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Lithium-lon Batteries — Overview

@ Typical galvanostatic voltage profiles
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Nanodomain Structure — Cathode Materials

Li,Mn,O, with nanoscale grains

» mechanical milling after synthesis results in better cycling for
the low-voltage range (1 < x < 2)

« improvement attributed to nano-sized grains, decreased

anisotropic deformation, increased lattice strain from defects

sol-gel synthesis
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Nanoscale Particles — Cathode Materials

Nanoparticulate LiCoO,

* size-controlled synthesis with hydrothermal reaction

 vary reaction time and temperature and reactant concentration
 average particle size 9-32 nm
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Nanoscale Particles — Cathode Materials

templated nanorods

5 RS “nanobelts”

S. Shi et al., Crystal Growth
7: 1893 (2007)

Discharge Volatge

nanorods demonstrate
higher rate capability
than thin-film control
sample

theoretical capacity

L— forLiV,0s

Discharge Voltage

Discharge Capacity (nAh)
C. Patrissi and C. Martin, J. Electrochemical Society 148: A1247 (2001)

L1, V,O: nanostructures
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Nanocomposites — Cathode Materials
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Nanoscale Particles — Cathode Materials
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» low-temperature precipitation synthesis yields = gig
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Discharge capacity (mAh g-17

Nanoscale Particles — Cathode Materials

LiFePO,: nanoscale effects

 reduction of particle size to 40 nm

» stable cycling

* single-phase behavior observed:
sloping voltage profile and
gradual shift of lattice parameters

« effect of particle size, synthesis
conditions, or both?
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Nano-Enabled “Conversion” Reactions

@ @0 1
o 0/ Intercalation

« Li-ion inserted into vacancies between layers

(@) (9) (9 @) * crystal structure maintained

ischar e D :
m — (®r(or(@r(e » when discharged, typically 1 Li* per metal atom
w -cmcmcm * AKA “single-phase”, “non-stoichiometric”,
e @ “solid solution”
MeX, e-

Conversion

* major structural changes

« discharge leads to mixture of metallic particles
with lithium compounds

« anodes: oxides, sulfides, phosphides, nitrides

 cathodes: fluorides

« >1 Li* per metal atom - capacity > 600 mAh/g

« electrically insulating = slow kinetics

« nanocomposites and nanodomains enable good
reversibility and kinetics (shorter path lengths for
ion and electron transport)
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P. Poizot et al., Nature 407: 496 (2000) «<— cited 910 times
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Nano-Enabled Conversion Reactions

Cycle number

0

Capacity (mAh/qg)

D. Larcher et al., J. Electrochemical Society 149: A234 (2002)

example reaction: Co;O, + 8Li* + 8e” +» 3Co + 4Li,0
particles are 100—200 nm in diameter
product of first discharge is metal nanograins (1-5 nm) in a

Li,O matrix, i.e. “amorphization”

upon cycling, nanograin/amorphous structure is preserved

capacity is > 2x capacity of graphite

Voltage (V vs Li)
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(also confirmed with XRD)
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Conversion Reactions — Cathodes

Fluoride/Carbon nanocomposites

* higher-voltage conversion reactions:, FeF;, CrF;, BiF;, CuF,
* high-energy mechanical milling with carbon creates nanocomposite, enables cycling and high capacity

FeF,/carbon composite: cycling
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Lithium Alloys as Anodes

Lithium alloys

* low potential (< 1V vs. L|/L|+) capacity capacity
 high gravimetric and volumetric capacity (mAh/g) (mAh/cm3)
* similar to conversion reactions: large structural changes —
« volume changes > 300% (Si) upon alloying with lithium ~ Ll2Sls 4200 10000
« alloying/de-alloying cycle causes fracture in bulk metals
LisSi, 3580 8300
amorphous silicon thin film _
Li,Sns 990 7200
LiAl 990 2700
Li,,Pbs 570 6500
after one cycle after 30 cycles compare to graphite at 372 mAh/g, 1000 mAh/cm?

J. P. Maranchi et al., J. Electrochemical Society 153: A1246 (2006)
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Lithium Alloys as Anodes

Lithium-Silicon Alloys

» most widely studied lithium alloy: theoretical capacity of Li,,Sig is 4200 mAh/g (10x higher than graphite)
 review article (162 refs) on lithium-silicon anodes:

evaporated amorphous silicon nanofilm

0.6 [F\\ ez T

ey,

— A\
Q 500 1000 1500 2000 2500 3000 3500
Capacity (mAh/g)

. Silicon Nanofilm
s 0
=
£ 1.5 N
g L
£ L
210
S L Silicon Nanocrystals

0.0:r...|.‘..l|...|...|I....|....I....|....I....|....
10 20 30 40
Cvcle Number

J. Graetz et al., Electrochem. Solid-State Letters 6: A194 (2003)

U. Kasavajjula et al., J. Power Sources 163: 1003 (2007)

silicon nanowires from vapor-liquid-solid growth
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Lithium Alloys as Anodes

