devices, and device
packaging.

Threshold voltage control was an important aspect of this project. Enhancement mode
(positive V;) devices are highly desirable for power electronics as they can simplify circuit design
and improve system reliability. Even when depletion mode-devices were used, uniform
threshold voltage control was still critical, since the V, needed to be shifted to a level suitable
for the high speed gate driver. At the beginning of this project, a single gate recess of the
AlGaN barrier was used to push threshold voltage positive. This technology suffered from high
off-state leakage, which was remedied by adding a tri-gate structure under the gate. These e-
mode recessed, tri-gate devices coupled with SiO; gate dielectric were able to achieve an off-
state ID below 1 pA/mm for drain voltages up to 600 V. However, precise control of the barrier
etch depth of the gate recess was challenging using a timed etch. Timed gate recess etches
resulted in non-uniformity of etched barrier thickness and thus variation of threshold voltage
across large samples. Furthermore, the plasma etching used to recess (necessitated by the lack
of effective wet etch chemistries for AlGaN) could introduce damage, increase the density of
defect states and degrade the channel mobility. A special epitaxial structure with an etch-stop
layer was employed to solve these problems. With these wafers, a highly selective dry etch was
used to remove the barrier down to an AIN etch-stop layer; then a subsequent wet etch
removed the plasma damaged AIN resulting in reproducible e-mode HEMTs with low interface
state density. This technology received the IEEE George Smith Award for best paper published
in IEEE Electron Device Letters during 2012.
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Field plate and passivation technology had to also be optimized to meet the switching and
blocking voltage demands of the power converter circuit. Surface passivation was needed to
reduce the occurrence of surface traps that deplete the channel and cause the dynamic on-
resistance phenomena. However, after passivation and reduction of the surface state
depletion, the electric field in the channel is less uniformly spread, which significantly reduces
the breakdown voltage of the devices. A field plate is needed to smooth electric field and
prevent low voltage breakdown of the device. In this project, we experimentally optimized the
passivation dielectric (plasma enhanced chemical vapor deposition silicon nitride) thickness
under source connected field plate to achieve the optimal breakdown voltage performance.

For use in the power converter circuit developed for this project, the GaN devices had to
sustain current levels in excess of 1 A with minimal on-resistance, so large periphery multi-
finger transistors were required. A robust multi-finger transistor process was made targeting
the issues of reducing individual transistor finger resistance, developing a reliable interlayer
dielectric via etch, and implementing an interconnect metallization scheme to support the
required current levels. With this multi-finger transistor technology, we were able to design
and fabricate a variety of device peripheries in layouts suitable for packaging. The initial
packaging technique was wire bonding the GaN HEMT to pads of a discrete package. However,
this was quickly abandoned in favor of a flip-chip solder ball bumping technology, where the
device is placed directly on the circuit board, eliminating the separate package and reducing
parasitic inductance by removing the wire bonds.

A combination of these technologies allowed us to fabricate GaN transistors with Wg=40 mm
and Wg= 80 mm and integrate them into a program dc-dc power converter stage operating at
high frequency. At lower power levels (below 20 W), the Wz=40 mm devices yielded high
efficiency in the test converter. At higher power levels, the device performance was limited by
heat dissipation. Improved thermal management is needed to extend the high performance
obtained below 20 W to higher power levels.

DevICE RELIABILITY. This aspect of the project has pursued a detailed investigation of electrical
reliability and trapping of High-Voltage GaN FETs for power switching applications. Our
research has revealed that in GaN MIS-HEMTs for operation >600 V, current collapse is the
main concern. We have observed extreme trapping leading to total current collapse after OFF-
state stress at high voltage. This trapping process is completely recoverable, is accelerated by
increasing drain-to-source stress voltage and does not exhibit temperature dependence. The
mean time to trapping exhibits a typical Zener-like electric field dependence. This phenomenon
is attributed to high-field tunneling-induced electron trapping (“Zener trapping”) inside the
AlGaN barrier or the GaN channel layers. The trapping takes place in a narrow region right
under the edge of the outermost field plate in the drain portion of the device. This finding gives
urgency to defect or impurity control during epitaxial-growth and the design of appropriate
field plate structures for the reliable high-voltage operation of GaN MIS-HEMTs.
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We have investigated current collapse in prototype AlGaN/GaN MIS-HEMTSs fabricated on a 6-
inch Si wafer by our industrial collaborator, Texas Instruments. In the OFF-state, when VDS
exceeds approximately 200 V, we observe trapping that is so severe that it leads to total
current collapse and the device effectively behaves as an “open” when subsequently biased in
the ON state. This behavior is fully recoverable and repeatable.

To gain greater insight into this phenomenon, we studied the voltage dependence of the
dynamics of trapping. We performed constant OFF-state stress tests at different voltages and
measured the time evolution of normalized linear drain current Ipji, (roughly equal to inverse of
ON resistance, a key figure of merit in power switching devices). Ipi, degradation greatly
speeds up as VDS stress voltage increases from 140 V to 180 V at room temperature. In this
experiment, we define a characteristic trapping time 1t at 50% degradation of Ip;;,. We plot t vs.
1/Epeax Where Epeak is the peak value of electric field inside the AlGaN barrier layer under the
edge of the outermost field plate estimated from field simulations by Silvaco. This is the
characteristic Zener tunneling law. The excellent linearity that is obtained strongly suggests a
valence-band-to-trap tunneling process. We call this “Zener trapping.” A trap energy level of
around 1 eV above the valence band edge is estimated from this study.

We also explored the role of temperature on this trapping behavior by performing identical
OFF-state step-stress experiments at different temperatures from 25 to 200°C. The trapping
characteristics are found to be insensitive to temperature and the evolution of the four
terminal currents over the entire temperature range confirming again that they are not the
main source of electron trapping. The temperature insensitivity of the phenomenon again
suggests that trapping takes place through a tunneling process.

Additional studies of the role of the geometrical design of the device, the impact of UV light of
different wavelengths on the detrapping dynamics and electric field simulations has allowed us
to synthesize a simple picture for this phenomenon. Once the OFF state voltage exceeds the
voltage required to deplete underneath the outermost field plate of the device, any further
increases in voltage sharply increase the electric field at the surface of the device right
underneath the edge of the field plate. This field can get so intense that electrons can tunnel
directly from the valence band to traps in the bandgap of the AlGaN barrier or GaN channel.
This is what we term as “Zener tunneling.” When the device is brought to the ON state, the
trapped electrons create a barrier to current flow through the channel effectively turning off
the device.

We further postulate that these traps are associated with the yellow photoluminescence widely
observed in GaN and AlGaN. This is believed to arise from C dopants. Cis also a common
dopant in the buffer structure of GaN high-voltage FETs and has a location inside the energy
bandgap which is consistent with many observations made in our study.

The detailed understanding that has been derived about the observed total current collapse
mechanism suggests that proper defect control during epitaxial growth and appropriate design
of the field plate structures are essential to mitigate this effect.
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MAGNETICS

The magnetics aspect of the research encompassed design optimization and performance Page | 5
prediction, microfabrication of winding structures for coreless and cored designs, development

of novel magnetic materials and magnetic core designs, and full magnetic component

construction and component testing, including in full converter systems. The work was

coordinated across four institutions — Dartmouth, Georgia Institute of Technology, MIT, and

University of Pennsylvania. We describe work broken down approximately by institution, but

note that there was substantial coordination and collaboration across the different institutions

to accomplish the results achieved.

Dartmouth — Work on magnetics by the Dartmouth group focused on utilizing sputter-
deposited Co-Zr-O nanocomposite soft magnetic cores to make high-power-density, high-
efficiency inductors. Two technologies were developed. The first technology was a "racetrack”
inductor with an elongated spiral winding sandwiched between two layers of low-loss Co-Zr-O
nanocomposite soft magnetic material. For these inductors, advanced loss modeling and
optimization technigues were developed, as well as a new fabrication technique to produce
controlled-slope sidewalls for the "magnetic vias" connecting top and bottom magnetic layers.
Fabricated components achieved inductance values of 1.2 pH and peak quality factors of 15.1 at
8.3 MHz. They were successfully demonstrated in the LED driver circuit, which achieved 89%
efficiency at 5 MHz with the inductors operating at 1 W output per mm? of substrate area.

A new concept for higher performance inductors was also proven in this work. A constraint in
utilizing many advanced magnetic materials such as Co-Zr-O is its uniaxial anisotropy — they
only work well for flux travel in one direction. This prevents effective utilization in the
otherwise ideal toroidal geometry in which flux travels in a circular path, changing direction
continuously around the path. It was demonstrated that applying a radial field during
deposition could produce a material with local anisotropy oriented exactly as needed for high
performance. Inductors fabricated with these materials achieved a Q value of over 50
throughout the 10 to 50 MHz range, and were successfully demonstrated in the baseline LED
driver, which achieved higher than 96% efficiency with these components.

Georgia Institute of Technology — The GIT group focused on fabrication issues associated with
reducing the size/footprint and increasing the integration capability of power inductors
fabricated on semiconductor or other substrates. In particular, a new microfabrication scheme
was developed to realize three-dimensional windings for solenoid and toroid inductors. These
inductors were fabricated both with air-cores in collaboration with the MIT group, and with
magnetic-cores separately developed commercially, and at GIT, Dartmouth and U Penn. These
inductors were successfully demonstrated in the baseline led driver as described below.
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A key microfabrication advance was the exploitation of thick metal encapsulation of polymer
pillars to form vertical via interconnections for three-dimensional windings. The radial
conductors of the toroidal inductor were formed by conventional plating-through-mold
techniques, while the vertical windings (up to 1000 um in height) were formed by polymer
cores with metal plated on their external surfaces. This encapsulated polymer approach not
only significantly reduced the required fabrication time, but also exploited the relative ease of
fabricating high-aspect-ratio SU-8 pillars as opposed to high-aspect-ratio SU-8 trenches. To
form the top radial conductors, non-photopatternable SU-8 was introduced as a thick sacrificial
layer.
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Based on this microfabrication advance, inductors with multiple permutations of the following
geometries and cores were fabricated: solenoid and toroid, on-glass and embedded-silicon, and
air core and magnetic core. Inductors showed typical inductances of 60-800 nH and typical
small-signal Q-factors of 8-45, depending on the geometry and magnetic material.

