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A streamline upwind Petrov-Galerkin finite element method & presented for the case of a reacting mixture
of thermally-perfect gases, using chemical non-equilibtim. Details of the stabilization scheme and nonlinear
solution are presented. The authors have independently imMpmented the proposed algorithm in two separate
codes, for both single temperature and and two temperature rodels. Example problems invoving a cylinder in
Mach 20 crossflow, as well as a three-dimensional blunt nosptare shown and compared to established codes.

Nomenclature

vector of source/sink terms in Navier-Stokes equations

differential operator of homogeneous Navier-Stokes éqnsit

matrix of intrinsic time scales for SUPG operator

inverse of symmetrizer matrix, used as metric for inner potsl

Euler flux in direction

viscous flux in directiori

Jacobian of nonlinear residual

nonlinear residual

state vector of conserved variables

vector of test functions in weighted residual statementafibir-Stokes equations
range of master element parametric coordinates

partial derivative of pressure with respect to the specdesitly at constant temperature
Kronecker’s delta

ratio of specific heats

interpolant of nodal reconstruction of residual-baseatkkzapturing parameter
component of outward unit normal vector in direction

partial derivative of pressure with respect to internalrgpat constant mixture density
dynamic viscosity

residual-based shock-capturing parameter

computational domain

computational domain boundary

finite element basis function associated with nede

mixture density

density of species

time scale associated with continuity equation

time scale associated with energy equation

T time scale associated with momentum equation
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Tij viscous stress tensor

&k master element parametric coordinate in direction
Cp specific heat at constant pressure for ideal gas or mixture
Cy specific heat at constant volume for ideal gas or mixture

Cos specific heat at constant volume for species
Dy diffusivity of speciess

E total energy per unit mass

e internal energy per unit mass

g element contravariant metric tensor
Gij element covariant metric tensor

hs static enthalpy of species

hu flow-aligned element length scale
hs,o heat of formation of species

k thermal conductivity

P pressure

P, Prandtl number

qi heat flux vector

Q. translational/vibrational energy exchange rate
R ideal gas constant

R, ideal gas constant for species
T temperature

t time

u; velocity component in direction
T; Cartesian coordinate direction
Ys mass fraction of species

1. Introduction

The structured-mesh finite volume scheme has generally thegoreferred method for solving hypersonic aero-
dynamics problems for the past two decades. The schemedsxéasily to second-order on structured meshes, and
when appropriate limiters are used and the mesh is alignttdté shock, 1-D Riemann-solver-based fluxes provide
good shock capturing behavior. The past two decades havesaén research into alternative methods, including
unstructured-mesh finite volume schemes, the discontsGalerkin finite element method, and the streamline up-
wind Petrov-Galerkin (SUPG) finite element method. The dimlement method is well-suited for implementation
on unstructured grids, and readily extendétadaptive and non-homogeneous meshes. Although most wdhei
computational aerodynamics community has been directealrtts finite volume discretizations, robust and accurate
formulations on arbirtary meshes has remained elusive.gblaéof our work is to develop fully coupled algorithms
for solving hypersonic heat transfer problems, includietpded thermal analyses of the flight vehicle. This paper
demonstrates that recent advances in SUPG make it a viabfaative to unstructured finite volume methods. In the
present work, we propose an SUPG algorithm for chemicaligting flows. We have implemented this algorithm in
two separate codes. Numerically, these two codes diffenguily in their method of nonlinear solution. The Aria
code, which is under development at Sandia National Laboest, explicitly assembles the Jacobian of the nonlinear
residual at each time step. The FIN-S cddehich is under development at NASA Johnson Space Centes, aise
Newton-Krylov strategy and never assembles the Jacobitreafonlinear residual.
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2. Mathematical Model

2.1. Governing Equations

Under certain assumptions (e.g. 8e¢he conservation of mass, momentum, and energy for a assiple fluid may
be written as

dp | 9(pui)

—8(2?) B(Z- (puiuj + Pdy;) = % )
(pE) 0 o Oqi | O(uymiy)
o + oz, [(pE+ P)u;] = 2, + 0z, (3)

