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1. Overview 
To develop software that will perform well on Petascale systems, with thousands of nodes and 
millions of cores, the list of major challenges is formidable:  

• Dramatic escalation in the costs of intra-system communication between 
processors and/or levels of memory hierarchy;  

• Increased hybridization of processor architectures (mixing CPUs, GPUs, etc.), in 
varying and unexpected design combinations;  

• High levels of parallelism and more complex constraints mean that cooperating 
processes must be dynamically and unpredictably scheduled for asynchronous 
execution;  

• Software will not run at scale without much better resilience to faults and far more 
robustness;  

• New levels of self-adaptivity will be required to enable software to modulate 
process speed in order to satisfy limited energy budgets.  

The MAGMA project represents how this historic set of challenges can be successfully attacked, 
in a coordinated way, for the critical area of linear algebra libraries. The goal is to create a new 
generation of linear algebra libraries that achieve the fastest possible time to an accurate solution 
on hybrid Multicore+GPU-based systems, using all the processing power that future high-end 
systems can make available within given energy constraints. 

Achieving MAGMA’s goals requires innovations in each of the five problem areas outlined 
above. Our efforts at the University of Tennessee achieved the goals set in all of the five areas 
identified in the proposal: 

1. Communication optimal algorithms; 

2. Autotuning for GPU and hybrid processors; 

3. Scheduling and memory management techniques for heterogeneity and scale; 
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4. Fault tolerance and robustness for large scale systems; 

5. Building energy efficiency into software foundations. 

2. Activities and Findings 
The University of Tennessee’s main contributions, as proposed, were the research and software 
development of new algorithms for hybrid multi/many-core CPUs and GPUs, as related to two-
sided factorizations and complete eigenproblem solvers, hybrid BLAS, and energy efficiency for 
dense, as well as sparse, operations. Furthermore, as proposed, we investigated and experimented 
with various techniques targeting the five main areas outlined in the Overview section above. The 
specific activities and findings for our main contributions are described as follows. 

2.1. Communication Optimal Algorithms  
The goals for our algorithmic work were 1) to experiment with established algorithms for two-
sided factorizations, and 2) to research communication avoiding Krylov subspace methods. We 
developed a number of linear algebra algorithms, including the two-sided matrix factorizations 
(to upper Hessenberg, bidiagonal, and tridiagonal forms) and eigenproblem solvers related to 
them, and released them through the MAGMA website (see http://icl.cs.utk.edu/magma/). Similar 
in functionality to LAPACK but for GPU-accelerated hybrid architectures, these algorithms 
provide basic building blocks for higher level, heterogeneous multicore libraries. Below we list 
more specifics on the activities regarding these efforts. 

 

MAGMA: We had four major MAGMA releases, providing highly optimized BLAS for 
NVIDIA GPUs and hybrid dense linear algebra algorithms for multicore CPUs and GPUs: 

 

MAGMA 1.1 (released on 11/14/2011): 
• The main new contribution of this release was added multi-GPU support. We developed 

two types of one-sided matrix factorizations with support for multicore and multiGPUs. 
The first set is hybrid LAPACK-compliant LU, QR, and Cholesky factorizations [1], and 
the second is tile LU, QR, and Cholesky factorizations and solvers with StarPU dynamic 
scheduling [2] (available at http://icl.cs.utk.edu/magma/software/); 

• A new feature added is the “Non-GPU-resident” one-sided factorizations [1]. These are 
factorizations for large problems that do not fit entirely in the GPU memory. The 
algorithms developed are designed to optimize CPU-GPU communications. As a result, 
one can now solve large problems, through MAGMA, while retaining the high 
asymptotic performance for problems that fit entirely into the GPU’s memory;  

• More new functions were added, including matrix inversion, eigenvalue solver driver 
routines for the standard [3] and generalized symmetric/Hermitian eigenvalue  
problems [4]; 

• Routines were added in different CPU/GPU interfaces (e.g., used to minimize CPU-GPU 
data transfers when routines are called in sequence), Fortran interfaces, and more testing 
routines (integration with the LAPACK testing); 