For baseline LED driver testing (undertaken at MIT), inductors with microfabricated windings
and air cores, as well as various magnetic cores, were developed including: 1) CoNiFe highly
laminated cores from GT with microfabricated and hand-wound windings; 2) CoZrO cores from
Dartmouth with microfabricated and hand-wound windings; 3) commercial iron powder cores
with silicon-embedded windings; and 4) Fes04 nanogranular powder toroids from U Penn.

1. CoNiFe highly laminated cores (fabricated as part of a GIT-led parallel ADEPT
program) were introduced where the core geometry is compatible with solenoid
inductor windings. These CoNiFe inductors were tested in the baseline LED driver.
Microfabricated-winding and hand-wound inductors demonstrated a power
converter efficiency of 93% at 100-V continuous fan-cooled operation.

2. CoZrO cores from Dartmouth were integrated with 25-turn microfabricated and
hand-wound inductors from GIT, and tested in the baseline LED driver. These
devices showed an efficiency of 92.6% at 50-V pulsed operation and 94% at 100-V
continuous operation, respectively.

3. Commercial iron-powder cores were integrated with silicon-embedded
microfabricated windings from GIT to form a silicon-embedded inductor. This device
was tested in the baseline power converter and showed 92% efficiency at 50-V
pulsed uncooled operation.

4, Fes04 nanogranular powder toroids from U Penn were integrated with 25-turn
hand-wound toroidal inductors and showed 94% efficiency at 100-V continuous
operation.

Massachusetts Institute of Technology — The MIT group focused on the analysis and optimized
design of microfabricated toroidal air-core inductors. Central to this effort was an advanced
approach to modeling the energy stored and the power dissipated in the inductors. Inductors
embedded in insulating substrates and in silicon were both considered. For both choices of
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substrate, the energy stored in the internal toroidal core, in the external space surrounding the
inductor, and in the winding separating those two regions were all modeled. For inductors
embedded in silicon, magnetically-driven and electrically-driven losses in the silicon were
modeled in addition to the magnetically-driven losses in the winding present for both choices of
substrate. The winding loss model was specifically derived to account for the increased loss
arising from the typically large separation between adjacent winding turns in a microfabricated
inductor. An equivalent-circuit model suitable for circuit simulation was used to summarize the
modeling results.
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The equivalent-circuit inductor model was combined with a circuit model of the baseline LED
driver to analyze the performance of the driver for a given inductor design. This system
analysis was then combined with Monte Carlo synthesis to analyze driver performance over a
wide range of inductor designs and transistor size scaling. Pareto-optimal filtering was used to
manage the competing design metrics of driver efficiency, inductor size, and minimum
microfabrication feature size. Microfabrication feature size was considered as a proxy for
inductor microfabrication yield. The resulting optimizing design code was then exercised to
identify a Pareto optimal design frontier for the inductors from which several designs were
selected for microfabrication and testing. Collaboration with GIT provided reasonable
fabrication constraints to limit the inductor design space.

Several toroidal air-core inductors were microfabricated by GIT, and tested both individually
and in the baseline LED driver. Inductor performance was very well predicted by the models,
typically to within several percent, over a wide frequency range; the modeling accuracy of
energy storage and power dissipation was generally much better than that of traditional
modeling approaches. In terms of inductor performance, it was observed that microfabricated
toroidal air-core inductors with a diameter ranging from 8 to 10 mm, and a height of 1 mm,
could support a baseline LED driver that meets the program objectives.

University of Pennsylvania — The U Penn magnetic-materials group worked to develop several
innovative routes to prepare nanocomposite materials having high permeability but low loss
when driven at high frequencies (e.g., 3-30 MHz). In traditional polycrystalline magnetic
materials, large or irregular crystal grain size and strong magnetic and electrical coupling
between these grains has resulted in unacceptable high “hysteresis losses” or electrical eddy
current losses. One way to overcome these limitations might be to create an ensemble of
magnetic grains nearly identical to each other in size and shape and space them apart by a
desired amount using a thin insulator. The goal is to space the grains an ideal amount to keep
them from communicating too much with each other magnetically or electrically, while
maintaining a high density of magnetic material to realize the desired permeability. In this
ARPA-E project the U Penn group explored a chemical route to realize this idealized system.

The U Penn group worked to synthesize nanometer-sized crystals (nanocrystals) of magnetic
materials that could be used as magnetic inks/moldable powders that would allow the
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integration of the magnetic materials into fabricated micro-inductors. The group succeeded in
developing methods to synthesize, purify and stabilize new families of size- and shape-
controlled ferrites, metals and metal alloy nanocrystals. Each resulting sample was small
enough to behave as single domain magnetic structures to allow high permeability (u/po =10 to
30) and was encapsulated with a monolayer of cross linkable organic insulator to provide better
mechanical cohesion and to suppress electrical losses due to eddy currents induced in the
magnetic core. These nanocomposite materials displayed low loss (tan 6 < 0.025) for drive
frequencies up to 5 MHz. Procedures were developed to scale the production of the solution of
possible nanocomposites from just a few hundred mg in the discovery phase of the project to
production of up to batches of 10 grams needed to build a series of prototype devices. These
solutions of possible nanocomposites were integrated into toroidal micro-inductors and tested
in converter test platforms, enabling operation at 5-MHz with efficiencies exceeding 93% at
power loads of 40 Watts. This combination of synthesis, integration/fabrication and testing
drew from skills across the spectrum of the ARPA-E PowerChip team and has provided a
motivation to pursue integration of chemically produced magnetic nanocomposites as a means
of introducing magnetic function in the “back-end” of microelectronics fabrication.
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Magnetics Summary — In summary, the magnetics team comprising all four institutions
collectively demonstrated that microfabricated inductors are feasible components for
integrated power electronics. In particular, several inductors were demonstrated in the
baseline LED driver, and shown to support driver performance that met the program
requirements. Moreover, in contrast to the magnetic components typically found in
commercial the power converters, the microfabricated inductors demonstrated in this project
were not the largest components in the converter, nor were they responsible for a significant
majority of the converter losses.

CIRCUITS AND SYSTEMS. This aspect of the research, carried out principally at MIT, focused on
developing circuit architectures, topologies and designs that could leverage the advances in
devices and components to achieve higher performance (and especially greater miniaturization)
while meeting the needs of practical systems (e.g., high efficiency, low electromagnetic
interference, high power factor for ac-interfaced systems, etc.). Achieving increased operating
frequency while maintaining high efficiency was a key research focus, as higher frequencies are
needed to realize the degree of miniaturization desired for future systems. While not required
by the program, attention was also paid to realizing ac-interface systems that could operate at
high power factor without the need for electrolytic capacitors (which often pose temperature
and lifetime limits) and to achieving miniaturized power converters that could function
efficiently across wide voltage ranges. Lastly, a focus of this work was quantitative testing and
evaluation of program and commercial semiconductor devices and magnetics, and use of the
results to advance knowledge and for modeling and optimization of systems.

A first result of the circuits and systems investigation is a merged-two-stage circuit architecture
and associated topology that is useful for designs working in the high-frequency (HF) regime (3-
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30 MHz, or approximately 5-50 x that of typical designs in this space). The design is suitable for
either wide-range dc input voltage or ac line input, though it is more suited to the former
function than the latter. This two-stage approach is based on a soft-charged switched-capacitor
pre-regulator / transformation stage and a high-frequency magnetic regulator stage. Soft
charging of the switched capacitor circuit, zero voltage switching of the high-frequency
regulator circuit, and time-based indirect current control are used to maintain high efficiency,
high frequency and power density, and (where relevant) high power factor. The proposed
architecture has been applied to an LED driver circuit, with two implementations
demonstrated: 1) a wide input voltage range dc-dc converter and 2) a line-interfaced ac-dc
converter. The prototype dc-dc converter achieves 88-96% efficiency at 30 W power across 25-
200 V input voltage range. The ac-dc converter achieves 88% efficiency with 0.93 power factor
at 8.4 W average power.
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A second result of the circuits and systems investigation is a new power conversion architecture
for single-phase ac grid interface. The proposed architecture is suitable for realizing
miniaturized ac-dc converters operating at high frequencies (HF, above 3 MHz) and high power
factor, without the need for electrolytic capacitors. It comprises a line-frequency rectifier, a
stack of capacitors, a set of regulating converters, and a power combining converter (or set of
power combining converters). The regulating converters have inputs connected to capacitors
on the capacitor stack, and provide regulated outputs while also achieving high power factor,
with twice-line-frequency energy buffered on the capacitor stack. The power combining
converter combines power from the individual regulated outputs to a single output, and may
also provide isolation.

While the architecture described above can be utilized with a variety of circuit topologies, it is
especially suited for systems operating at HF, and we developed an implementation that
enables efficient operation in this range. The proposed approach is demonstrated for an LED
driver operating from 120 Vac, and supplying a 35V, 30 W output. The prototype converter
operates at a (variable) switching frequency of 5-10 MHz and an efficiency of > 93%. The
converter achieves a displacement power density of 130 W/in?, while providing a 0.89 power
factor, without the use of electrolytic capacitors. The extremely high performance provided by
this prototype has motivated development of this architecture for a broad range of
applications.

e
-l:lrl: Paragraphs/sections marked with this symbol may contain protected data produced under agreement no. [DE-AR0000123] with the U.S.
Department of Energy that may not be published, disseminated, or disclosed to others outside the Government until 5 years after development of
such data under this agreement, unless written authorization is obtained from the recipient. Upon expiration of the period of protection set forth in
this Notice, the Government shall have unlimited rights in this data, including the right to publish. This Notice shall be marked on any

reproduction of this data, in whole or in part.