The total energy per unit mask, may be written as the sum of the internal eneeggnd the kinetic energy,

UpUf

E:
e+ 9

(4)

In order to close this set of equations, constitutive retaiare necessary foy; and the heat flux vectay;. For a
Newtonian fluid, we may write

B Ou;  Ou; 2 Ouy
Tigo = M <8xj + 8171-) 3M<9$k )
oT

where we have introduced the viscosjtythemal conductivityk, and temperaturd;. For many flows of engineering
interest, an empirical relation such as Sutherland’s Law

T3
- - 7
M= [ref T + Trer (7)
or Keyes’s Law
_6 aoT%
M = 10 770‘1 (8)
T+107T a

is used. In (8), ifag = 1.488, a1 = 122.1, anda = 5, then the viscosity of air is modelled in SI units of kg/(m-s)
Finally, the thermal conductivity is given by a constantriRithnumber model,

HCp
k=— 9
= ©)

wherec, is the specific heat at constant pressure. Forgis= 0.71.

2.2. ldeal Gas Model

For flows at low to moderate Mach numbers, say up to Mach 8 athsddeal gas assumption is reasonable. In this
case,
P = pRT (10)

where the gas constarf, is given by the difference of specific heats at constantspiresand volumeR = ¢, — c,.
It may be shown that the internal energy is proportional eotdmperaturec = ¢, 7', and that the speed of sound,

is given byc = /Y RT, wherey = .
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2.3. Non Equilibrium Chemically Reacting Gas Model

For flows at Mach numbers higher than about Mach 8, the ideatgalel produces temperatures that are unreasonably
high. For this case (10) is not valid, and we model the gas agmically reacting mixture.
For this case, the mixture density,is a sum of the species densities, which may be written as

S
s=1
Since the species are assumed to be thermally-perfectralaw of partial pressures holds, namely
S
P=> p.R.T. (12)
s=1

However, high temperatures vibrationally excite the ga&xigs, so a calorically-perfect assumption is inapprogria
Instead, each species has specific heats that are funcfidgemperature. The species enthalpy is the integral of
the specific heat at constant pressure from the referenqeetamare up to the mixture temperature plus the heat of

formation of that species, namely
T

hs(T) = hs,o + Cp(0)do. (13)
T,
The NASA Glenn curve fits and coefficient databaaee used for these species-specific quantities.
Each species is governed by its own continuity equationcwiicludes mass diffusion for viscous problems.

Hence we may write
Ops _ Opsus) _ D s\,
The diffusivity of each species is determined by a constahtr&dt number (Sc). This mass diffusion also introduces

an additional term to the energy equation, since the difusif species with different enthalpies results in an energy
flux. The energy equation for a chemically reacting mixtuegyrtherefore be written as

(pE 0 g 0wt 0 > s
(815 ) s [(pE + P)u;] = 9 T (a;ij) + e (pzlhsta—Il) . (15)

The symmetric form of a two temperature model for the chellyiceacting Navier-Stokes equations, which can be
used as a starting point for a stabilized finite element dtszation, was published by Chalot et'aThis form was later
simplified for the case of chemical equilibrium, and a finieneent method was proposed with supporting numerical
results’ The present results are the first presented for the case efyndibrium chemistry (to the knowledge of the
authors). The only change to the numerics of the SUPG schequéred by these additional physics involves the
Jacobian and inverse symmetrizer matrices, which are pies@ the Appendix.

