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A streamline upwind Petrov-Galerkin finite element method is presented for the case of a reacting mixture
of thermally-perfect gases, using chemical non-equilibrium. Details of the stabilization scheme and nonlinear
solution are presented. The authors have independently implemented the proposed algorithm in two separate
codes, for both single temperature and and two temperature models. Example problems invoving a cylinder in
Mach 20 crossflow, as well as a three-dimensional blunt nosetip are shown and compared to established codes.

Nomenclature

F vector of source/sink terms in Navier-Stokes equations
L differential operator of homogeneous Navier-Stokes equations
τ s matrix of intrinsic time scales for SUPG operator
A0

−1 inverse of symmetrizer matrix, used as metric for inner products
F i Euler flux in directioni
Gi viscous flux in directioni
J Jacobian of nonlinear residual
r nonlinear residual
U state vector of conserved variables
W vector of test functions in weighted residual statement of Navier-Stokes equations
C range of master element parametric coordinates
χs partial derivative of pressure with respect to the species density at constant temperature
δij Kronecker’s delta
γ ratio of specific heats
ν̂ interpolant of nodal reconstruction of residual-based shock-capturing parameter
n̂i component of outward unit normal vector in directioni
κ partial derivative of pressure with respect to internal energy at constant mixture density
µ dynamic viscosity
ν residual-based shock-capturing parameter
Ω computational domain
∂Ω computational domain boundary
φm finite element basis function associated with nodem
ρ mixture density
ρs density of speciess
τc time scale associated with continuity equation
τe time scale associated with energy equation
τm time scale associated with momentum equation
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τij viscous stress tensor
ξk master element parametric coordinate in directionk
cp specific heat at constant pressure for ideal gas or mixture
cv specific heat at constant volume for ideal gas or mixture
cvs specific heat at constant volume for speciess
Ds diffusivity of speciess
E total energy per unit mass
e internal energy per unit mass
gij element contravariant metric tensor
gij element covariant metric tensor
hs static enthalpy of speciess
hu flow-aligned element length scale
hs,0 heat of formation of speciess
k thermal conductivity
P pressure
Pr Prandtl number
qi heat flux vector
Qv translational/vibrational energy exchange rate
R ideal gas constant
Rs ideal gas constant for speciess
T temperature
t time
ui velocity component in directioni
xi Cartesian coordinate directioni
ys mass fraction of speciess

1. Introduction

The structured-mesh finite volume scheme has generally beenthe preferred method for solving hypersonic aero-
dynamics problems for the past two decades. The scheme extends easily to second-order on structured meshes, and
when appropriate limiters are used and the mesh is aligned with the shock, 1-D Riemann-solver-based fluxes provide
good shock capturing behavior. The past two decades have also seen research into alternative methods, including
unstructured-mesh finite volume schemes, the discontinuous Galerkin finite element method, and the streamline up-
wind Petrov-Galerkin (SUPG) finite element method. The finite element method is well-suited for implementation
on unstructured grids, and readily extends toh-adaptive and non-homogeneous meshes. Although most work in the
computational aerodynamics community has been directed towards finite volume discretizations, robust and accurate
formulations on arbirtary meshes has remained elusive. Thegoal of our work is to develop fully coupled algorithms
for solving hypersonic heat transfer problems, including detailed thermal analyses of the flight vehicle. This paper
demonstrates that recent advances in SUPG make it a viable alternative to unstructured finite volume methods. In the
present work, we propose an SUPG algorithm for chemically reacting flows. We have implemented this algorithm in
two separate codes. Numerically, these two codes differ primarily in their method of nonlinear solution. The Aria
code, which is under development at Sandia National Laboratories, explicitly assembles the Jacobian of the nonlinear
residual at each time step. The FIN-S code,1 which is under development at NASA Johnson Space Center, uses a
Newton-Krylov strategy and never assembles the Jacobian ofthe nonlinear residual.