Acknowledgements

The authors gratefully acknowledge the financial support and guidance for this work provided
by ARPA-E under the Agile Delivery of Electric Power Technology (ADEPT) program (DE-FOA-
0000288) through grant DE-AR0000123. As part of this, the guidance and oversight by ARPA-E
staff and related support staff — including Dr. Mark Hartney, Dr. Timothy Heidel, Dr. Mark
Johnson and Dr. Scott Litzelman — are greatly appreciated. The authors would also like to
acknowledge material support (including test devices) provided by Texas Instruments, and
advice and input provided by FINsix corporation.

The Principal Investigator was David J. Perreault at MIT. Members of the research team at MIT
included Mohammad Araghchini, Jesus A. del Alamo, Gary DesGroseilliers, Jingying Hu,
Donghyun Jin, Sameer Joglekar, Alex Jurkov, Jeffrey H. Lang, Seungbum Lim, Bin Lu, David
Otten, Tomas Palacios, Daniel Piedra, John Ranson, and Min Sun. Researchers at Dartmouth
College included Daniel Harburg, Christopher G. Levey, Jizheng Qiu, Charles R. Sullivan, Rui Tian,
and Di Yao. Researchers at Georgia Institute of Technology included Mark Allen, Florian
Herrault, Chang-Hyeon Ji, Jungkwun Kim, and Xuehong Yu. Researchers at the University of
Pennsylvania were Jun Chen, Vicky Doan-Nguyen, Christopher B. Murray, and Hongseok Yun.

T paraoranhs/sections marked with this svmbol mav contain nrofected data nroduced under aereement no IDE-AR00001231 with the US|

3 Paragraphs/sections marked with this symbol may contain protected data produced under agreement no. [DE-AR0000123] with the U.S.
Department of Energy that may not be published, disseminated, or disclosed to others outside the Government until 5 years after development of
such data under this agreement, unless written authorization is obtained from the recipient. Upon expiration of the period of protection set forth in
this Notice, the Government shall have unlimited rights in this data, including the right to publish. This Notice shall be marked on any
reproduction of this data, in whole or in part.

Page | 10



Table of Contents

PUDIIC EXECULIVE SUMIMAIY woviiiiiiiiiiiiieee ettt e e e e eeettb e e e e e e eesettbeeeeeeeessaabsbeeeeeeeesssrasasaeeesssnsssseeeeseeensssraseeeas 2
YA ¥ol Qg Tod VY] F=To F= T o V=T ol PRt 10
Table Of FIGUIES/TaBIES ...ttt e et e b e et e e ebeeeetteesbeeebeeeeseeesaressteeenns 11
Accomplishments aNd ObJECHIVES ....uuiii i e e e e e e e s e te e e e e e e e snnbraaeeas 12
o o =T Y ox | o =SS 30
o [=To1 A @ U1 o1V £SO PPPPRNt 30
(o | LoV Y At @ o I SV o o 110 V-SSP 36
Table of Figures/Tables

Table 1. Key Milestones and Deliverables. .........uei oottt e 12

T paraoranhs/sections marked with this svmbol mav contain nrofected data nroduced under aereement no IDE-AR00001231 with the US|

3 Paragraphs/sections marked with this symbol may contain protected data produced under agreement no. [DE-AR0000123] with the U.S.
Department of Energy that may not be published, disseminated, or disclosed to others outside the Government until 5 years after development of
such data under this agreement, unless written authorization is obtained from the recipient. Upon expiration of the period of protection set forth in
this Notice, the Government shall have unlimited rights in this data, including the right to publish. This Notice shall be marked on any
reproduction of this data, in whole or in part.

Page | 11



Accomplishments and Objectives

This award allowed the PowerChip team to demonstrate a number of key objectives. The focus
of the project was on developing device, passive component and circuit/system technology for
high-frequency miniaturized power electronic converters.
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A number of tasks and milestones were laid out in Attachment 3, the Technical Milestones and
Deliverables, at the beginning of the project. The actual performance against the stated
milestones is summarized here:

Table 1. Key Milestones and Deliverables.

Major Tasks Key Milestones and Deliverables

Program Element 1: Q1: Development of device simulation, mask design & geometry

Nitride device development | optimization, initial fabrication of GaN HEMTs. Test structures for

and system integration reliability assessment designed.
Completed 11/30/2010

1.1: Increase of breakdown The mask set for the nitride devices was designed and produced to

voltage include test structures and multi-finger devices. The final mask
design included devices with 40 mm and 80 mm gate periphery

1.2: Reduction of on (optimized to reduce on-resistance) as well as material

resistance characterization structures and devices for reliability testing.

1.3: Threshold voltage

control Q2: First batch of multifinger devices with breakdown voltage of 200 V
fabricated and tested.
1.4: Integration Completed 2/28/2011
The initial batch of depletion mode multi-finger devices with a
1.5: Reliability assessment range of gate widths up to W,= 39.6 mm were successfully

fabricated and tested. Breakdown voltage tests of early devices
show V. ~ 320 V for multi-finger devices.

Electrical stress set-up up to 1000 V completed.
Completed 2/28/2012
Automatic electrical stress and characterization environment
which can handle voltage up to 3000 V has been established. This
includes Agilent B15S05A power semiconductor analyzer and
Cascade Tesla probe station.

Q3: E-mode devices with on-resistance below 4 Q.mm fabricated and
tested.
Completed 5/31/2011
Enhancement mode devices were fabricated and tested. At this
point in the project, a sub-micron gate recess etch in the barrier
was used to achieve positive threshold voltages. However, the

3 Paragraphs/sections marked with this symbol may contain protected data produced under agreement no. [DE-AR0000123] with the U.S.

Department of Energy that may not be published, disseminated, or disclosed to others outside the Government until 5 years after development of
such data under this agreement, unless written authorization is obtained from the recipient. Upon expiration of the period of protection set forth in
this Notice, the Government shall have unlimited rights in this data, including the right to publish. This Notice shall be marked on any
reproduction of this data, in whole or in part.



Major Tasks
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on-resistance of these e-mode devices was ~10 Q.mm as the L
spacing was increased to meet required breakdown voltage levels.
This higher resistance did not impact the final circuit performance
significantly.

Reliability assessment of 200 V FETs under OFF (200 V) and ON (2 V)
conditions completed.

Completed 5/31/2011

Large electron trapping has been observed that drastically
degrades device performance in 200 V FETs. Relevant
degradation mechanism has been proposed.

Q4: Second batch of multifinger devices with breakdown voltage of 600
V fabricated and tested. Polarization engineering demonstrated for
threshold voltage control and E-mode operation demonstrated.

Completed 8/31/2011

The second batch multi-finger devices were fabricated and tested.
Although single finger devices showed breakdown voltage up to
643 V, ultimately 200 V multi-finger devices were used in circuit
demonstration, as these devices could have a smaller LDS and
thus a smaller on-resistance. Gate recess etching showed more
promise as a threshold voltage control method than polarization
engineering. Thus, efforts were focused on improving the
manufacturability of the gate recess process rather than the
polarization engineering.

Q5: Complete analytical studies of design space for device fabrication.

Completed 11/30/2011

Based on results from initial tests and system simulation, it
appeared valuable to have devices of 80 mm gate periphery and
“half-sized” devices of 40 mm gate periphery. In this way, we
could trade-off on-resistance for capacitance and see the effect on
the overall circuit efficiency.

Q7: Gate leakage at Vps=600 V reduced below 10 uA/mm through gate
dielectric technology.

Completed 12/31/2011

Using the tri-gate enhancement-mode approach, devices
demonstrated gate leakage levels from 10 pA/mm to 107
pA/mm throughout a 600V sweep using ALD SiO, gate
dielectric.
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Q10: Threshold voltage control with hydrogen passivation demonstrated.
Fourth batch of multifinger devices with breakdown voltage of 600 V,
threshold voltage > 2 V and leakage current below 10 mA fabricated and
tested.
Completed 3/01/2013
Threshold voltage control through hydrogen passivation was
unstable and was thus not pursued further since the alternative e-
mode gate recess methods were more promising. Although single
finger devices showed breakdown voltage up to 643 V, ultimately
200 V multi-finger devices were used in circuit demonstration, as
these devices could have a smaller LDS and thus a smaller on-
resistance. These devices showed leakage current below 10 mA
(in the range of 0.1 mA — 1 mA).

Dynamic on-resistance modeled and key parameters affecting it identified.

Third batch of multifinger devices with breakdown voltage of 600 V and
threshold voltage > 2 V fabricated and tested.
Completed 10/01/2012
The key parameter affecting the dynamic on-resistance is the
presence and quality of surface passivation. 200 V multi-finger
devices were used in circuit demonstration (with V, shifted to
~ -3V) to minimize on-resistance and optimize circuit efficiency.

Development of process technology and mask set for single chip
integration.
Completed 11/30/2012
The group moved away from single chip integration to focus on
an implementation using discrete devices that highlighted our
advanced packaging method (flip-chip bonding as opposed to
wire-bonding).

Q12: Fifth batch of multifinger devices optimized for integration with Si
control electronics and passive components. Device characterization
completed.
Completed 8/31/2013
The fabrication and characterization of the final batch of multi-
finger devices optimized for integration with Si control
electronics and passive components was completed. These
devices featured a tri-gate structure, sub-micron barrier recess,
source-connected field plate, silicon nitride passivation, and flip-
chip solder ball bumping.

Reliability assessment of 600 V FETs under OFF (600 V) and ON (2 V)
conditions completed.
Completed 6/01/2013
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Excessive electron trapping triggered at high voltage has been
identified as dominant degradation phenomenon. A trapping
mechanism has been suggested.

Q13: Structural analysis of 600 V devices completed; failure mechanisms
identified.
Completed N/A
Electron trapping has been identified as dominant failure
mechanism. This is not expected to induce any structural
degradation in the devices. Detailed structural analysis on 600 V
devices is not necessary.