Although the two temperature model has not yet been implésden the Aria code, it has been implemented in
the FIN-S code, although currently the Arrhenius rates aterdhined exclusively from the translational temperature
T'. When a two temperature model is used, the additional wdrat energy equation

d(pe'® ) . g 9 L Oy
) 4 2 fpemy ) = 24 +_<PZ€V'bDSaZ,

s
vib + s vib 16
5 o7, oar oy \P 2 ) + ; egis +Q (16)

is solved.
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3. Stabilized Finite Element Method

Before proceeding, it is useful to recast (1)-(3) in vectoni. To this end, let

P
U = pU; (17)
pE
puU;
F,(U) = puguj + Pojy; (18)
(pE + P)u;
0
—Qi + Tiju;j

In the above definitions, the subscript denotes the coordinate direction associated with each #atovF'; and
G;. The subscript), denotes the component of the momentum equation, which espae length of each vector
according to the spatial dimension: e.g., for two spatiadefisionslU, F';, andG; are each of length four. Now
(2)-(3) may be written as
oUu OoF,(U) 0G;(U)
- — = 20
ot | om oo (20)

where we have introduced the veciBrto account for the mass and energy source terms in (14),4h8)(16). Let

_OU  OF,(U)  0G,(U)

so that (20) may be written as the residual equation

LU-F=0 (22)

3.1. Weak Form

The stabilized finite element method that we use is a variatihe so-called SUPG (streamline upwind Petrov-
Galerkin) method*! First, we approximaté&’ by introducing the trial function§¢™}, and expand’/ and F'; in
this basis. Thus we may write

Uh ~U
N
Un(e,t) = > U™ ()¢ (wx) (23)
m;l
Fi(wy,t) = Y Fi(U™(t)dm () (24)
m=1

whereg,, is them-th function in our finite element basis, andis the number of nodes. In this work, we exclusively
use the linear Lagrange basis. Note that, since the fluxesalgear functions o, there is a choice to be made. A
person can first compute the fluxes using the nodal vdlii8ét) and then interpolate the result, as indicated in (24).
Or, a person can interpolaté;, to the desired spatial location and then calculate the flukisfinterpolant. It has
been shown that the approach indicated by (24) has imprasbity.*?

Now, the problem may be stated as follows: Find the approtardecrete solutiol/;, ~ U such that

oW - AT (LU, — F)  dQ + ua—W - gij@ dQ = 0 (25)
Q 8501 8Ij

W - (LU, —F) dQ +
/Q (LU, — F) s

for all admissible test functiorld’ . In (25), the firstintegral is associated with Galerkin’shael, which is analogous
to a central finite difference scheme. The second integtAeiSUPG stabilization term, and the third integral is the
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so-called discontinuity-capturing operator (DCO). Wedatroduced the flux Jacobian matricds = %f] , explicit
forms of which appear in the Appendix. The stabilizationgmaeterr,, which also appears in (25) plays a key role in
the method. We discuss this important parameter furthdrertext below. The DCO is written in terms of gradients

in computational space by virtue of the contravariant me&nsor

- 8:171 8xj
&, Ok
where¢y, is the k-th parametric coorinate of the master element. Consigtesith the original partial differential

equation system is maintained bywhich is a scalar function of the residual. Different clesidorr exist!' 12 Note
that has units of (time)". In this work, we use

j

(26)

L (LU, — F)' Ao (LU}, — F) @)

. t B
(AU, A0~ AU + g7 (322) Ag~ 5L

In (27), AU, represents the change@, from one time step to the next and in practice is calculatad vi

ouy,
AU, = En At
The symmetric, positive definite matrito ' is associated with the transformation from entropy vagatib con-
servation variable&/, and arises as a natural metric for inner products. It is itamb to note that this matrix is the
second derivative of a generalized entropy function witpeet toU, but we leave the details to the literatdrét
This matrix is given in the Appendix for both ideal and cheatflicreacting gases.
The weak form of our finite element discretization is obtdibg returning to (25) and integrating the Galerkin
terms involving the fluxe$”; andG; by parts. After performing the required manipulations, vetam

/W- 8Uh_]_. a0 + aW-(Gi—Fi) dQ) + W (F; — G;)n; dI'+
o ot o Oz; 89

. . — g¥
q 0x; AiTa (EUn = F) d+ Q . Oz; g Ox;

iQ=0 (28)

wheredf? is the boundary of2, and#; is thei-th component of the unit vector normal to and pointing oudQf
It should be noted that, if linear basis functions are udeeh the second derivative terms in the definition,df ;,
vanish in the stabilization terms, since they are not irgtegt by parts.