2 of 16

American Institute of Aeronautics and Astronautics



2. Mathematical Model

2.1. Governing Equations

Under certain assumptions (e.g. see2), the conservation of mass, momentum, and energy for a compressible fluid may
be written as

∂ρ

∂t
+

∂(ρui)

∂xi
= 0 (1)

∂(ρuj)

∂t
+

∂

∂xi
(ρuiuj + Pδij) =

∂τij

∂xi
(2)

∂(ρE)

∂t
+

∂

∂xi
[(ρE + P )ui] =

∂qi

∂xi
+

∂(ujτij)

∂xi
, (3)

The total energy per unit mass,E, may be written as the sum of the internal energy,e and the kinetic energy,

E = e +
ukuk

2
. (4)

In order to close this set of equations, constitutive relations are necessary forτij and the heat flux vectorqi. For a
Newtonian fluid, we may write

τij = µ

(

∂ui

∂xj
+

∂uj

∂xi

)

− 2

3
µ

∂uk

∂xk
(5)

qi = −k
∂T

∂xi
, (6)

where we have introduced the viscosity,µ, themal conductivity,k, and temperature,T . For many flows of engineering
interest, an empirical relation such as Sutherland’s Law

µ = µref
T

3

2

T + Tref
(7)

or Keyes’s Law

µ = 10−6 a0T
3

2

T + 10
−a1

T a
(8)

is used. In (8), ifa0 = 1.488, a1 = 122.1, anda = 5, then the viscosity of air is modelled in SI units of kg/(m-s).
Finally, the thermal conductivity is given by a constant Prandtl number model,

k =
µcp

Pr
(9)

wherecp is the specific heat at constant pressure. For air,Pr = 0.71.

2.2. Ideal Gas Model

For flows at low to moderate Mach numbers, say up to Mach 8 or so,the ideal gas assumption is reasonable. In this
case,

P = ρRT (10)

where the gas constant,R, is given by the difference of specific heats at constant pressure and volume:R = cp − cv.
It may be shown that the internal energy is proportional to the temperature:e = cvT , and that the speed of sound,c,
is given byc =

√
γRT , whereγ =

cp

cv
.

3 of 16

American Institute of Aeronautics and Astronautics



2.3. Non Equilibrium Chemically Reacting Gas Model

For flows at Mach numbers higher than about Mach 8, the ideal gas model produces temperatures that are unreasonably
high. For this case (10) is not valid, and we model the gas as a chemically reacting mixture.

For this case, the mixture density,ρ, is a sum of the species densities, which may be written as

ρ =

S
∑

s=1

ρs (11)

Since the species are assumed to be thermally-perfect, Dalton’s law of partial pressures holds, namely

P =

S
∑

s=1

ρsRsT. (12)

However, high temperatures vibrationally excite the gas species, so a calorically-perfect assumption is inappropriate.
Instead, each species has specific heats that are functions of temperature. The species enthalpy is the integral of
the specific heat at constant pressure from the reference temperature up to the mixture temperature plus the heat of
formation of that species, namely

hs(T ) = hs,0 +

∫ T

Tr

Cp(θ)dθ. (13)

The NASA Glenn curve fits and coefficient database3 are used for these species-specific quantities.
Each species is governed by its own continuity equation, which includes mass diffusion for viscous problems.

Hence we may write
∂ρs

∂t
+

∂(ρsui)

∂xi
=

∂

∂xj

(

ρDs
∂ys

∂xi

)

+ ẇs (14)

The diffusivity of each species is determined by a constant Schmidt number (Sc). This mass diffusion also introduces
an additional term to the energy equation, since the diffusion of species with different enthalpies results in an energy
flux. The energy equation for a chemically reacting mixture may therefore be written as

∂(ρE)

∂t
+

∂

∂xi
[(ρE + P )ui] =

∂qi

∂xi
+

∂(ujτij)

∂xi
+

∂

∂xj

(

ρ

S
∑

s=1

hsDs
∂ys

∂xi

)

. (15)

The symmetric form of a two temperature model for the chemically reacting Navier-Stokes equations, which can be
used as a starting point for a stabilized finite element discretization, was published by Chalot et al.4 This form was later
simplified for the case of chemical equilibrium, and a finite element method was proposed with supporting numerical
results.5 The present results are the first presented for the case of nonequilibrium chemistry (to the knowledge of the
authors). The only change to the numerics of the SUPG scheme required by these additional physics involves the
Jacobian and inverse symmetrizer matrices, which are presented in the Appendix.