Q14: Primary failure drivers and scaling laws identified.
Completed 12/31/2013
Total current collapse phenomenon triggered by electric field has
been identified to be a primary failure driver for high voltage GaN
power transistors. We attribute this to high-field tunneling-
induced electron trapping (“Zener trapping”) inside the AIGaN
barrier or the GaN channel layers. Trap energy levels around 1
eV above valence band is estimated and carbon dopant is
suspected as the responsible trapping site.

Lifetime model completed.
Completed 12/31/2013
Physical laws and dominant time constants and activation
energies for trapping and detrapping of electrons in traps
responsible for Zener trapping have been determined.

Program Element 2:
Magnetic materials and
components

2.1: Microfabricated three-
dimensional windings and
magnetics

2.2: Nanogranular magnetic
materials and components

2.3: New magnetic materials
and synthesis methods

2.4: Magnetics modeling,
design, and optimization

Q1: Initial models for toroidal air-core and nanogranular inductors
magnetics completed. The air-core models improve on previous models
by incorporating displacement current effects that arise with the
component embedded in a Si substrate; the nanogranular inductor models
address the newly proposed configuration.
Completed 11/30/2010
Two significant improvements to the traditional models for
toroidal air core inductors were incorporated. The first
improvement involved an energy-based method for determining
the magnetic fields inside the toroidal core. This method
specifically accounted for the gaps between the winding turns,
and explained the current crowding observed at the edges of the
turns at the gaps. From the fields, an equivalent surface current in
the winding was determined, and this surface current was
extended into the winding according to the physics of magnetic
diffusion. This in turn led to an improved determination of
winding losses. The second improvement involved introducing a
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model for the displacement currents in a silicon substrate into
which an embedded toroidal inductor was fabricated. These
currents are driven by the spatial and temporal variation of
electric potential from winding turn to winding turn. The current
models in turn permitted the determination of conduction losses in
the silicon and an increase in the parasitic capacitance along the
inductor.

The initial nanogranular inductor model addressed racetrack
inductors in both surface and embedded configurations, and
included first order models of inductance, core loss, and winding
loss based on AC and DC resistance.

Synthesis equipment for new magnetic materials configured.

Completed 12/13/2010
Synthesis equipment with 3 L size reactor for large scale reaction
was successfully installed.

Q2: Initial designs for nanogranular and air-core inductors completed.

Completed 2/28/2011

An automated computer code was created to design inductors.
The code permitted both fixed and variable design parameters,
and synthesized the variable design parameters randomly in a
Monte-Carlo sense. The performance of each designed inductor
was then determined using the previously developed models, and
inductor performance was filtered in a Pareto-Optimal sense to
identify a performance frontier along which the best inductors
could be found. It is important to note that the computer-based
design code included a model of the power converter so that the
performance of each inductor, and the converter using that
inductor, could be judged.

Initial inductor designs were based on estimated fabrication
constraints and material properties, and were intended to test the
models, the fabrication processes and the subsequent test
procedures. They were not specifically intended to meet the
specifications required by the program. They were approximately
6 mm to 24 mm in diameter, and 0.5 mm tall.

Automated computer code was also developed for nanogranular
inductors, using particle-swarm optimization to find a Pareto
frontier of options for power density and efficiency. Initial
nanogranular inductor designs were for a 15 MHz operating
frequency in a 25 W converter, using a 458 nH embedded
racetrack inductor.
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First generation air-core inductor fabrication initiated. (First generation
air-core inductors are for use in model verification, for developing key
fabrication steps, and for identifying fabrication challenges.)
Completed 12/31/2010
For the first generation air-core inductor model, three different
inductors were investigated: 1) silicon-embedded; 2) through-
silicon; and 3) on-glass. The key microfabrication steps including
deep silicon etching, proximity lithography and 3D copper
electroplating, along with validating each inductor model
developed at MIT.

20 pm thick nanogranular magnetic materials deposited.
Completed 11/01/2010
A sample of Co-Zr-O film was deposited successfully with no
adhesion problems observed; measurements are reported below,
under third task in Q3.

Testing systems for new magnetic materials configured.
Completed 3/28/2011
With Agilent 4395A and magnetic materials test fixture 16454,
the relative permeability of magnetic nanoparticles could be
measured from 100 kHz to 500 MHz.

Q3: Initial designs for nanogranular core inductors completed.
Nanogranular material process steps mapped out.
Completed 6/15/2011
Initial nanogranular inductor designs, as described above in first
task of Q2, were for a 15 MHz operating frequency in a 25 W
converter, using a 458 nH embedded racetrack inductor. This was
predicted to have 0.4 W power loss and 5.7 pF capacitance.

A fabrication process for these embedded inductors was planned
out using 12 fabrication steps.

Designs for nanogranular core targeted three methods: 1) doctor
blading deposition; 2) drop casting deposition; and 3) pressed
nanoparticle disk through high pressure pressing after ligand
exchange.

Fabrication of first-generation air-core inductors completed. Inductor
winding is continuous and has no turn-to-turn or turn-to-substrate short
circuits.

Completed 5/31/2011

On-glass inductor and silicon-embedded inductor were
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successfully fabricated. Both inductor windings were continuous
and did not observed turn-to-turn or turn-to-substrate short
circuits.

20 pm thick nanogranular magnetic materials tested and plan developed to
address any performance shortcomings relative to targets of hard-axis
permeability greater than 50 and hard-axis coercivity less than 5 Oe with
0.5 T peak excitation.

Completed 3/31/2011

Permeability was measured as 120, and, at a drive level of 0.5 T
peak, coercivity was measured as 0.9 Oe, meeting the target with
a large margin. The coercivity was measured as a function of
drive level showing even smaller coercivity at lower drive levels.

Q4: Demonstration that the developed models are able to predict
performance of the air-core inductors, including inductance, loss and
resonance frequency.

Completed 8/31/2011

Two methods were used to determine the accuracy of the models,
with a focus on losses; most models, including those developed
here, are quite accurate in terms of determining inductance. The
first method was a comparison with finite-element analysis. The
second method was a comparison with experimental data.

A library of 2D geometrically-linear finite-element analyses was
created to determine the losses in windings having different ratios
of width to thickness and skin depth to thickness. The ratios were
chosen to match those anticipated for the project. The losses
determined from the simulations were then compared to the losses
determined with the models developed here, and to the losses
determined with a simple skin depth model. Generally, the losses
determined with the models developed here matched those from
the library to with 3% or less, while the error in the losses
determined with the simple skin depth model ranged from 5% to
35%.

An early 100-nH microfabricated inductor was testing in a
converter, and its current and voltage waveforms were measured.
These waveforms were used to extract an equivalent inductance
and resistance (loss). These parameters were compared to hose
predicted by the models developed here. The inductances
matched to with 2-3% while the resistance showed a considerable
difference. It was determined that the wire bonds between the
inductor and the power converter contributed significant
resistance requiring further analysis.
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On-glass inductor and silicon-embedded inductor were
characterized in terms of inductance, resistance, and quality
factor. The on-glass inductor was approximately 650 pm tall with
an outer diameter of 6 mm and 25 winding turns. The inductance,
dc resistance and quality factor showed approximately 90 nH and
250 mQ, and 15 at 10 MHz respectively. The silicon-embedded
inductor was approximately 400 um tall with an outer diameter of
6 mm and 25 winding turns. The inductance, dc resistance and
quality factor showed approximately 60 nH and 300 mQ2, and 6 at
10 MHz respectively.

20 pm nanogranular films exhibit good magnetic performance as
measured on B-H loop tracer. Specifically, hard-axis permeability should
be greater than 50, and hard-axis coercivity should be less than 5 Oe with
0.5 T peak excitation.
Completed 3/31/2011
The initial tests reported above in third task of Q3 already met this
objective so no additional work was needed to meet this
milestone.

Design of radial magnet array finalized.
Completed 6/22/2011
A magnetic array was optimized by finite-element analysis to
achieve a radial field in the region of the toroidal core. The radial
component of the field was at least 10 times as strong as the axial
component throughout the target region. The field strength was at
least 100 mT, much stronger than the target of 40 mT.

Later work developed a second-generation fixture with similar
performance for smaller samples, less than 5.6 mm OD.

Q5:Second-generation air-core designs developed that meet the
requirements of one or more topologies specified under program element
3. Key design factors to be met include inductance, loss and self-resonant
frequency. (In addition to meeting early design requirements, the second
generation is to produce devices that can be used with hybrid packaging,
and to address any processing difficulties encountered in the fabrication of
first-generation designs.)

Completed 11/30/2011

The focus of this task was on inductors microfabricated on an

insulating substrate. The models were improved to incorporate

fabrication limitations observed during the fabrication of the first-

generation inductors. Inductors were designed for a power
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converter handling 25 W; the converter frequency was estimated
to be in the range of 5-8 MHz. The inductors had a 650 um
height, and ranged in radius from 8-15 mm. The winding turn-
turn gap was 50 um, and the winding turn thickness was either 50
or 100 um. Total converter efficiency near 91% was predicted.

An alternative fabrication approach was proposed for the air-core
inductors. While we demonstrated that the first generation
inductor fabrication approaches are feasible, and the fabricated
devices exhibited good results, the process was time consuming
due to the bottom-up plating of the high-aspect-ratio vias. As a
result, we propose a different approach that relies on metalized
polymer bone vertical vias. This process has dramatically
reduced the fabrication process time. The very thick via copper
plating process (~650 um) was replaced by a 20 to 40 um thick
electroplating step of the vias. This was possible because the vias
have a SU8 polymer bone (or core) structure, and plating is
initiated from the sidewall. In summary, we replaced a bottom up
plating process by sidewall plating.

For silicon-embedded inductor, we have been developing an
interconnection scheme compatible with the fabrication process of
the si-embedded inductors for ultimate compactness and high
level of integration.

30-50 um nanogranular film deposition demonstrated.