3.2. Stabilization Parameter

In order to complete the method, a definition far is needed. Conceptually,, is a matrix of intrinsic time scales
associated with the discrete solution. There are diffeapptoaches to deriving this parameter (e.gl’s&&!9, and
unfortunately the solution quality is strongly dependemtttis choice. Recent developments in multiscale methods
have suggested a canonical formulafqr but a unique practical definition remains elusive. In thagky we use a
diagonal matrix, which in three dimensions may be written as

75 = diag(7e, Tm, T, T, Te) (29)
where

- ) —1/2

. = ((|’LL|+C)) +V2 (30)
ha

[/ 1\2 b2 —1/2
m= () *@T” &)

- —1/2

1\° Eo\°

v ) () @
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In (30)-(32),h,, is a flow-aligned length scale, which we definé’as

Uk U

Ok, Ok
U5 9z, Wida;

he =C (33)

whereC is a constant that is determined by the range of computdiiooadinates in the master element. For example,
if —1 <&, <1,thenC = 2. If 0 <&, < 1,thenC = 1. The definition (33) is clearly a flow aligned length scale

once it is realized that the denominator is the norm of thgeptmn of the velocity vector onto the gradient of the

computational coordinates. We can rewrite (33) as

By = C, |k (34)
uigijuj

_ 08k 0%k _ [gz‘j]—l

i = 8xj 8xz

where

is the covariant metric tensor.

We remark that for inviscid problems,; reduces to the scalar. The first term in the square brackets in (30)
is a measure of the time scale required for information to dr@vected across a finite element. The presence of
v in (30) is novel and may be somewhat controversial. Its psgge to reduce the total artificial diffusion in the
presence of shocks, so that the SUPG stabilization is reduben the DCO is large. In our experience, adding this
term significantly increases the accuracy across strongkshorhe second term in (31) is an estimate of the time
scale associated with diffusion across an element. Sipildwe second term in (32) is an estimate of the time scale
associated with the conduction of heat across an elemestinVhrse square norm serves to smoothly switch among
the various time scales.

4. Implementation details

Generally speaking, the stabilized finite element methgaresented in Section 3.1 works well for flows at mod-
erate Mach numbers where the shocks are not very strong. \lower flows with free stream Mach numbers that
exceed 4 or 5, problems begin to occur. For example, the rdethes to capture shocks across a single element. As
the shocks increase in strength, this begins to set up veyg taadients. Since in general, the elements are not aligne
with the shock, the shock “snhaps” from one element to the, et the mesh structure adversely affects the shape of
the shock wave. This can generate fictitious waves that degrecuracy. As the Mach number is further increased,
these waves can generate numerical oscillations that eantteinstability. Furthermore, for the steady-state Euler
equations, the solution to the energy equation under atitadx@nditions is that the total enthalpy is a constant. It is
easy to show that the DCO in (28) does not preserve this propHEris can lead to incorrect jump conditions across
a shock. In this section, we present a few specific implentientaetails that have been designed to correct these
deficiencies. Some of this work follows closely ideas depetbby Kirk®

4.1. Nodal reconstruction of stabilization parameters

In the absence of the DCO, the SUPG method is as its name ssgg@etrov-Galerkin method in which the standard
Galerkin basis is modified in an upwind direction. To see, thismsider that removing the DCO from (25) results in

w.cu,—F) ao+ [ W A, (U, — F) do =0
Q o Ox;

After combining the two integrals, we may write

/ <W+-:-§Af.aw> (LU, —F) d2=0
Q Ox;

So itis clear that iU}, is expanded in the bas{g™}, and, e.g. W = (¢™,0,0,0, O)t, then a test function for the
continuity equation may be written as
O™
t

‘mo__ m t
o= om Al S
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Hence the test function may be interpreted as the standdedkBafunction, plus a perturbation proportional to the
gradient of the function. More specifically, the flux Jacobiaatrices determine the direction of the upwinding, and
T hormalizes the size.