Although the two temperature model has not yet been implemented in the Aria code, it has been implemented in
the FIN-S code, although currently the Arrhenius rates are determined exclusively from the translational temperature,
T . When a two temperature model is used, the additional vibrational energy equation

∂(ρevib)

∂t
+

∂

∂xi
[(ρevib)ui] =

∂qvib
i

∂xi
+

∂

∂xj

(

ρ
S
∑

s=1

evibDs
∂ys

∂xi

)

+
S
∑

s=1

evib
s ẇs + Qvib (16)

is solved.
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3. Stabilized Finite Element Method

Before proceeding, it is useful to recast (1)-(3) in vector form. To this end, let

U =







ρ

ρuj

ρE






(17)

F i(U) =







ρui

ρuiuj + Pδij

(ρE + P )ui






(18)

Gi(U) =







0

τij

−qi + τijuj






(19)

In the above definitions, the subscript()i denotes the coordinate direction associated with each flux vectorF i and
Gi. The subscript()j denotes the component of the momentum equation, which expands the length of each vector
according to the spatial dimension: e.g., for two spatial dimensions,U , F i, andGi are each of length four. Now
(1)-(3) may be written as

∂U

∂t
+

∂F i(U )

∂xi
− ∂Gi(U)

∂xi
= F , (20)

where we have introduced the vectorF to account for the mass and energy source terms in (14), (15),and (16). Let

LU =
∂U

∂t
+

∂F i(U)

∂xi
− ∂Gi(U)

∂xi
(21)

so that (20) may be written as the residual equation

LU − F = 0 (22)

3.1. Weak Form

The stabilized finite element method that we use is a variant of the so-called SUPG (streamline upwind Petrov-
Galerkin) method.6–11 First, we approximateU by introducing the trial functions{φm}, and expandU andF i in
this basis. Thus we may write

Uh ≃ U

Uh(xk, t) =

N
∑

m=1

U
m(t)φm(xk) (23)

F i(xk, t) =

N
∑

m=1

F i(U
m(t))φm(xk) (24)

whereφm is them-th function in our finite element basis, andN is the number of nodes. In this work, we exclusively
use the linear Lagrange basis. Note that, since the fluxes arenonlinear functions ofU , there is a choice to be made. A
person can first compute the fluxes using the nodal valuesU

m(t) and then interpolate the result, as indicated in (24).
Or, a person can interpolateUh to the desired spatial location and then calculate the flux ofthis interpolant. It has
been shown that the approach indicated by (24) has improved stability.12

Now, the problem may be stated as follows: Find the approximate discrete solutionUh ≃ U such that

∫

Ω

W · (LUh − F) dΩ +

∫

Ω

∂W

∂xi
· Aiτ s (LUh − F) dΩ +

∫

Ω

ν
∂W

∂xi
· gij ∂Uh

∂xj
dΩ = 0 (25)

for all admissible test functionsW . In (25), the first integral is associated with Galerkin’s method, which is analogous
to a central finite difference scheme. The second integral isthe SUPG stabilization term, and the third integral is the
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so-called discontinuity-capturing operator (DCO). We have introduced the flux Jacobian matricesAi = ∂F i

∂U
, explicit

forms of which appear in the Appendix. The stabilization parameterτ s, which also appears in (25) plays a key role in
the method. We discuss this important parameter further in the text below. The DCO is written in terms of gradients
in computational space by virtue of the contravariant metric tensor

gij =
∂xi

∂ξk

∂xj

∂ξk
(26)

whereξk is thek-th parametric coorinate of the master element. Consistency with the original partial differential
equation system is maintained byν, which is a scalar function of the residual. Different choices forν exist.11, 13 Note
thatν has units of (time)−1. In this work, we use

ν =

√

√

√

√

√

(LUh − F)
t
A0

−1 (LUh − F)

(∆Uh)
t
A0

−1∆Uh + gij
(

∂Uh

∂xi

)t

A0
−1 ∂Uh

∂xj

(27)

In (27),∆Uh represents the change ofUh from one time step to the next and in practice is calculated via

∆Uh =
∂Uh

∂t
∆t

The symmetric, positive definite matrixA0
−1 is associated with the transformation from entropy variables to con-

servation variablesU , and arises as a natural metric for inner products. It is important to note that this matrix is the
second derivative of a generalized entropy function with respect toU , but we leave the details to the literature.4, 11