Completed 6/01/2012

The first samples deposited in this thickness range had 40 um of
radial anisotropy Co-Zr-O material on thin toroidal Si substrates.
Because of problems with thermal mismatch with the thin
substrates, these exhibited low yield (37%). Later samples
deposited on almunina substrates had high yield (typically >80%).

Radial magnet array constructed.

Completed 7/15/2011

Fixtures were fabricated for 8-mm inner diameter (min), 16-mm
outer diameter (max) toroidal substrates. The fixtures included
two permanent magnets, steel pole pieces, and a copper substrate
support that also serves as a heat sink.

Correlation of metal nanocrystal structure and loss validated in new
magnetic materials.

Completed 1/30/2012

Spherical and cubic nanocrystals such as nickel, iron oxide, zinc
ferrite, nickel ferrite, and nickel zinc ferrite were tested to validate
the correlation between the nanocrystal structure and loss with the
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PPMS (Physical Property Measurement System) up to 10 kHz and
spheres expressed less loss than cubes.

Q6: Second-generation air-core inductor fabrication initiated.
Completed 2/01/2012
The fabrication for both on-glass and silicon-embedded inductors
were initiated.

Toroidal samples of nanogranular films deposited and tested.
Completed 12/01/2011
Toroidal samples were deposited, first on polyimide substrates.
To verify radial anisotropy, small square samples were cut from
the toroid, and measured in a B-H loop tracer. They showed the
desired radial anisotropy, whereas samples cut from a control
sample deposited without a radial field were nearly isotropic, with
large hysteresis loops. This shows that the desired orientation was
achieved and that it had the desired result of reducing hysteresis
loss.

Complex permeability was also measured and showed flat real
relative permeability near 60 and Q over 100 below 50 MHz.

Ferrite-based new magnetic materials deposited and tested. Magnetic
moment and AC susceptibility characterized to IMHz. AC electrical
resistance of film characterized to 100MHz.
Completed 5/31/2012
AC susceptibility of 6 nm nickel zinc ferrite was tested from 1
MHz to 1 GHz with the permeameter at Dartmouth. Due to small
size of nickel zinc ferrite nanoparticles, susceptibility was quite
low (between 1 and 2). Electrical resistance of nickel ferrite film
was characterized from 10 kHz to 10 MHz and the result clarified
the high resistance of nanoparticle film. (~400 k Ohm at 10 MHz).

Q7:Second-generation air-core inductor fabrication completed. Inductors

are functional, meeting design specifications (inductance, loss, voltage

breakdown), and suitable for use in a converter with hybrid packaging.
Completed 5/31/2012
The fabrications of second-generation air-core inductors were
completed. 50 turn on-glass inductor showed an inductance of
approximately 200 nH in the frequency range of 0.1-100 MHz, dc
resistance of 0.8 Q, and quality factor of 8 at 10 MHz while 25
turn inductor showed 80 nH, 200 mQ, and 18 at 10 MHz
respectively. The inductors were tested to full voltage and they
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did not breakdown. In subsequent testing throughout the course
of this project, electrical breakdown was never observed to be a
problem and it ceased to be a focus during testing.

Q8: Third-generation air-core designs developed that meet the refined
(optimized design) requirements from program element 3. (In addition to
meeting refined design requirements, the third generation is targeted to
produce devices that address integration with other components.)
Completed 8/31/2012
3rd generation air-core inductors were developed. The inductors
consist of 70 turns, with an outer diameter of 8 mm and inner
diameter of 4 mm. The inductors are approximately 1 mm in
height. The manner in which the inductors were microfabricated
was improved. In particular, the vias were plated around
patterned insulating pillars which permitted much taller inductors.
Correspondingly, the models of inductor loss were changed. In
addition, revised microfabrication limitations, most notably
minimum feature sizes, were incorporated in the computer-based
design code. Finally, for silicon-embedded inductors, models of
magnetically-driven losses in the silicon substrate were included.
Further small improvements to most models were incorporated in
the computer-based design code. With the improved models,
inductors for full-power converter operation and were designed.
The projected efficiency ranged from 92-94% depending on the
thickness of the inductor. However, it was observed that the
efficiency was strongly dependent on inductor temperature, and
inductor temperature was hard to predict for the lighting
application. As a result, a high temperature of 125 C was used
during the design process, and this led to large air core inductors
having radii near 10 mm.

First generation nanogranular-core magnetics tested. Tests include dc
resistance and complex impedance as a function of frequency, and will be
compared to design values established in Q3.
Completed 9/07/2012
Based on problems with the embedded racetrack inductor
fabrication process, a surface racetrack process was developed in
parallel. The surface racetrack fabrication process was found to
be superior, but measured performance was not yet satisfactory.
Inductance was lower than the design value, quality factor was
low (peaking around 7), and inductance rolled off at frequencies
above 10 MHz. The causes of these problems were traced to
fabrication issues, addressed immediately below in third task of

Q8.
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Second-generation nanogranular-core designs developed. These designs
should either improve at least one performance metric by at least 20% or
address processing difficulties encountered in the fabrication of first-
generation designs.
Completed 9/28/2012
Problems with the initial fabrication process included inadequate
insulation between the top corners of the winding and the top core
layer, and poor control over the shape of sloped SU-8 insulation.
To solve these problems, we developed process and design
improvements including thicker SU-8 insulation and a UV-
LED/prism exposure system for achieving nearly ideal 45-degree
angled exposure of SU-8. Detailed design optimizations were
also re-run based on the updated magnetics and circuit models.

Third-generation air-core magnetics fabrication initiated.
Completed 5/31/2012
The fabrication of the third-generation air-core inductor was
initiated.

Plans for process integration of new magnetic materials finalized.
Completed 8/31/2012
We established routes to process colloidal magnetic nanoparticles
into thick films and free standing disks that could be integrated
into hand wound toroidal inductors. As of 01/07/2014 we are
pushing to demonstrate drop casting of magnetic backfills into
prefabricated MEMS inductors but this work is expected to take
until 01/30/2014 to complete.

A drop-in approach for the process integration of new magnetic
materials was also investigated, and successfully tested with other
materials.

Q10: 30-50 um nanogranular films exhibit good magnetic performance as
measured on B-H loop tracer. Specifically, hard-axis permeability should
be greater than 50, and hard-axis coercivity should be less than 5 Oe with
0.5 T peak excitation.
Completed 3/29/2013
Several samples with thicknesses in this range were deposited
with good performance found in a wide range of tests, including
B-H loops, small-signal complex permeability, and performance
in inductors. Specifically for this milestone, a 40 pm thickn
sample was measured in a B-H loop tracer, with the data corrected
for demagnetizing factor. Demagnetizing factor was extracted
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from a set of measurements and also found from a finite-element
simulation in order to ensure that this correction was applied
properly for an unusual shape sample. (The sample was a set of
two adjacent rectangles, patterned with the mask used for
racetrack inductors.)  Coercivity at 0.5 T peak excitation was
2.6 Oe based on the best estimate of demagnetizing factor, or 3.5
Oe based on the worst case value of demagnetizing factor.

Fabrication of second-generation nanogranular-material-based inductors
completed.
Completed 10/13/2012
A 3" wafer of inductors was completed and partially diced for
further testing in first task of Q11.

Scale production of new ferrite based magnetic materials to 10-gram
quantities.
Completed 9/20/2012
6 nm nickel zinc ferrite nanoparticles could be synthesized more
than 5 g from a single batch. By combining 2 or more batches of
nanocrystal reaction, more than 10 gram scale production was
achieved.

Q11: Testing of second-generation nanogranular-material-based inductors
completed. Tests include dc resistance and complex impedance as a
function of frequency, and will be compared to design values established
in Q8.
Completed 5/31/2013
DC resistance and complex impedance measurements matched
design and modeled values very closely. Peak quality factors
were about 18, slightly higher than predicted.

Scale production of new metallic magnetic materials to 10 gram
quantities.
Completed 12/31/2013
By combining two or more reaction batches, the production of
nickel nanoparticles in different sizes was scaled up to 10 gram
quantities.

Q12: New magnetic materials produced in 10-gram quantities tested.
FeCo alloy NCs produced at 10g scale for integration and prototyping.
Size target below 20nm with less than 8% dispersion. Loss at I0MHz
pushed to match sputtered Co-Zr-O benchmark.

Completed N/A
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Major Tasks

Key Milestones and Deliverables

Due to oxidation issues/stability, the synthesis of nanocrystals we
chose to focus all efforts on metal oxide nanocrystals. Iron oxide
nanoparticles from 8.7 nm to 17.8 nm in size could be produced at
10 g scale their relative permeability values were characterized.

Q14: Materials for > 50 MHz developed. New magnetic materials
demonstrate magnetic properties equal to or better than those of 30-50 pm
nanogranular films.

Completed 12/20/2013

Zinc ferrite nanocrystals from 10 nm to 18 nm in size were
produced at multiple gram scale. specifically, 18 nm zinc ferrite
nanocrystal keeps quality factor to be higher than 20 up to 74
MHz and higher than 10 up to 150 MHz. 10.5 nm zinc ferrite
nanoparticles were integrated into a 25 turn hand wound inductor
and achieved 91.9% efficiency in a continuous fan test.

Fabrication of third-generation air-core magnetics (for full integration)
completed.

Completed 11/30/2012

3rd generation air-core inductors were fabricated. The inductors
consist of 70 turns, with an outer diameter of 8 mm and inner
diameter of 4 mm. The inductors are approximately 1 mm in
height. The gap between windings showed 100 um and the
winding thickness was 30 pm.

Characteristics of third-generation air-core magnetics (inductance, loss,
voltage breakdown) successfully validated.

Completed 12/31/2014
As stated earlier, electrical breakdown was never observed to be
an issue.

By this point the models of inductor inductance and resistance
(loss) had been verified against a greatly expanded library of FEA
simulations and larger set of experimental data. Most of the
experimental data consisted of (low-power) impedance
measurements that did not provide thermal stress. The models
matched both the simulations and the impedance measurements
very well. The modeled inductance was always within a few
percent of the measured inductance. At the worst-case frequency,
the modeled resistance (loss) was well within 10% of the
measured resistance. This should correspond to modeled total
power converter efficiency within several percent of the measured
efficiency.
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Major Tasks

Key Milestones and Deliverables

Characterization results of the 70-turn inductors showed an
inductance of 653 nH, an AC resistance of 2.9 Ohms, and a
quality factor of 13.2 at 10 MHz.