Now, a person has a choice as to where these two matrices alteaad. For example, one obvious choice
is to evaluate them at the quadrature points. Since the tiefini33) involves the mesh metric terms, then is
discontinuous over the patch of elements that supports nodghis also means that the direction and magnitude of
the upwinding that occurs at a given node will vary acrosptiteh of its supporting elements. Numerical experiments
have shown that it is more desirable to have the upwindingishassociated with a particular node be constant over
the patch, so that each element contribution sees the saentiain and magnitude of upwinding. The flux Jacobians,
and all of the terms in (30)-(32), can be evaluated diredtth@ nodes, except fdr,,. For this reason, we perform an
Lo projection to recovet,, at the nodes.

Leth, be the discontinuous element values calculated accordif88). Then we seek a continuous reconstruction
by projecting against our finite element basis and solving

E m
Z/ <Z AT ™ — hu> dQ. =0 (35)
e=1"7% \m=1
We solve (35) simultaneously with the conservation equatiin a decoupled fashion using a lumped mass approx-
imation. The lumped mass approximation is necessary inraodensure positivity of the reconstructed field. This
procedure has the added benefit of forming a diagonal matrikat the solution of (35) is fully explicit. Then these
nodal values:) are used to calculate (30)-(32) at the nodes. Finally, theJicobians that multiply the test function
gradiaent are also evaluated at the nodes. In this way théutestion for nodem has a consistent direction and
scaling over its patch of elements. It should be emphasizdihen thed,; appear in the residua,U;, — F, they
are evaluated at the quadrature points, not at the nodesydethe residual must be sampled at the quadrature points
for numerical integration.

4.2. Nodal reconstruction ofv

Recall that the weak formulation (28) involves the DCO,
Q Bxi g (Q).I'j

In this integral, the functiom plays the role of an artificial viscosity or diffusivity. Siav is a function of the residual,
which involves gradients; is necessarily discontinuous from one element to the néxte Iconsider an analogy to
heat transfer, the heat flux normal to the interface betwwemtaterials is continuous, but if the diffusivities are-dis
continuous, then jumps in the temperature gradient wilearThe purpose of the DCO is to enable control over strong
gradients and smooth the solution. But allowintp be discontinuous can lead to jumps in the solution grad%‘mﬁj&,
which is counterproductive. Furthermore, it has recendlgrbshown that a continuous artifical viscosity function is
necessary to obtain higher-order accuracy in Discontia@aierkin methods, and can also lead to increased robust-
ness for problems with strong shocKsFor these reasons, we performBsnprojection to recover a continuous field
for v, and then interpolate this field to the quadrature pointyaduate the DCO. This projection is performed exactly
in the same way as described above for (35). More specifizad\solve

E m
Z/Q (Z P — 1/) dQ. =0 (37)
e=1 e m=1

for the nodal valueg™. We remark that this projection can be viewed as a special cithe PDE-based approach
described by Barter and Darmofdl.Our piecewise discontinous representationfgslays the role of their shock
sensor, and the source term in their PDE is essentially_guprojection. We have no spatial diffusion term or time
derivative terms: therefore we do not need to apply initiaboundary conditions om. Kirk!® has used an even
simpler approach: he assigns the maximum value of the aitifiscosity found in the patch of supporting elements
to each node and interpolates this back to the quadratunéspoi

Ipco = dQ (36)

4.3. Preservation of enthalpy

The observation that the DCO involves an artificial visgogtm suggests another improvement. Jameson found that
carelessly introducing artificial viscosity into the Eudgjuations can destroy an important propéftit.may easily be
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shown that, for steady, adiabatic flows, the energy equagmomes a statement that the total enthalpy of the flow is
a constant along a streamline. The energy equation may themitien as the continuity equation scaled by the total
enthalpy. Now, if we consider (25) for the casg= 0, it is easy to show that the energy equation does not salisfy t
property. The reason is that the total enthalpy per unit mass