• An optimized GEMM for Fermi GPUs, based on autotuning, was developed and 
released. Although the MAGMA GEMM is used as a basis for the current GEMM 
implementation in CUBLAS, the autotuning techniques employed managed to generate 
new kernels, outperforming the previous best [5]. 
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MAGMA	
  1.2	
  (released	
  on	
  05/10/2012):	
  
• The main contribution of this release was the added multi-GPU support for the two-sided 

factorizations—reduction to upper Hessenberg and tridiagonal forms. These routines are 
the current state-of-the-art in the area, significantly outperforming other solutions 
(including vendor optimized libraries). The reduction to tridiagonal, used for 
eigenproblem solvers for symmetric/Hermitian matrices, has two implementations. One 
is following a hybrid LAPACK-based approach [4], and second, following a two stage 
approach, incorporating and extending the latest developments on communication 
avoiding algorithms, for two-sided factorizations, to hybrid systems [6]; 

• Routines were added (both BLAS and higher level) for the multiGPU solution of 
generalized Hermitian-definite eigenvalue problems [4,6]; 

• Different and extended interfaces were added—requested by users to accommodate 
some of the newest features of CUDA, and to facilitate the exploration of some 
optimization opportunities (such as the use of multiple streams in solving many small 
problems). 

 
MAGMA 1.3 (released on 11/15/2012) 

• This release included a 
number of bug fixes, 
performance improvements, 
and support for Kepler 
GPUs. MultiGPU BLAS 
routines as needed for the 
symmetric eigenvalue 
problem solvers on 
multiGPUs were also 
released. The Figure on the 
right illustrates the 
performance achieved on the 
new Kepler GPUs (K20X) 
vs. the previous generation 
M2090 GPUs. 

• We developed a hybrid QR with column pivoting (GEQP3). This routine is very slow on 
multicore architectures because it is memory bound. The algorithm that we developed is 
similar to the two-sided factorizations because at every iteration (every column) a 
Householder vector, used in the reduction of the current column, must be multiplied by 
the trailing matrix. This multiplication is GPU accelerated to benefit from the GPU’s 
high bandwidth. We see accelerations compared to a multicore run similar to the 
accelerations for the Hessenberg reduction algorithm. The QR with pivoting was 
requested by users and is an important building block for certain preconditioners in 
sparse iterative solvers [25].  

	
  
MAGMA	
  1.4	
  (released	
  on	
  08/14/2013)	
  

• We added multi-GPU Hessenberg and non-symmetric eigenvalue routines. Compared to 
the symmetric eigenvalue problem, where there have been recent algorithmic and 
software breakthroughs (see the third item below), the best performing Hessenberg 
reduction algorithm still has a computational component that is memory-bound. In 
MAGMA, this component is computed on the GPU, using its high-bandwidth. The 



4	
  
	
  

performance of the hybrid algorithm, using a single GPU, can outperform the latest 
multicore CPU systems by an order of magnitude. In addition, we developed a version 
for multiple GPUs and demonstrated that the computation scales.    

• We developed and released panel factorizations for LU, QR, and Cholesky entirely on 
the GPU. The new kernels are written entirely in CUDA and show 2x to 3x performance 
improvement for tall and skinny panels, compared to the hybrid algorithms in the 
MAGMA library.  

• The main new components of this 
release were the multi-GPU symmetric 
eigenvalue routines using the one-stage 
approach, and the single and multi-
GPU symmetric eigenvalue routines for 
the two-stage approach. The one-stage 
approach follows the standard 
algorithm from LAPACK, and it has a 
memory bound component [3]. The 
figure on the right demonstrates the 
performance on up to 3 GPUs [4]. It 
scales, but, as shown, is about four 
times slower than the two-stage 
approach that eliminates the memory bound component [6, 16, 17].  

 
In addition to the main MAGMA efforts, we released clMAGMA 0.1 Beta (on 04/04/2012) and 
clMAGMA 1.0 (on 10/24/2012; available at http://icl.cs.utk.edu/magma/software/index.html). 
clMAGMA is an OpenCL port of MAGMA, intended for a single GPU, and supports AMD 
GPUs. Included are routines for the LU, QR, and Cholesky factorizations, and the linear solvers 
based on them, eigen- and singular-value problem solvers, matrix inversion routines, and 
orthogonal transformations routines  (in all four main precisions S/D/C/Z). A MAGMA port has 
also been developed for Intel MIC architectures. MAGMA MIC 1.0 was released on 05/03/2013 
and included the main one- and two-sided factorizations and solvers for both single and multiple 
MICs. 
 