It has been concluded that coreless (“air-core”) inductors needed
to meet the program specifications are not sufficiently small to be
interesting (as compared to other possibilities), and represent a
substantial fabrication / yield risk in practice owing to the high
number of needed turns. Attention thus turned from coreless
toroidal designs to testing of toroids filled with a magnetic core
(e.g., including Dartmouth and Penn material versions and
versions with commercial material created at GIT).

Program Element 3:
Circuit development and
fabrication

3.1: Topology and control
investigation

3.2: Circuit validation:
discrete commercial
components

3.3: Design optimization
3.4: IC development

3.5: Circuit validation:
discrete custom components

3.6: Prototype system
development: hybrid
integration of controls,
devices, passives

3.7: Single chip integration
and validation

Q3: Completed study of topology and control options. Study will provide
a set of at least three suitable topology options and an assessment of their
viability as a function of the achievable characteristics of magnetics (e.g.,
size, inductance, loss, and type [incl. resonant/bulk, cored/coreless,
inductor/transformer]) and devices (e.g., breakdown voltages, resistances
and capacitances.)
Completed 6/30/2011
A variety of topology options and design tradeoffs were
considered. A merged-two-stage circuit architecture was
identified to enable operation across large, wide-input voltage
ranges while preserving high-frequency capability. For the target
application the use of an inverted resonant-transition buck
topology was identified as being highly suited to the system
requirements.

Q4: Circuit validation with commercial transistors and magnetics
completed. Conversion function demonstrated at input voltage > 100 V
and switching frequency > 5 MHz.
Completed 8/31/2011
An inverted resonant-transition buck converter suitable for
providing a 35 V output from input voltages exceeding 100 V has
been demonstrated with operation at a variable frequency of 5-10
MHz at a few tens of Watts.

Q5: Initial optimization results: baseline design with recommended
devices and magnetic component sizing. Optimization (across circuit
design and control) will seek the highest system efficiency achievable
within a size envelope determined by the passive components.
Completed 12/15/2011
A simulation and loss-computation tool was developed to enable
rapid exploration of the design space. Initial component size
optimization for a 50-100V input, 35 V output power stage was
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Major Tasks

Key Milestones and Deliverables

developed.

Q8: Discrete circuit validation with custom program devices and magnetic
components completed. Successful in-circuit operation of individual
components at performance levels (voltages, currents, frequencies)
required for final system.
Completed 9/14/2012
1) The 653 nH GIT air core inductor was tested in the circuit with
a commercial GaN FET. The efficiency was 82.73% delivering
23.2 watts at a frequency of 8.28 MHz. 2) The first MIT GaN
FET was tested in the circuit with commercial inductors. The
efficiency was 89.38% delivering 22.8 watts at a frequency of
8.70 MHz.

Completed control IC (tapeout).
Completed 8/27/2012
Control integrated circuit tapeout was completed.

Q12: Completed validation of hybrid integrated system with custom
control IC, devices, passives. Demonstration at the following
performance level: >100 V input at 10-50 W, >5 MHz switching
frequency, >85% efficiency, > 100 W/in’ component power density.
Completed 9/01/2013
The circuit was tested with the first generation MIT GaN FET and
the Dartmouth G2 racetrack inductor. The custom control IC was
not used. From 26 watts to 33 watts the efficiency was above
85% and the frequency was above 5 MHz. The peak efficiency
was 85.56% delivering 32.67 watts with a frequency of 5.092
MHz. The volume of the power part of the circuit was 0.0555 in’
for a power density of 588 watts/in’.

Q14: Completed co-optimization of circuit topology, devices, magnetics.
Optimization (across device sizing/layout, magnetic component design,
and circuit design) will seek highest system efficiency achievable within a
predetermined size envelope dictated by the passive components.
Completed 12/10/2013
Using the parts that would provide the most efficient circuit with
the highest power density, a printed circuit board was designed for
the converter.

Final integrated power converter validation. Device fabricated and tested
with following performance: > 100 V input, 10-50 W, > 93% efficiency,
>5 MHz switching frequency, 100 ° C operation, > 300 W/in’.
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Major Tasks

Key Milestones and Deliverables

Completed 1/22/2014

1) The final circuit was tested with a 100 V input at an output
power of 41 watts. The efficiency was 94% and the box power
density was 406 W/in’. The circuit was not tested at 100° C.
Though not a program requirement, the circuit develops its own
control power and the efficiency includes that power loss.

2) A second circuit which is an AC to DC circuit was also
designed and tested. The efficiency was 93.3% with a power
factor of 0.89. The box power density was 45 W/in®. The
displacement power density was 130 W/in®. The switching
frequency varied between 3 and 30 MHz depending on where in
the AC voltage cycle it was operating.

Program Element 4:
Manufacturing &
Commercialization
Analysis

4.1 Manufacturing analysis
4.2 Technology transfer &

outreach (TT&O) and
commercialization planning

Q10: Analysis and planning of TT&O, as well as commercialization of
technologies under development presented and discussed with ARPA-E
Completed 12/04/2012
Discussed commercialization plan with ARPA-E Program
Manager.

Q12: Test follow-on lots of semiconductor devices and magnetic

components. Revise estimates of system performance.
Completed 1/14/2014
To evaluate different core materials, hand wound inductors were
fabricated on toroidal cores and tested in the circuit with
commercial GaN FETs. Most tests were done under pulsed
conditions except for UPenn core materials which were found to
perform better at higher temperatures. Powdered iron cores
suitable for inclusion in microfabricated windings yielded an
efficiency of 94.34% at a power of 27.97 watts. Dartmouth
fabricated core material yielded a slightly higher efficiency of
94.43% at a power of 42.81 watts. Final samples of the UPenn
developed core material yielded a maximum efficiency of 93.19%
at 42.65 watts.

Third generation MIT GaN FETs were tested in the circuit using
commercial inductors. With no cooling they yielded an efficiency
0f 92.56% at 14.85 watts. With cooling the efficiency improved
to 95.51% at 36.29 watts.

Begin evaluation of manufacturability of system and estimation of cost.
Completed 12/13/2013
Two demonstration circuits were designed and built at the end of
the project. The first contained only the parts necessary to realize
a working version of the circuit to meet the specifications for the
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Major Tasks

Key Milestones and Deliverables

project (input voltage = 100 V, output voltage =35 V, 10-50
watts, >93% efficient, >5 MHz switching). The second also
included a microprocessor based control, power supply for the
control circuit, startup circuit, and input EMI filter. In
approximately 10K quantity, the first circuit should cost $8.40 to
manufacture including labor. The second should cost $18.16.

Analysis and planning of TT&O, as well as commercialization of
technologies under development presented and discussed with ARPA-E.

Completed 9/27/2013

Industry Advisory Committee Meeting was held on Wednesday,
May 29th. Twelve representatives from nine companies (Foxconn,
Lutron, M/A Com, Maxim, Osram Sylvania, Picor, Samsung,
Texas Instruments, and Volterra) participated in the meeting to
discuss commercialization opportunities for the results of this
research.

Q14: Final evaluation of system performance relative to industry
best-in-class.

Completed 3/13/2014

The DC/DC converter built for this project has better efficiency
(94% vs. 83%), better power density (406 W/in® vs. <5 W/in®),
and higher frequency operation (5 MHz vs. 104 kHz).

More significant may be a comparison of the AC/DC converter,
also built using technology from this program, which more
closely matches the function of the industry best-in-class devices.
The efficiency for the AC/DC converter is higher (93.3% vs.
83%), the power density is higher (45 W/in® vs. <5 W/in®), the
frequency is higher (minimum 3MHz vs. 104 kHz) and the power
factor is comparable (0.89 vs. 0.93). Also, no one commercial
device embodied all these performance characteristics. Each
parameter indicated is the best of any of the devices tested.

Full assessment of manufacturability, identification of manufacturing
gaps, and estimate of in-volume production costs.

Completed 3/13/2014

In section 4.08 initial estimates of the cost of the circuit were
made. The bare circuit was $8.40 and the complete circuit was
$18.16. Of this cost, the basic power components represented
$3.62. The remainder was for the control function which was
implemented with off-the-shelf components. We estimate that a
custom chip to perform these functions would cost $1.00. The
circuit should therefore cost $4.62 or $4.74 if we include the EMI
filter.
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Major Tasks Key Milestones and Deliverables

Analysis and planning of TT&O, as well as commercialization of

technologies under development presented and discussed with ARPA-E.
Completed 1/29/2014 Page | 30
Presented poster at Solid State Lighting Conference in Orlando,
FL.

Project Activities

To realize advances in power conversion technology, the research project investigated each of
new power semiconductor devices, new magnetic materials and component designs, and new
circuit architectures and topologies to realize higher degrees of miniaturization, integration and
performance of power electronics. The applications focus was on power converters for driving
LED loads, encompassing ac-to-dc and dc-to-dc conversion from moderate voltage levels (to
above 100 V) to low voltages (e.g., tens of Volts) at low to moderate operating power levels
(e.g., tens of Watts). Semiconductor device research focused on the performance, reliability
and improved design of devices based on Gallium Nitride (GaN). Magnetics research focused on
both development of new magnetic materials suitable to higher operating frequencies and on
microfabrication of magnetic components. Systems research focused on leveraging these
advances to attain higher operating frequencies, miniaturization and performance as compared
to the present state of the art.

Project Outputs

A. Journal Articles

1. “Studies of Liquid Crystalline Self-Assembly of GdF3 Nanoplates by In-Plane, Out-of-Plane SAXS"
T. Paik, D. K. Ko, T Gordon, V. Doan-Nguyen, C. B. Murray ACS Nano In Press 2011.