This matrix is given in the Appendix for both ideal and chemically reacting gases.
The weak form of our finite element discretization is obtained by returning to (25) and integrating the Galerkin

terms involving the fluxesF i andGi by parts. After performing the required manipulations, we obtain

∫

Ω

W ·
(

∂Uh

∂t
− F

)

dΩ +

∫

Ω

∂W

∂xi
· (Gi − F i) dΩ +

∫

∂Ω

W · (F i − Gi) n̂i dΓ+

∫

Ω

∂W

∂xi
· Aiτ s (LUh − F) dΩ +

∫

Ω

ν
∂W

∂xi
· gij ∂Uh

∂xj
dΩ = 0 (28)

where∂Ω is the boundary ofΩ, andn̂i is thei-th component of the unit vector normal to and pointing out of∂Ω.
It should be noted that, if linear basis functions are used, then the second derivative terms in the definition ofLUh

vanish in the stabilization terms, since they are not integrated by parts.

3.2. Stabilization Parameter

In order to complete the method, a definition forτ s is needed. Conceptually,τ s is a matrix of intrinsic time scales
associated with the discrete solution. There are differentapproaches to deriving this parameter (e.g. see11, 13, 14), and
unfortunately the solution quality is strongly dependent on this choice. Recent developments in multiscale methods8

have suggested a canonical formula forτ s, but a unique practical definition remains elusive. In this work, we use a
diagonal matrix, which in three dimensions may be written as

τ s = diag(τc, τm, τm, τm, τe) (29)

where

τc =

[

(

(‖u‖ + c)

hu

)2

+ ν2

]

−1/2

(30)

τm =

[

(

1

τc

)2

+

(

µ

ρh2
u

)2
]

−1/2

(31)

τe =

[

(

1

τc

)2

+

(

k

ρcph2
u

)2
]

−1/2

(32)
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In (30)-(32),hu is a flow-aligned length scale, which we define as15

hu = C
√

ukuk

uj
∂ξk

∂xj
ui

∂ξk

∂xi

(33)

whereC is a constant that is determined by the range of computational coordinates in the master element. For example,
if −1 ≤ ξk ≤ 1, thenC = 2. If 0 ≤ ξk ≤ 1, thenC = 1. The definition (33) is clearly a flow aligned length scale
once it is realized that the denominator is the norm of the projection of the velocity vector onto the gradient of the
computational coordinates. We can rewrite (33) as

hu = C
√

ukuk

uigijuj
(34)

where

gij =
∂ξk

∂xj

∂ξk

∂xi
=
[

gij
]

−1

is the covariant metric tensor.
We remark that for inviscid problems,τ s reduces to the scalarτc. The first term in the square brackets in (30)

is a measure of the time scale required for information to be convected across a finite element. The presence of
ν in (30) is novel and may be somewhat controversial. Its purpose is to reduce the total artificial diffusion in the
presence of shocks, so that the SUPG stabilization is reduced when the DCO is large. In our experience, adding this
term significantly increases the accuracy across strong shocks. The second term in (31) is an estimate of the time
scale associated with diffusion across an element. Similarly, the second term in (32) is an estimate of the time scale
associated with the conduction of heat across an element. The inverse square norm serves to smoothly switch among
the various time scales.

4. Implementation details

Generally speaking, the stabilized finite element method aspresented in Section 3.1 works well for flows at mod-
erate Mach numbers where the shocks are not very strong. However, for flows with free stream Mach numbers that
exceed 4 or 5, problems begin to occur. For example, the method tries to capture shocks across a single element. As
the shocks increase in strength, this begins to set up very large gradients. Since in general, the elements are not aligned
with the shock, the shock “snaps” from one element to the next, and the mesh structure adversely affects the shape of
the shock wave. This can generate fictitious waves that degrade accuracy. As the Mach number is further increased,
these waves can generate numerical oscillations that can lead to instability. Furthermore, for the steady-state Euler
equations, the solution to the energy equation under adiabatic conditions is that the total enthalpy is a constant. It is
easy to show that the DCO in (28) does not preserve this property. This can lead to incorrect jump conditions across
a shock. In this section, we present a few specific implementation details that have been designed to correct these
deficiencies. Some of this work follows closely ideas developed by Kirk.16

4.1. Nodal reconstruction of stabilization parameters

In the absence of the DCO, the SUPG method is as its name suggests, a Petrov-Galerkin method in which the standard
Galerkin basis is modified in an upwind direction. To see this, consider that removing the DCO from (25) results in