_ pE+P
p

H

appears in the energy flux, but we are smoothiAgn the DCO. Preservation of iso-enthalpic flows can be reaae
simply by altering the DCO to operate o/ instead ofp£.16 Thus, we modify the DCO and compute it as

oW, 0U
IDCO = V—a g J—— dQ) (38)
Q €Ty 8xj

wherer is the continuous, nodal field determined by @drprojection, and

U = (p, puj, pH)' (39)

4.4, Summary

We now rewrite the weak form (28) with notation to emphasieitnplementation details presented in this section.
Find the approximate discrete solutibh, ~ U such that

o ot o Ox; oQ

ow
Q 8171

oW oU
Ll —F 5 S el
ATl (LU = F) a9+ | 950 e

dQ =0, (40)

where the superscrig}’ indicates the quantity is to be evaluated at the natiat is associated with the test function
W, 1 is the interpolant of our nodally reconstructed functiamd &, is given by (39).

5. Nonlinear Solution

Equation (40) is a semidiscrete representation of the atedipireacting Navier-Stokes equations. The authors
have implemented for first order backward Euler, secondrdredpezoid rule, and second order backward difference
formula time discretizations. Because we are currentlgragdted in time-iterative to steady-state solutions, fathe
results presented in the present work were obtained usiigabkward Euler scheme. We then form the fully discrete
nonlinear resiudual

Q

ot o Oz 09
/Q%—Z LAl (cuy, — F) a0+ Qﬁ%‘;‘j L g¥ %Z: Q. (41)
and use Newton’s method to solve f0rat each timestep. More specifically, we fodm= g—;} and solve
JAU = —r (42)

at each timestep. The Jacobian is calculated from each®sipnan (41) using a combination of analytic sensitivities
finite differences, and forward automatic differentiatiowe neglect the sensitivites td and too. Each linear
system is solved using GMRES with incomplete LU factorizatas a preconditioner. We have found that including
the sensitivities to the flux Jacobian matrices is importargchieving second-order convergence. In summary, our
solution strategy is

givenU(t = 0)

saver, =r(U(t =0)

forn=0;n < nmaz;, n + +do
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U'=U(t=t,)
fork=0;k < ks, k++do
solve the diagonal systems (35) and (37)
solveJFAUHT! = —pk
Uk+1 Uk+AU/€+1
if »#+1/r0 < ¢ then
break
end if
end for
Ut =tpy) =U""
if #*+1/rg) < ¢, then
quit
end if
end for
For the results presented in the present wegk= 0.1 ande,, = le — 10. The authors have also implemented a
Newton-Krylov scheme, wherein the mattixis never explicitly formed.

6. Results

Both inviscid and viscous test cases have been performednwvstid solution of dissociating nitrogen over a
1 m diameter circular cylinder has been compared to resuits fhe SACCARA? finite volume code. Free stream
conditions are, in Sl unit$.c = 0.000121704, u~ = 6155.63, T, = 227.98. This corresponds to approximately
Mach 20. Although the simulation is nitrogen only, the fré®am temperature and density correspond to the same
values for air in the standard atmosphere at approximately km altitude. Figure 1 shows the convergence history

~10°
10°F [IR,I 410t
—410?
10°+
—H10°
=10'f 110 _
[ad <
- At 18
-1
107 Jd10°®
_ -7
103+ 10
—H10°®
-5 | 1 | ! 1 ! -9
107 200 400 B00°
step

Figure 1. Initial nonlinear residual norm and timestep.

of the inviscid simulation. Both time step size and initi@ntinear residual norms are shown as a function of time
step. The time step size startslak 10~? s and is ramped adaptively as the simulation progresseshefinie step
exceedd x 10~* s, the convergence of the solution accelerates. The jagatéerpin the timestep history is caused
by occasional halving of the timestep by the adaptive allgori This happens whenever the nonlinear norm reduction
tolerance for a given time step (0.1) is not reached in theima number of allowable nonlinear steps (10). Both of
these parameters are user-controlled.