2. "Thiocyanate-Capped Nanocrystal Colloids: Vibrational Reporter of Surface Chemistry and
Solution-Based Route to Enhanced Coupling in Nanocrystal Solids" A. T. Fafarman, W-K Koh, B. T.
Diroll, D.K. Kim, D-K Ko, S. J. Oh, X. Ye, V. Doan-Nguyen, M. R. Crump, D. C. Reifsnyder, C. B.
Murray, and C. R. Kagan, J. Am. Chem. Soc., Article ASAP (Web): August 17, 2011.

3. "Enhanced Thermal Stability and Magnetic Properties in NaCl-Type FePt-MnO Binary Nanocrystal
Superlattices" A. Dong, J. Chen, X. Ye, J. M. Kikkawa, and C.B. Murray, J. Am. Chem. Soc., 2011,
133 (34), 13296-13299 2011.

3 Paragraphs/sections marked with this symbol may contain protected data produced under agreement no. [DE-AR0000123] with the U.S.

Department of Energy that may not be published, disseminated, or disclosed to others outside the Government until 5 years after development of
such data under this agreement, unless written authorization is obtained from the recipient. Upon expiration of the period of protection set forth in
this Notice, the Government shall have unlimited rights in this data, including the right to publish. This Notice shall be marked on any
reproduction of this data, in whole or in part.



4. “Tri-Gate Normally-off GaN Power MISFET,” B. Lu, E. Matioli and T. Palacios, IEEE Electron Device
Letters, vol. 33, no. 3, pp. 360-362, 2012.

5. “ATechnology Overview of the PowerChip Development Program” Mark G. Allen, Mohammad
Araghchini, Jun Chen, Jesus A. del Alamo, Vicky Doan-Nguyen, Gary DesGroseilliers, Daniel V.
Harburg, Florian Herrault, Donghyun Jin, Jungkwun Kim, Min Soo Kim, Jeffrey H. Lang,
Christopher G. Levey, Seungbum Lim, Bin Lu, Christopher Murray, David Otten, Tomas Palacios, Page | 31
David J. Perreault, Daniel Piedra, Jizheng Qiu, John Ranson, Charles R. Sullivan, Min Sun, Xuehong
Yu, and Hongseok Yun, IEEE Transactions on Power Electronics, Accepted subject to mandatory
revisions. Revised version submitted Sept. 10, 2012.

6. "Impact of high-power stress on dynamic ON-resistance of high-voltage GaN HEMTs," D. Jin, J.
del Alamo, Microelectron Reliab., to be published, 2012.

7. J.Qiu and C. R. Sullivan, "High-Frequency Resistivity Measurement Method for Multi-Layer Soft
Magnetic Films", IEEE Transactions on Power Electronics (accepted).

8. C.R.Sullivan, D. V. Harburg, Jizheng Qiu C.G. Levey and Di Yao, “Integrating Magnetics for on-Chip
Power: A Perspective,” IEEE Transactions on Power Electronics, accepted subject to mandatory
revisions. Revision submitted Sept. 24, 2012.

9. “MICROFABRICATION OF AIR CORE POWER INDUCTORS WITH METAL-ENCAPSULATED POLYMER
VIAS” Jungkwun ‘JK’ Kim, Florian Herrault, Shannon Yu, Mark G. Allen, J. Micromech. Microeng.
Aug 2012 (In press)

10. “Silicon-embedding approach to 3-D toroidal inductor fabrication” X.Yu, M.Kim,F.Herrault, C-H. Ji,
J.Kim, M.G.Allen, Journal of MEMS, July 2012 (In press)

11. "An Etch-Stop Barrier Structure for GaN High-Electron-Mobility Transistors," B. Lu, M. Sun and T.
Palacios, IEEE Electron Device Lett., vol. 34, no. 3, pp. 369-371, Mar. 2013.

12. M. Araghchini, X. Yu, M. S. Kim, F. Herrault, M. G. Allen and J. H. Lang; “Modeling and measured
verification of loss in MEMS toroidal inductors”; IEEE Transactions on Industry Applications.
Invited and accepted.

13. D.lJinand J. A. del Alamo, "Methodology for the study of dynamic ON-resistance in high-voltage
GaN field-effect transistors." IEEE Transactions on Electron Devices, Vol. 60, No. 10, pp. 3190-
3196, October 2013.

14. D.lJin and J. A. del Alamo, "Impact of high-power stress on dynamic ON resistance of high-voltage
GaN HEMTSs." Microelectronics Reliability, Vol. 52, pp. 2875-2879, 2012.

15. S. Lim, J. Ranson, D.M. Otten and D.J. Perreault, "Two-Stage Power Conversion Architecture
Suitable for Wide Range Input Voltage," IEEE Transactions on Power Electronics, (Electronic Early
Access 2014).

B. Papers

1. Yu, Xuehong; Kim, Minsoo; Herrault, Florian; Ji, Chang-Hyeon; Kim, Jungkwun; Allen, Mark, “
Silicon-embedded 3D toroidal air-core inductor with through-wafer interconnect for on-chip
integration ,” MEMS 2011. IEEE 25" International Conference, Paris, France, Jan. 2012.

2. Jin, D and del Alamo, J.A., "Mechanisms responsible for dynamic ON-resistance in GaN high-
voltage HEMTs" To be presented at IEEE International Symposium on Power Semiconductor
Devices and ICs, Bruges, Belgium, June 3-7, 2012.
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B. Lu, T. Palacios, D. Risbud, S. Bahl and D. I. Anderson, “Extraction of dynamic on-resistance in
GaN transistors under soft- and hard-switching conditions,” IEEE Compound Semiconductor
Integrated Circuit Symp. (CSICS), Oct. 2011, pp. 1-4.

Jizheng Qiu and Charles R. Sullivan, "Radial-Anisotropy Nanogranular Thin-Film Magnetic
Material for Toroidal Inductors,"IEEE Applied Power Electronics Conference and Exposition
(APEC), Orlando, FL, Feb. 2012.

Jizheng Qiu and Charles R. Sullivan, "Radial-Anisotropy Thin-Film Magnetic Material for High-
Power-Density Toroidal Inductors," 7th International Conference on Integrated Power Electronics
Systems (CIPS), Nuremberg, Germany, Mar. 2012.

Daniel V. Harburg, Xuehong Yu, Florian Herrault, Christopher Levey, Mark Allen, and Charles R.
Sullivan. “Micro-fabricated thin-film inductors for on-chip power conversion,” 7th International
Conference on Integrated Power Electronics Systems (CIPS), 333-338, Nuremberg, Germany,
Mar. 2012.

B. Lu, E. Matioli and T. Palacios, “Low-Leakage Normally-Off Tri-Gate GaN MISFET,” 24th IEEE
International Symposium on Power Semiconductor Devices and ICs (ISPSD), Bruges, Belgium, Jun.
2012.

Jin, D and del Alamo, J.A., "Impact of high-power stress on dynamic ON-resistance of high-voltage
GaN HEMTSs," IEEE Reliability of Compound Semiconductors (ROCS), Boston, Apr. 2012.

Harburg, Daniel V, Qiu, Jizheng and Sullivan, Charles R. "An Improved AC Loss Model for the
Optimization of Planar-Coil Inductors," 13th IEEE Workshop on Control and Modeling for Power
Electronics (COMPEL), Kyoto, Jun. 2012.

M. Araghchini, M. S. Kim, X. Yu, F. Herrault, M. G. Allen and J. H. Lang, "Modeling and Measured
Verification of Loss in MEMS Toroidal Inductors", IEEE Energy Conversion Congress and
Exposition, Raleigh, NC, September 2012.

X.Yu, M.Araghchini, F.Herrault, J.Kim, J.H.Lang, and M.G.Allen, "Fabrication, Modeling and
Performance Analysis of Silicon-embedded 3-D Toroidal Inductors," 12th Intl. Workshop on Micro
and Nanotechnology for Power Generation and Energy Conversion Applications(PowerMEMS),
Atlanta, GA, Dec. 2012.

J. Kim, F. Herrault, X. Yu, M. Kim, and M.G. Allen, "Microfabrication of air core toroidal inductor
with very high aspect ratio metal-encapsulated polymer vias," 12th Intl. Workshop on Micro and
Nanotechnology for Power Generation and Energy Conversion Applications(PowerMEMS),
Atlanta, GA, Dec. 2012.

J. Qiu, H. Syed, and C. R. Sullivan, "Complex Permeability Measurements of Radial-Anisotropy
Thin-Film Magnetic Toroidal Cores", in Joint MMM/Intermag Conference, Jan. 18, 2013. Chicago,
Illinois.

J. Qiu, D. V. Harburg, and C. R. Sullivan, "A Toroidal Power Inductor Using Radial-Anisotropy Thin-
Film Magnetic Material Based on a Hybrid Fabrication Process", in IEEE Applied Power Electronics
Conference and Exposition (APEC), March 17-21, 2013 . Long Beach, CA.

H. Syed and C.R. Sullivan, “Large-Signal, High Frequency Magnetic Characterization of Toroidal
Inductor Cores," in IEEE Applied Power Electronics Conference and Exposition (APEC), March 17-
21, 2013. Long Beach, CA.

C.R. Sullivan, Jizheng Qiu, D.V. Harburg and C.G. Levey, “Nanogranular magnetic materials for
enhanced low-profile inductors,” Invited presentation, IEEE Global Interposer Technology
Workshop, November 14-16, 2012. Atlanta, GA.

Jungkwun ‘JK’ Kim, Seung-Joon Paik, Florian Herrault, Mark G. Allen, “UV-LED LITHOGRAPHY FOR
3-D HIGH ASPECT RATIO MICROSTRUCTURE PATTERNING,” Hilton Head Workshop 2012:A Solid-
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State Sensors, Actuators and Microsystems Workshop, Hilton Head Island, SC. , June 3 -7, 2012,
pp. 481 - 484.