∫

Ω

W · (LUh − F) dΩ +

∫

Ω

∂W

∂xi
· Aiτ s (LUh − F) dΩ = 0

After combining the two integrals, we may write

∫

Ω

(

W + τ
t
sA

t
i

∂W

∂xi

)

· (LUh − F) dΩ = 0

So it is clear that ifUh is expanded in the basis{φm}, and, e.g.,W = (φm, 0, 0, 0, 0)
t, then a test function for the

continuity equation may be written as

φ̂m = φm + τ
t
sA

t
i

∂φm

∂xi
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Hence the test function may be interpreted as the standard Galerkin function, plus a perturbation proportional to the
gradient of the function. More specifically, the flux Jacobian matrices determine the direction of the upwinding, and
τ s normalizes the size.

Now, a person has a choice as to where these two matrices are evaluated. For example, one obvious choice
is to evaluate them at the quadrature points. Since the definition (33) involves the mesh metric terms, thenτ s is
discontinuous over the patch of elements that supports nodem. This also means that the direction and magnitude of
the upwinding that occurs at a given node will vary across thepatch of its supporting elements. Numerical experiments
have shown that it is more desirable to have the upwinding that is associated with a particular node be constant over
the patch, so that each element contribution sees the same direction and magnitude of upwinding. The flux Jacobians,
and all of the terms in (30)-(32), can be evaluated directly at the nodes, except forhu. For this reason, we perform an
L2 projection to recoverhu at the nodes.

Lethu be the discontinuous element values calculated according to (33). Then we seek a continuous reconstruction
by projecting against our finite element basis and solving

E
∑

e=1

∫

Ωe

(

m
∑

m=1

hm
u φm − hu

)

dΩe = 0 (35)

We solve (35) simultaneously with the conservation equations, in a decoupled fashion using a lumped mass approx-
imation. The lumped mass approximation is necessary in order to ensure positivity of the reconstructed field. This
procedure has the added benefit of forming a diagonal matrix so that the solution of (35) is fully explicit. Then these
nodal valueshm

u are used to calculate (30)-(32) at the nodes. Finally, the flux Jacobians that multiply the test function
gradiaent are also evaluated at the nodes. In this way the test function for nodem has a consistent direction and
scaling over its patch of elements. It should be emphasized that when theAi appear in the residual,LUh − F , they
are evaluated at the quadrature points, not at the nodes, because the residual must be sampled at the quadrature points
for numerical integration.

4.2. Nodal reconstruction ofν

Recall that the weak formulation (28) involves the DCO,

IDCO =

∫

Ω

ν
∂W

∂xi
· gij ∂Uh

∂xj
dΩ (36)

In this integral, the functionν plays the role of an artificial viscosity or diffusivity. Sinceν is a function of the residual,
which involves gradients,ν is necessarily discontinuous from one element to the next. If we consider an analogy to
heat transfer, the heat flux normal to the interface between two materials is continuous, but if the diffusivities are dis-
continuous, then jumps in the temperature gradient will arise. The purpose of the DCO is to enable control over strong
gradients and smooth the solution. But allowingν to be discontinuous can lead to jumps in the solution gradients ∂Uh

∂xj
,

which is counterproductive. Furthermore, it has recently been shown that a continuous artifical viscosity function is
necessary to obtain higher-order accuracy in Discontinuous Galerkin methods, and can also lead to increased robust-
ness for problems with strong shocks.17 For these reasons, we perform anL2 projection to recover a continuous field
for ν, and then interpolate this field to the quadrature points to evaluate the DCO. This projection is performed exactly
in the same way as described above for (35). More specifically, we solve

E
∑

e=1

∫

Ωe

(

m
∑

m=1

ν̂mφm − ν

)

dΩe = 0 (37)

for the nodal valueŝνm. We remark that this projection can be viewed as a special case of the PDE-based approach
described by Barter and Darmofal.17 Our piecewise discontinous representation forν plays the role of their shock
sensor, and the source term in their PDE is essentially ourL2 projection. We have no spatial diffusion term or time
derivative terms: therefore we do not need to apply initial or boundary conditions onν. Kirk16 has used an even
simpler approach: he assigns the maximum value of the artifical viscosity found in the patch of supporting elements
to each node and interpolates this back to the quadrature points.