Figure 2 shows the pressure along the stagnation line fdr that Aria (SUPG-stabilized finite element) and
SACCARA (structured, cell-centered finite volume) soln8oAs can be seen from the solutions, the jump conditions
across the shock match exactly, but the shock locations@traentical. Although no “correct” shock location is
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Aria

4_
10°F SACCARA
10°k
=
= 10%F
o
10'E
1007\\|\ . N |
1.2 1.3 1.4 15
X (m)

Figure 2. Pressure along stagnation line for both codes.

known for this dissociating case, the two codes convergeeésame shock standoff distance with mesh refinement
(not shown), although the Aria solutions converge from tbat, and the SACCARA solutions converge from the back.
The same trend is observed for ideal gas solutimghere the “correct” shock standoff distance can be appratdoh

via an empirical relationship. For the ideal gas case, thar émn shock standoff distance is slightly lower for the
SACCARA solutions, at the same mesh resolution. This is lieedhe DCO in the SUPG-stabilized scheme is
slightly more dissipative in the vicinity of the shock tharetflux limiter which is activated in the structured, cell-
centered finite-volume scheme. Also, the dissipation inDR® tends to be biased toward the upstream side of the
shock, whereas the dissipation in the flux limiter tends tbiaeed toward the downstream side of the shock. Figure 3

Aria

0.3 SACCARA

0.25
0.2

.20.15

0.1

0.05

\\\\

Owlw M T 1 TR

1.2 13 1.4 15
x (m)

Figure 3. Mass fraction of monatomic nitrogen along stagnaon line for both codes.

shows the mass fraction of monatomic nitrogen for both And SACCARA. The figure shows good agreement up
to the stagnation point, where the SACCARA solution trermigelr into the surface. The SACCARA solution has
slightly less dissociation since its shock is farther baukd thus, the integration time of the finite-rate reaction is
slightly less for any given point in space. The more signiftadifference between the two solutions at the stagnation
point is caused by SACCARA's zeroth-order extrapolatido thhe ghost cell at this boundary. Since Aria enforces no
such artificial BC at this point, its solution demonstrateseéxpected behavior.

A viscous solution has also been produced for the same flodittons with an isothermal wall at 10,000 K and
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super catalycityi(e., all of the dissociated nitrogen recombines at the surfadeg high wall temperature was chosen

to ensure that the catalytic behavior of the wall was colydming enforced, since lower wall temperatures would
cause significant recombination even without wall catéyydtigure 4 shows the density of monatomic nitrogen and
temperature for this case.

Figure 5 shows a viscous solution at the same free-streanitzmrs around the IRV-2 nosetip. This fluid-only
simulation corresponds to a coupled ablation simulaticthefcarbon-carbon nosetp.

Figure 6 shows the mass fractions of N, O, and NO from both theS-(SUPG stabilized finite element) and
DPLR (structured, cell-centered finite-volume) codes fackl 15 flow of 5-species air over a circular cylinder using a
two-temperature model. Figure 7 shows the translationgberature for the same case. The same trends are observed
as for the nitrogen-only comparison between Aria and SACBARe shock is slightly farther forward for SUPG than
finite-volume, due to differences in the distribution of rencal dissipation near the shock, but the jump conditions
match.

7. Summary

We have proposed an SUPG algorithm for solving chemicaligting hypersonic flows, and impleented it in two
separate codes. Results for both a one temperature andenwetature model have been shown to achieve the proper
shock jump conditions and locations. Because the methodiis-glement based, it is well-suited for application to
unstructured meshes. Current and future work involvesnsides to one and two equation turbulence models, and
hetergeneous and h-adaptive meshes. Work is also ongogigidate hypersonic reentry flows with conjugate heat
transfer.