We developed, within the MAGMA framework, a class of communication-avoiding algorithms 
for solving general dense linear systems on CPU/GPU parallel machines [14]. In particular, we 
studied several solvers for the solution of general linear systems where the main objective is to 
reduce the communication overhead due to pivoting. Considered were two algorithms for the LU 
factorization on hybrid CPU/GPU architectures. The first one is based on partial pivoting, and the 
second uses a random preconditioning of the original matrix to avoid pivoting. We introduced a 
solver where the panel factorization is performed using a communication-avoiding pivoting 
heuristic, while the update of the trailing submatrix is performed by the GPU. We provided 
performance comparisons for these solvers on current hybrid multicore-GPU parallel machines 
[14]. 
	
  
Further, we researched the feasibility of using hybrid systems for sparse matrix operations. In 
particular, we developed and analyzed the potential of asynchronous relaxation methods on 
GPUs [7], and moreover, their application as smoothers in multigrid  
methods [8]. To pave the road for the efficient use of large peta-scale systems, challenges related 
to the established notion that “data movement, not FLOPS, is the bottleneck to performance” must 
be resolved. Our work was in this direction—we designed block-asynchronous relaxation 
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methods and multigrid smoothers that perform more flops in order to reduce synchronization, and 
hence data movement. We showed that the extra flops are done for “free,” while synchronization 
was reduced and the convergence properties of multigrid with classical smoothers like Gauss- 
Seidel could be preserved. 
	
  

2.2. Autotuning for GPU and hybrid processors 
We developed an autotuning framework called Automatic Stencil TuneR for Accelerators 
(ASTRA) [5]. ASTRA’s prototype was developed on the Fermi architecture and used to produce 
fast BLAS-compliant GEMM kernels, covering all precisions (single, double / real, complex) and 
all cases of transposed inputs (A: Trans, No- Trans, ConjTrans; B: Trans, NoTrans, ConjTrans). 
At the time of ASTRA’s conception, the Fermi architecture had already been available for more 
than a year, and GEMM kernels in CUBLAS and MAGMA were already delivering very good 
performance. As a result, ASTRA produced only marginal performance improvements in most 
cases, with the most noticeable effect on the double-complex (ZGEMM) kernels, where the 
performance was increased from ∼300 GigaFLOPS to ∼340 GigaFLOPS (ca. 13%). However, the 
true motivation for ASTRA was the capability to quickly deploy fast GEMM kernels, as well as 
other BLAS kernels, when a new architecture becomes available. Therefore, the availability of 
the Kepler architecture creates the first true opportunity for validation of the ASTRA 
methodology. In particular, we automatically produced GEMM kernels for the GTX 680 Kepler 
GPU in the four main precisions that outperform or are competitive with their counterparts from 
CUBLAS [10]. The framework is currently used to produce optimized kernels on demand, when 
linear algebra kernels on problems of particular sizes are needed, but not well optimized in 
CUBLAS. 
	
  

2.3. Scheduling and memory management techniques for heterogeneity and scale 
We developed a parallel programming model and scheduling using the Directed Acyclic Graphs 
(DAGs) approach. In particular, this approach uses run-time systems to schedule tasks 
dynamically, supporting massive parallelism, and applying common optimization techniques to 
increase throughput. Examples are the QUARK scheduler from PLASMA, and StarPU (see 
http://runtime.bordeaux.inria.fr/StarPU/). The algorithms that we had developed for these run-
time systems are now available in MAGMA 1.4 (starting from MAGMA 1.1). 