4.3. Preservation of enthalpy

The observation that the DCO involves an artificial viscosity term suggests another improvement. Jameson found that
carelessly introducing artificial viscosity into the Eulerequations can destroy an important property.18 It may easily be
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shown that, for steady, adiabatic flows, the energy equationbecomes a statement that the total enthalpy of the flow is
a constant along a streamline. The energy equation may then be written as the continuity equation scaled by the total
enthalpy. Now, if we consider (25) for the caseτ s = 0, it is easy to show that the energy equation does not satisfy this
property. The reason is that the total enthalpy per unit mass

H =
ρE + P

ρ

appears in the energy flux, but we are smoothingρE in the DCO. Preservation of iso-enthalpic flows can be recovered
simply by altering the DCO to operate onρH instead ofρE.16 Thus, we modify the DCO and compute it as

IDCO =

∫

Ω

ν̂
∂W

∂xi
· gij ∂Û

∂xj
dΩ (38)

whereν̂ is the continuous, nodal field determined by ourL2 projection, and

Û = (ρ, ρuj , ρH)t (39)

4.4. Summary

We now rewrite the weak form (28) with notation to emphasize the implementation details presented in this section.
Find the approximate discrete solutionUh ≃ U such that

∫

Ω

W ·
(

∂Uh

∂t
− F

)

dΩ +

∫

Ω

∂W

∂xi
· (Gi − F i) dΩ +

∫

∂Ω

W · (F i − Gi) n̂i dΓ+

∫

Ω

∂W

∂xi
· Al

iτ
l
s (LUh − F) dΩ +

∫

Ω

ν̂
∂W

∂xi
· gij ∂Ûh

∂xj
dΩ = 0, (40)

where the superscript()l indicates the quantity is to be evaluated at the nodel that is associated with the test function
W , ν̂ is the interpolant of our nodally reconstructed function, and Ûh is given by (39).

5. Nonlinear Solution

Equation (40) is a semidiscrete representation of the chemically reacting Navier-Stokes equations. The authors
have implemented for first order backward Euler, second order trapezoid rule, and second order backward difference
formula time discretizations. Because we are currently interested in time-iterative to steady-state solutions, all of the
results presented in the present work were obtained using the backward Euler scheme. We then form the fully discrete
nonlinear resiudual

r =

∫

Ω

W ·
(

∂Uh

∂t
− F

)

dΩ +

∫

Ω

∂W

∂xi
· (Gi − F i) dΩ +

∫

∂Ω

W · (F i − Gi) n̂i dΓ+

∫

Ω

∂W

∂xi
· Al

iτ
l
s (LUh − F) dΩ +

∫

Ω

ν̂
∂W

∂xi
· gij ∂Ûh

∂xj
dΩ (41)

and use Newton’s method to solve forU at each timestep. More specifically, we formJ ≡ ∂r

∂U
and solve

J∆U = −r (42)

at each timestep. The Jacobian is calculated from each expression in (41) using a combination of analytic sensitivities,
finite differences, and forward automatic differentiation. We neglect the sensitivites toτ l

s and to ν̂. Each linear
system is solved using GMRES with incomplete LU factorization as a preconditioner. We have found that including
the sensitivities to the flux Jacobian matrices is importantto achieving second-order convergence. In summary, our
solution strategy is

givenU(t = 0)
saver0 = r(U (t = 0)
for n = 0 ; n < nmax; n + + do
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U
0 = U(t = tn)

for k = 0 ; k < kmax; k + + do
solve the diagonal systems (35) and (37)
solveJ

k∆U
k+1 = −rk

U
k+1 = U

k + ∆U
k+1

if rk+1/r0 < ǫk then
break

end if
end for
U(t = tn+1) = U

k+1

if rk+1/r0) < ǫn then
quit

end if
end for

For the results presented in the present work,ǫk = 0.1 andǫn = 1e − 10. The authors have also implemented a
Newton-Krylov scheme, wherein the matrixJ is never explicitly formed.