18. Seungbum Lim, John Ranson, David M. Otten, and David J. Perreault, "Two-Stage Power
Conversion Architecture for an LED Driver Circuit," in IEEE Applied Power Electronics Conference
and Exposition (APEC), March 17-21, 2013. Long Beach, CA.

19. Jizheng Qiu, H. Syed, and C. R. Sullivan, “Complex Permeability Measurements of Radial- Page | 33
Anisotropy Thin-Film Magnetic Toroidal Cores,” IEEE Energy Conversion Conference and
Exposition (ECCE), Denver, CO, 16 Sept. 2013.

20. D.V. Harburg, Jizheng Qiu, Rui Tian, G.R. Khan, D. Otten, C.G. Levey and C.R. Sullivan “Measured
Performance and Micro-Fabrication of Racetrack Power Inductors,” IEEE Energy Conversion
Conference and Exposition (ECCE), Denver, CO, 16 Sept. 2013 (accepted).

21. lJizheng Qiu and C.R. Sullivan, “Design of Toroidal Inductors with Multiple Parallel Foil Windings,”
14™ |EEE Workshop on Control and Modeling for Power Electronics (COMPEL), Salt Lake City, 24
June 2013.

22. D. V. Harburg, G. R. Khan, F. Herrault, Jungkwun Kim, Christopher G. Levey, and C. R. Sullivan,
“On-Chip RF Power Inductors With Nanogranular Magnetic Cores Using Prism-Assisted UV-LED
Lithography,” 17" International Conference on Solid-State Sensors, Actuators and Microsystems,
Barcelona, Spain, 17 June 2013.

23. M. Araghchini and J. H. Lang; “Modeling, design, fabrication and testing of MEMS toroidal
inductors for integrated power electronic applications”, Proceedings of the MIT MTL
Microsystems Annual Research Conference (MARC), Cambridge, MA, January 2013.

24. M. Araghchini and J. H. Lang; “Modeling and analysis of Silicon-embedded 3-D Toroidal
Inductors”; Proceedings of the PowerMEMS Conference, London, UK, December 3, 2013.
Accepted.

25. M. Araghchini, X. Yu, F. Herrault, J. Qiu, C. R. Sullivan, M. G. Allen and J. H. Lang; "Modeling and
measured verification of loss in MEMS toroidal inductors”; 3rd International Workshop on Power
Supply on Chip (PowerSoC2012), San Francisco, CA, Nov 16, 2012.

26. D.lJin, J. Joh, S. Krishnan, N.Tipirneni, S. Pendharkar and J. A. del Alamo, "Total current collapse in
high-voltage GaN MIS-HEMTs induced by Zener trapping." IEEE International Electron Devices
Meeting, Washington DC, December 9-11, 2013.

27. S. Lim, D.M. Otten and D.J. Perreault, “Power Conversion Architecture for Grid Interface at High
Switching Frequency,” 2014 IEEE Applied Power Electronics Conference, March 2014.

28. M. Araghchini, J. Lang, "Modeling, Design and Performance of Integrated Power Electronics using
MEMS Toroidal Inductors", proceedings of IEEE Conference Applied Power Electronics
Conference and Exposition (APEC) 2014, pages 519-526.

29. M. Araghchini, J. Lang, "Modeling, Fabrication and Characterization of Integrated Toroidal
Inductors for Power Electronics Applications", proceedings of MTL Annual Research Conference
(MARC), Bretton Woods, NH, January 2014, 2.03, page 31.

C. Status Reports

1. Status Report 1.1: Devices, February 4, 2011

2. Status Report 2.1: Magnetics, February 4, 2011

3. Status Report 3.1: Circuits and Systems, February 4, 2011
4. Status Report 1.2: Devices, March 31, 2011

5. Status Report 2.2: Magnetics, March 31, 2011
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6. Status Report 3.2: Circuits and Systems, March 31, 2011

7. Status Report 1.3: Devices, June 30, 2011

8. Status Report 2.3: Magnetics, June 30, 2011

9. Status Report 3.3: Circuits and Systems, June 30, 2011

10. Status Report 1.4: Devices, September 28, 2011 Page | 34
11. Status Report 2.4: Magnetics, September 28, 2011

12. Status Report 3.4: Circuits and Systems, September 28, 2011
13. Status Report 1.5: Devices, December 28, 2011

14. Status Report 2.5: Magnetics, December 28, 2011

15. Status Report 3.5: Circuits and Systems, December 28, 2011
16. Status Report 1.6: Devices, March 30, 2012

17. Status Report 2.6: Magnetics, March 30, 2012

18. Status Report 3.6: Circuits and Systems, March 30, 2012

19. Status Report 1.7: Devices, June 28, 2012

20. Status Report 2.7: Magnetics, June 28, 2012

21. Status Report 3.7: Circuits and Systems, June 28, 2012

22. Status Report 1.8: Devices, September 30, 2012

23. Status Report 2.8: Magnetics, September 30, 2012

24. Status Report 3.8: Circuits and Systems, September 30, 2012
25. Status Report 1.9: Devices, December 31, 2012

26. Status Report 2.9: Magnetics, December 31, 2012

27. Status Report 3.9: Circuits and Systems, December 31, 2012
28. Status Report 1.10: Devices, March 31, 2013

29. Status Report 2.10: Magnetics, March 31, 2013

30. Status Report 3.10: Circuits and Systems, March 31, 2013
31. Status Report 1.11: Devices, June 28, 2013

32. Status Report 2.11: Magnetics, June 28, 2013

33. Status Report 3.11: Circuits and Systems, June 28, 2013

34. Status Report 1.12: Devices, September 28, 2013

35. Status Report 2.12: Magnetics, September 28, 2013

36. Status Report 3.12: Circuits and Systems, September 28, 2013

D. Media Reports

1. Dartmouth Engineer, Summer 2010. http://www.dartmouthengineer.com/2010/09/kudos-
summer-2010/

2. Dartmouth Engineering Professors Awarded Clean Energy Technologies Grants from DoE, Thayer
School of Engineering at Dartmouth, Press Release, July 22, 2010.
http://engineering.dartmouth.edu/news-events/press/ARPA-E.html

3. Penn Nanoparticle Assembly Effort Attracts Science Magazine Editor's Choice.
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http://www.sciencemag.org/content/332/6026/twil .full

E. Invention Disclosures

1. Bin Lu, Elison Matioli and Tomas Palacios, "Advanced substrates for GaN power electronics,"
December 2010.

2. David J. Perreault, John D. Ranson and Seungbum Lim, "HF Switched LED Driver with Switched- Page | 35
Capacitor Pre-regulator," April 2011.

3. Bin Lu, Elison Matioli and Tomas Palacios, “New structure and technology for power
semiconductor devices”, Oct. 11, 2011.

4. David Perreault, Seungbum Lim and David Otten, "Grid Interfaced Power Conversion
Architecture," March 2013.

F. Patent Applications

1. Jizheng Qiu and Charles R. Sullivan, "Systems And Methods For Making Radial Anisotropic Thin-
Film Magnetic Torroidal Cores, And Cores Having Radial Anisotropy," Provisional patent filed 22-
September-2011.

2. Daniel Harburg, Christopher Levey, Jason Stauth, and Charles Sullivan, "Microfabricated Magnetic
Devices and Associated Methods," U.S. provisional patent No. 61/657,186 filed June 8th, 2012.

3. D.J. Perreault, S. Lim and D.M. Otten, “Grid Interface Power Conversion Architecture,”
Provisional Patent, Filed April 9, 2013.

G. Licensed Technologies
No technologies licensed.

H. Networks/Collaborations Fostered

1. Industry Advisory Committee Meeting was held on Wednesday, May 29th. Twelve
representatives from nine companies (Foxconn, Lutron, M/A Com, Maxim, Osram Sylvania, Picor,
Samsung, Texas Instruments, and Volterra) participated in the meeting to discuss
commercialization opportunities for the results of this research.

I. Websites Featuring Project Work Results
No websites featuring project work or results.

J. Other Products (e.g. Databases, Physical Collections, Audio/Video, Software, Models,
Educational Aids or Curricula, Equipment or Instruments)
No other products.

K. Awards, Prizes, and Recognition

1. Penn Materials Chemist was awarded an Honorary Doctorate from the University of Utrecht in
the Netherlands for discovery and development of quantum dot (semiconductor nanocrystal)
based material for Sutainable Energy".
http://www.dub.uu.nl/content/eredoctor-chris-murray-nieuwe-materialen

2. Tomas Palacios (MIT) was awarded the Presidential Early Career Award for Scientists and
Engineers (PECASE) for his contributions to GaN and graphene electronics.

3. Donghyun Jin (MIT) was awarded the ISPSD '12 Charitat Award-Runner-up at the 24th IEEE
International Symposium on Power Semiconductor Devices and ICs (ISPSD).
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4. David Perreault (MIT) was elected as IEEE Fellow for "contributions to design and application of
very high frequency power electronic converters."

5. Bin Lu, Elison Matioli and Tomas Palacios (MIT) are awarded the 2012 IEEE Electron Devices
Society George Smith Award for the paper "Tri-Gate Normally-Off GaN Power MISFET" published
in the 2012 March issue of IEEE Electron Device Letters (EDL).

6. “ATechnology Overview of the PowerChip Development Program” overview paper made the list
of IEEE's top downloads for the month of May: #45 most popular in all of the IEEE publications,
and the #1 download for the Transactions on Power Electronics.

7. Charles R. Sullivan was elevated to IEEE Fellow in January 2014 for “... contributions to the design
of power electronic circuits and magnetics."

Follow-On Funding

Additional funding committed or received from other sources (e.g. private investors,
government agencies, nonprofits) after effective date of ARPA-E Award.

Table 2. Follow-On Funding Received.

Source Funds Committed or Received

Texas Instruments S180k to Dartmouth for “Batch Fabrication of
Radial Anisotropy Toroidal-Core Magnetics
for Power Applications.”

Texas Instruments $80k to MIT for “High-Frequency High-Density
Power Converter.”
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