Further, we explored a new approach to utilizing all CPU cores and all GPUs on heterogeneous 
multicore and multi-GPU systems to support dense matrix computations efficiently. The main 
idea is that we treat a heterogeneous system as a distributed- memory machine, and use a 
heterogeneous multi-level block cyclic distribution method to allocate data to the host and 
multiple GPUs to minimize communication. We designed heterogeneous algorithms with hybrid 
tiles to accommodate the processor heterogeneity, and introduced an auto-tuning method to 
determine the hybrid tile sizes to attain both high performance and load balancing. We have also 
implemented a new runtime system and applied it to the Cholesky and QR factorizations. Our 
approach is designed to achieve four objectives: a high degree of parallelism, minimized 
synchronization, minimized communication, and load balancing. Our experiments on a compute 
node (with two Intel Westmere hexa-core CPUs and three Nvidia Fermi GPUs), as well as on up 
to 100 compute nodes on the Keeneland system, demonstrate the great scalability, good load 
balancing, and efficiency of our approach [11]. 
 
Finally, we developed and deployed software tools for hybrid architectures to ensure productivity. 
Under the Matrices Over Runtime Systems @ Exascale (MORSE) project, we designed dense 
and sparse linear algebra methods for petascale and exascale systems. MORSE targets high level 
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of abstraction and strong collaboration between research groups in linear algebra and runtime 
systems. MORSE uses the StarPU runtime system for accelerator-based manycore architectures 
to express parallelism through sequential-like codes. The work is essential in setting up standards 
and a software development methodology that ensures productivity. We released MORSE 1.0 on 
November 19, 2013. In this release, we illustrated our methodology on three classes of problems 
– dense linear algebra, sparse direct methods and fast multipole methods [24]. 

2.4. Fault tolerance and robustness for large scale systems 

We developed a soft error recovery approach to hybrid systems. This work is important because 
fault tolerance has become a more serious concern to GPUs compared to the period when the 
GPUs were used exclusively for graphics applications. Using GPUs and CPUs together in a 
hybrid computing system increases flexibility and performance, but also increases the possibility 
of the computations being affected by soft errors, for example, in the form of bit flips. We 
proposed a soft error resilient algorithm for the QR factorization on such hybrid systems. Our 
contributions include:  

1) A checkpointing and recovery mechanism for the left-factor Q whose performance is scalable 
on hybrid systems;  

2) Optimized Givens rotation utilities on GPGPUs to efficiently reduce an upper Hessenberg 
matrix to an upper triangular form for the protection of the right factor R; and  

3) A recovery algorithm based on QR update on GPGPUs.  

Experimental results show that our fault tolerant QR factorization can successfully detect and 
recover from soft errors in the entire matrix, with little overhead on hybrid systems with  
GPGPUs [12]. 
	
  
We extended the approach to the area of solvers for eigenvalue problems. In particular, we 
designed and implemented a soft error resilient Hessenberg reduction algorithm on GPU based 
hybrid platforms [20]. Our design employs an algorithm based fault tolerance technique, diskless 
check-pointing and a reverse computation. We detect and correct soft errors on-line without 
delaying the detection and correction to the end of the factorization. By utilizing idle time of the 
CPUs and overlapping both host side and GPU side workloads, we minimize the observed 
overhead. Experiment results validated our design philosophy. Our algorithm introduces less than 
2% performance overhead compared to the non-fault tolerant hybrid Hessenberg reduction 
algorithm. 
 

2.5. Building energy efficiency into software foundations 
We investigated the energy efficiency of different hardware systems. This includes setting up an 
environment and performing various experiments to measure power consumption for different 
dense linear algebra algorithms on GPUs. Energy and power density concerns in modern 
processors have led to significant computer architecture research efforts in power-aware and 
temperature-aware computing. With power dissipation becoming an increasingly vexing problem, 
power analysis of GPUs and its components has become crucial for hardware and software 
system design. We developed a technique for a coordinated measurement approach that combines 
real total power measurement and per-component power estimation. To identify power 
consumption accurately, we introduced the Activity-based Model for GPUs (AMG), from which 
we identify activity factors and power for microarchitectures on GPUs that will help in analyzing 
power tradeoffs of one component versus another using microbenchmarks. The key challenge 
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addressed is real-time power consumption, which can be accurately estimated using NVIDIA’s 
Management Library (NVML) through pthreads. We validated our model using a Kill-A-Watt 
power meter and the results are accurate within 10%. The resulting Performance Application 
Programming Interface (PAPI) NVML component offers real-time total power measurements for 
GPUs. We analyzed MAGMA’s high-level one and two-sided factorizations, as well as low Level 
2 BLAS and Level 3 BLAS kernels [13]. 