6. Results

Both inviscid and viscous test cases have been performed. Aninviscid solution of dissociating nitrogen over a
1 m diameter circular cylinder has been compared to results from the SACCARA19 finite volume code. Free stream
conditions are, in SI units,ρ∞ = 0.000121704, u∞ = 6155.63, T∞ = 227.98. This corresponds to approximately
Mach 20. Although the simulation is nitrogen only, the free stream temperature and density correspond to the same
values for air in the standard atmosphere at approximately 66.5 km altitude. Figure 1 shows the convergence history
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Figure 1. Initial nonlinear residual norm and timestep.

of the inviscid simulation. Both time step size and initial nonlinear residual norms are shown as a function of time
step. The time step size starts at1 × 10−9 s and is ramped adaptively as the simulation progresses. As the time step
exceeds1 × 10−4 s, the convergence of the solution accelerates. The jagged pattern in the timestep history is caused
by occasional halving of the timestep by the adaptive algorithm. This happens whenever the nonlinear norm reduction
tolerance for a given time step (0.1) is not reached in the maximum number of allowable nonlinear steps (10). Both of
these parameters are user-controlled.

Figure 2 shows the pressure along the stagnation line for both the Aria (SUPG-stabilized finite element) and
SACCARA (structured, cell-centered finite volume) solutions. As can be seen from the solutions, the jump conditions
across the shock match exactly, but the shock locations are not identical. Although no “correct” shock location is
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Figure 2. Pressure along stagnation line for both codes.

known for this dissociating case, the two codes converge to the same shock standoff distance with mesh refinement
(not shown), although the Aria solutions converge from the front, and the SACCARA solutions converge from the back.
The same trend is observed for ideal gas solutions,15 where the “correct” shock standoff distance can be approximated
via an empirical relationship. For the ideal gas case, the error in shock standoff distance is slightly lower for the
SACCARA solutions, at the same mesh resolution. This is because the DCO in the SUPG-stabilized scheme is
slightly more dissipative in the vicinity of the shock than the flux limiter which is activated in the structured, cell-
centered finite-volume scheme. Also, the dissipation in theDCO tends to be biased toward the upstream side of the
shock, whereas the dissipation in the flux limiter tends to bebiased toward the downstream side of the shock. Figure 3
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y N
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Figure 3. Mass fraction of monatomic nitrogen along stagnation line for both codes.

shows the mass fraction of monatomic nitrogen for both Aria and SACCARA. The figure shows good agreement up
to the stagnation point, where the SACCARA solution trends lower into the surface. The SACCARA solution has
slightly less dissociation since its shock is farther back,and thus, the integration time of the finite-rate reaction is
slightly less for any given point in space. The more significant difference between the two solutions at the stagnation
point is caused by SACCARA’s zeroth-order extrapolation into the ghost cell at this boundary. Since Aria enforces no
such artificial BC at this point, its solution demonstrates the expected behavior.

A viscous solution has also been produced for the same flow conditions with an isothermal wall at 10,000 K and
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super catalycity (i.e., all of the dissociated nitrogen recombines at the surface). The high wall temperature was chosen
to ensure that the catalytic behavior of the wall was correctly being enforced, since lower wall temperatures would
cause significant recombination even without wall catalycity. Figure 4 shows the density of monatomic nitrogen and
temperature for this case.

Figure 5 shows a viscous solution at the same free-stream conditions around the IRV-2 nosetip. This fluid-only
simulation corresponds to a coupled ablation simulation ofthe carbon-carbon nosetip.20

Figure 6 shows the mass fractions of N, O, and NO from both the FIN-S (SUPG stabilized finite element) and
DPLR (structured, cell-centered finite-volume) codes for Mach 15 flow of 5-species air over a circular cylinder using a
two-temperature model. Figure 7 shows the translational temperature for the same case. The same trends are observed
as for the nitrogen-only comparison between Aria and SACCARA: the shock is slightly farther forward for SUPG than
finite-volume, due to differences in the distribution of numerical dissipation near the shock, but the jump conditions
match.

7. Summary

We have proposed an SUPG algorithm for solving chemically reacting hypersonic flows, and impleented it in two
separate codes. Results for both a one temperature and a two temperature model have been shown to achieve the proper
shock jump conditions and locations. Because the method is finite-element based, it is well-suited for application to
unstructured meshes. Current and future work involves extensions to one and two equation turbulence models, and
hetergeneous and h-adaptive meshes. Work is also ongoing tosimulate hypersonic reentry flows with conjugate heat
transfer.