Lithium-Tin Alloys

* theoretical capacity of Li,,Sn; is 990 mAh/g

electrodeposited tin film (micro-scale)

Discharge capacity / mAh/g-Sn

Electrode potential / V vs. Li/Li*
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Lithium Alloys as Anodes

SnO, + 4Li* + 4Li- — Sn + 2Li,0

irreversible conversion

“nanofibers” by
template/sol gel syntheS|s

Nanostructured electrode]

Thin film

0 10 20 30 40 50 60 7O
Discharge rate / C

cycled 1300 times at 58C, >500 mAh/g

N. Li and C. R. Martin,
J. Electrochemical Society 148: A164 (2001)

Cell Potential (V)

C. Kim et al., Chemistry of Materials 17: 3297 (2005)

particle-size study,
hydrothermal synthesis

20} (a)

15 ~3 nm SnQ, 1
6030201021 (110°C)
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particle aggregation with larger particles

reversible alloying reaction

T Sn + xLi* + xLi- <> Li, Sn

inactive matrix

780 mAh/g

nanorod array,
template-free synthesis

©o  Nanorod array
« Disordered nanorods
< Nanoparticles
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J. Liu et al., J. Materials Chemistry

19: 1859 (2009)
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Nanostructured Electrode Architectures

Nanostructured current collectors (substrates)

* nanorod array of inactive conductor (e.g. Cu)

» active electrode material deposited onto nanorods

+ good for active materials with low conductivity or
large volume changes

» low specific capacity (volumetric and gravimetric)

 thin-film electrodes (potential for scaling up?)

Fe;O, electrodeposited on copper nanorods
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Ni;Sn, electrodeposited on copper nanorods
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Nanostructured Electrode Architectures

Three-dimensional microbatteries

« alternative to conventional, sandwich-type architecture

* increase energy density while maintaining short ion-
transport distances (i.e. no sacrifice in power density)

* size increase in any dimension increases power output,
capacity, and energy content

» few systems experimentally demonstrated

3D carbon structures by interference lithography

g —— Sandia/UNM
- collaboration

D. B. Burckel et al., Small 5: 2792 (2009)

3D carbon structures by
template/sol-gel synthesis

J.W. Longetal.,
Chemical Reviews 104: 4463 (2004)

.ﬁ."'
-‘ A 9:...‘ 100 nm

K. T. Leeetal., Adv. Funct. Mat. 15: 547 (2005) @ ﬁg’rtligﬁal
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Research at CINT
Nanostructured Electrode Architectures

Electrodeposited nanostructures Copper nanorods by electrodeposition into

anodic aluminum oxide (template removed)

« various electrodeposited nanostructures as current
collectors (copper, nickel)

« electrodeposited, nanostructured active materials
(e.g. Aluminum nanostructures for lithium alloying)

» nanorods: effect of diameter, length, packing density,
ordered array vs. randomly oriented

Copper nanorods by electrodeposition into
polycarbonate template (template removed)

Dale Huber & Nick Hudak, Sandia/CINT @ ot
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Research at CINT
In situ TEM Imaging of Nano-electrodes

Transmission-Electron Microscopy

demonstrated solid-state uptake of lithium by multi-wall
carbon nanotube (MWNT)
nanomanipulators used to position nanoparticles/wires
goal is to view electrochemical lithium reaction to study:

- nanoscale materials (nanotubes/rods/wires)

- nanoscale electrochemical processes, e.g. formation

and evolution of solid-electrolyte-interphase (SEI)

ionic liquid electrolyte (low vapor pressure) in TEM
standard organic electrolytes in encapsulated cell in TEM

Jianyu Huang,

Sandia/CINT
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Research at CINT
Single Nanowire Lithium-lon Electrodes

. . SEM of multi-walled carbon nanotube (MWNT) by DEP
Single nanowires placed

across electrodes using
di-electrophoresis (DEP)

Si substrate Nitride membrane

DEP assembly of anodic nanowire
(e.g. Si/ MWNT / SnO,)

AU nano- /

electrodes

DEP assembly of cathodic nanowire
(e.g. MnO, / VO,)

Sandia

John Sullivan & Arunkumar Subramanian, Sandia/CINT @ National

Laboratories



Research at CINT
In situ TEM Battery Studies

Sealed MEMS chip
for liquid-phase
electrochemistry in
TEM

Electrode 3
(reference) ignment and gap
Electrode 2
(counter)
Electrode 1 aterial
(cathode) PDMS)

Bosch-etched hole
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Nanostructured electrode materials for lithium-ion batteries

» improved cycle life, rate capability or power output compared to bulk materials

* increased surface area of nanoparticles may be detrimental to cycle life

* nanoscience enables the effective use of LiFePO,, “conversion reaction”
materials, and lithium alloys

 nanostructured electrode architectures for improved performance and novel
three-dimensional batteries

Summary

Nanoscience for lithium batteries at CINT and Sandia

» electrodeposited nanostructures as current collectors or active materials
* in situ TEM observation of lithiation/de-lithiation in nanowires
* encapsulated electrochemical MEMS cell for use of liquid electrolytes in TEM
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