2.6. Communication-avoiding algorithms 
We developed several communication-avoiding techniques and algorithms. In [15], we developed 
a randomization technique for GPUs that enables us to avoid pivoting and then reduce the amount 
of communication in the LU factorization. We showed that a randomization transformation can 
be performed at a very affordable computational price while providing us with a satisfying 
accuracy when compared to partial pivoting. This random transformation, called Partial Random 
Butterfly Transformation (PRBT), is optimized in terms of data storage and flops count. We 
proposed a solver where PRBT and the LU factorization with no pivoting take advantage of the 
latest generation of hybrid multicore/GPU machines. 
 
In the area of solvers for eigenvalue problems, we designed new algorithms that increase the 
computational intensity of the major compute kernels and reduce synchronization and data 
transfers between GPUs. This increases the number of flops, but the increase is offset by the more 
efficient execution and reduced data transfers [16, 17, 19, 23]. Our performance results are the 
best available, providing an enormous performance boost compared to current state-of-the-art 
solutions. In particular, our software scales up to 1070 Gflop/s using 16 Intel E5-2670 cores and 
eight M2090 GPUs, compared to 45 Gflop/s achieved by the optimized Intel Math Kernel Library 
(MKL) using only the 16 CPU cores. 
 

3. Outreach activities 

• Mini-symposiums MS 44 and MS 63 at SIAM CSE13	
  
February 25—March 1, 2013, Boston, MA 
Title: Computational Challenges for Large Scale Heterogeneous Applications 
Presenters: Stan Tomov and Azzam Haidar 

• Tutorial at ISC’13 
June 16-20, 2013, Leipzig, Germany 
Title: Dense Linear Algebra with MAGMA & PLASMA 
Presenter: Jack Dongarra 

• Tutorial at ICS’13 
June 10-14, 2013, Eugene, Oregon 
Title: DLA on Multicore with Accelerators 
Presenter: Piotr Luszczek and Aurelien Butelier 

• Tutorial at SC’12 
November, 2012, Salt Lake City, Utah 
Title: Linear Algebra Libraries for High-Performance Computing: Scientific Computing 
with Multicore and Accelerators 
Presenter: Jack Dongarra 

• DOD CREATE Developers' Review 
February 28, 2012, Savannah, GA, USA 
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Title: The Future of Computing: Software Libraries 
Presenter (Keynote presentation): S. Tomov 

• Workshop on “Electronic structure calculation Methods on Accelerators” 
February 5—8, 2012, Oak Ridge National Laboratory, TN, USA 
Title: Matrix Algebra on GPU and Multicore Architectures 
Presenter: S. Tomov 

• Keeneland Workshop 
February 20—21, 2012, Atlanta, GA, USA  
Title:  MAGMA Tutorial 
Presenter: M. Gates 

• Workshop on “Electronic structure calculation Methods on Accelerators” 
February 5—8, 2012, Oak Ridge National Laboratory, TN, USA 
Title: Matrix Algebra on GPU and Multicore Architectures 
Presenter: S. Tomov 

• Third Uio-MSU-ORNL-UT School “Nuclear Physics: The computational quantum 
many-body problem” 
January 23, 2012, Oak Ridge National Laboratory, TN, USA 
Title: MAGMA: Challenges and Approaches for Heterogeneous HPC 
Presenter: S. Tomov 

• Titan Summit 2011 
August 15–17, 2011, Oak Ridge National Laboratory, TN, USA 
Title:  MAGMA – LAPACK for HPC on Heterogeneous Architectures 
Presenter: S. Tomov 

We taught the use of CUDA and OpenCL for HPC on GPUs in the “Scientific Computing 
for Engineers” class (CS594), offered at UTK for the Spring 2012 semester. 

Further, we participated and provided expertise related to linear algebra and GPU computing 
through the MAGMA forum (on the MAGMA homepage http://icl.cs.utk.edu/magma/).	
  

4. Participants partially funded from this effort 
 

2 Graduate Students 

2 Post-docs 

4 Research Scientists 
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