Appendix

Many variants of stabilized finite element methods based on SUPG with a shock capturing operator have been
published for the case of an ideal gas over the last two decades. A key idea for these methods is a transformation of
dependent variables from the conservation variablesU to the so-called entropy variablesV (e.g. see Shakib et al.11).
The entropy variables are defined by taking the gradient of a scalar entropy function with respect to the conservation
variablesU . This transformation is defined by the chain rule

δU = A0δV

where

A0 =
∂U

∂V

SinceA0 is the Hessian of an entropy function, it is symmetric and positive semi-definite. The matrixA0 is referred
to as the symmetrizer because if the convective and viscous flux Jacobian matrices are post-multiplied byA0, then
they become symmetric. In fact, this symmetric form of the equations (in terms of the entropy variables) is the starting
point for the SUPG method. For convenience, after the methodis derived, it is transformed back to conservation
variables, which is why the inverse symmetrizerA

−1
0 appears in (27).

In this Appendix, we present the flux Jacobian matrices and inverse symmetrizer for a mixture of thermally perfect
gases in thermochemical nonequilibrium for the case where the translational and vibrational temperatures are identical.
In compact notation, the flux Jacobian matrix in Cartesian coordinate directioni may be written as

Aijk =

2

6

6

6

6

6

6

6

6

4

ui

“

1 −

ρ1

ρ

”

. . . −ui
ρ1

ρ

ρ1

ρ
δij 0

...
...

...
...

...

−ui
ρS
ρ

. . . ui

“

1 −

ρS
ρ

”

ρS
ρ

δij 0

−uiuj + α1δij . . . −uiuj + αsδij βijk κδij

ui (α1 − H) . . . ui (αS − H) Hδij − κρuiuj (κ + 1) ui

3

7

7

7

7

7

7

7

7

5

(43)

The indexj denotes the row of the momentum equation, andk indicates the momentum component with respect to
which the derivative of the flux in directioni is being taken. In other words, the indexj expands the rows of the flux
JacobianAi according to the spatial dimension, and the indexk expands the columns. These flux jacobian matrices
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Figure 4. Density of monatomic nitrogen and temperature forthe viscous case.
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Figure 5. Temperature (K) contours on cut planes in IRV-2 nosetip simulation.
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Figure 6. Mass fractions on cylinder case with 5-species air.

are discussed in Liu and Vinokur.21 In (43),u2 = ukuk, βijk = uiδjk + ujδik − κukδij , αs = 1

2
κu2 + χs,

κ =
1

ρcv

S
∑

s=1

ρsRs (44)

is the partial derivative of pressure with respect to internal energy at constant mixture density, andχs is the partial
derivative of pressure with respect to the species density at constant temperature,

χs = RsT − κes (45)

Finally,Rs andes are the gas constant and internal energy of speciess, respectively.
Our form of the matrixA−1

0 for the case of thermal equilibrium was derived by simplifying the form published by
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Figure 7. Translational temperature on cylinder case with 5-species air.

Chalot et al,4 which includes a second temperature for the vibrational energy. This simplified form may be written as

A
−1
0 =

1

E



























ā11 . . . ā1S b̄1u1 b̄1u2 b̄1u3 d̄1

. . .
...

...
...

...
...

āSS b̄Su1 b̄Su2 b̄Su3 d̄S

u2
1 + cvT u1u2 u1u3 −u1

u2
2 + cvT u2u3 −u2

Symmetric u2
3 + cvT −u3

1



























(46)

where

E = ρcvT
2 (47)

āsr =

(

cvsT + h0
s −

u2

2

)(

cvrT + h0
r −

u2

2

)

+ evib
s evib

r

cv

cvib
v

+

cvTu2 + ρcvT
2

(

S
∑

k=1

ρk

Rk

)

−1

δsr (48)

b̄s = cvsT + h0
s −

u2

2
− cvT (49)

c̄s = cvsT + h0
s −

u2

2
− evib

s

cv

cvib
v

(50)

d̄s = −
(

cvsT + h0
s −

u2

2

)

(51)

In the above relations,cvs is the specific heat at constant volume of speciess, andevib
s is the vibrational part of

the internal energy of speciess. For the case of thermal equilibrium (i.e., single temperature model), terms explicitly
referencing the vibrational energy are not included.
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