Appendix

Many variants of stabilized finite element methods based WRG with a shock capturing operator have been
published for the case of an ideal gas over the last two decad&ey idea for these methods is a transformation of
dependent variables from the conservation variablds the so-called entropy variabl&s (e.g. see Shakib et &t).
The entropy variables are defined by taking the gradient chtas entropy function with respect to the conservation
variablesU. This transformation is defined by the chain rule

U = AgoV
where 5T
Ay = —
O v

Since Ay is the Hessian of an entropy function, it is symmetric andtppessemi-definite. The matri, is referred
to as the symmetrizer because if the convective and viscoxsléicobian matrices are post-multiplied Ay, then
they become symmetric. In fact, this symmetric form of theagpns (in terms of the entropy variables) is the starting
point for the SUPG method. For convenience, after the meihatkrived, it is transformed back to conservation
variables, which is why the inverse symmetrizrtag1 appears in (27).

In this Appendix, we present the flux Jacobian matrices avels® symmetrizer for a mixture of thermally perfect
gases in thermochemical nonequilibrium for the case wineréranslational and vibrational temperatures are idahtic
In compact notation, the flux Jacobian matrix in Cartesiasrdimate directiori may be written as

[ u-(l—”—l) kL P, 0 )
v p to “p p 4
Aiji = s w (1 _ @) bsg. 0 (43)
7 P e 7 P P ¥}
—u;u; + 051(51']' A OCS(SZ‘J‘ ﬂijk H(SZ‘J‘
ui(ar —H) ... wi(las—H) Héjj—kpuiu; (k+1)u; |

The index;j denotes the row of the momentum equation, Anddicates the momentum component with respect to
which the derivative of the flux in directiohis being taken. In other words, the indgexpands the rows of the flux
JacobianA; according to the spatial dimension, and the inflesxpands the columns. These flux jacobian matrices
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Figure 4. Density of monatomic nitrogen and temperature forthe viscous case.
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Figure 5. Temperature (K) contours on cut planes in IRV-2 nostip simulation.
- 5-Species Air
vl P.=0.001 kg/m

I U_=4,750 m/s

r T,=250K
0.15j
0.10:7

. DPLR
[ S R // S R \NO

s EW) 13 12 a1 El
(x/R)

Species Mass Fraction

Figure 6. Mass fractions on cylinder case with 5-species air

are discussed in Liu and Vinokat.In (43),u? = wpuk, Bijk = wibji + w0k — kugdij, as = $ru? + X,

1 S
K= s s (44)
PCu ; !

is the partial derivative of pressure with respect to irdéemergy at constant mixture density, apdis the partial
derivative of pressure with respect to the species densggreastant temperature,
Xs = BT — ke (45)

Finally, Rs ande, are the gas constant and internal energy of speciespectively.
Our form of the matrixAO‘1 for the case of thermal equilibrium was derived by simpfifythe form published by

14 of 16

American Institute of Aeronautics and Astronautics



7000

- 5-Species Air
" p.=0.001 kg/nt \
ol Us=4,750 m/s
27 T.=250K
aé‘sooo:—
Pt
2000
IOOOi SUPG
" DPLR J
91?5‘ ‘—1‘.4‘ ‘—‘ — ‘—‘ ‘ ‘—l‘.l‘ ‘

(R)

Figure 7. Translational temperature on cylinder case with 5species air.

Chalot et att which includes a second temperature for the vibrationaiggnd his simplified form may be written as

ail ... Qs Blul Bl’u,g Blu3 Jl
= 1 ass BSU 1 BSUQ BSUB‘ Js
0o — 7z u% + ¢, T UL U ULU3Z —Uy
us +c, T uguz  —up
Symmetric u% +c,T  —us
I 1
where
E = pe,T?
= 0 u2 0 u2 vib_vib Cv
Qsr = cUST—l—hS—? cUTT—l—hT—? +€s€r@+
v
s —1
coTu? + pe, T <Z p—k> Osr
k=1'"F
_ u2
by = cvsT+h2—7—ch
= 0 u2 vib Cv
Cs = C,UST + I’LS - ? s ch;b
2
dS = — <C’UST+h’2_ U‘?)

(46)

(47)

(48)

(49)

(50)

(51)

In the above relations;, s is the specific heat at constant volume of spesjeande?” is the vibrational part of

the internal energy of species For the case of thermal equilibriumé, single temperature model), terms explicitly

referencing the vibrational energy are not included.
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