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Abstract. With the advent of computer simulations and experimental techniques such as EBSD,
digitized microstructures are becoming pervasive. Measuring grain junction angles in these
microstructures is complicated by the implicit and discrete nature of the grain boundaries. We have
developed a high-throughput, robust method to measure realistic grain junction angles in planar
discretized microstructures. Using this method, we characterize the difference between planar
sections of 2D columnar and 3D equiaxed grain structures.

Introduction

Most microstructures that are acquired or analyzed by computers are digitized: they consist of a
regular array of 2D pixels or 3D voxels, where the pixels/voxels may contain information such as
grain membership or orientation. This is true both of computer simulated microstructures (generated
by Monte Carlo Potts, cellular automaton, and some Phase Field models) and experimental images
(particularly from EBSD microscopy, but also some digital image processing packages).

In digitized microstructures, grain boundaries are implicit; they occur where unlike pixels/voxels
meet. Further, grain boundaries confirm to the pixel/voxel lattice and may be quite rough. Because
of this discretization, the tangent to the boundary at a grain junction is not uniquely defined, so
there is no definition of the “correct” junction angle. For example, in the triple junction shown in
Fig. 1(a), the triple junction angle 0 calculated by examining only first neighbor pixels is 180°,
which is far from the angle of 90° calculated by a linear fit to the two incident boundaries.

In this paper, we present a robust method to measure realistic grain junction angles in planar
discretized microstructures. This method is applicable to experimental and simulated structures. As
an example, we then apply this method to characterize the difference between planar sections of 2D
columnar and 3D equiaxed grain structures.

(a) (b)
Figure 1. Grain junctions in discretized microstructures, where pixel color correlates with grain
membership. (a) A triple junction with dihedral angle 6. Note that the measured angle varies
considerably depending on the number of boundary segments considered. (b) A quad junction
where the light grain is divided by the two darker grains. The pixel indicated with an asterisk (*) is
a boundary site with only one unlike neighbor grain type (light gray) that nonetheless represents a
grain junction.



Method

An accurate method for determining an approximate tangent to a discretized grain boundary
involves calculating some kind of curve fit to the boundary. In order to arrive at such a fit, it is first
necessary to acquire a representation of the boundary. This information is only implicitly present in
a discretized microstructure; a boundary site is a pixel that has one or more unlike neighbor pixels.
Thus, we can classify boundary sites according to the number of unlike neighbor pixels. A pixel
with one unlike neighbor defines a grain boundary, except in the special case shown in Fig. 1(b),
which represents a quad junction. Boundary sites that have three or four distinct grains among their
neighbor pixels are triple or quad junctions, respectively.

Individual grain boundaries are mapped out as follows. First, all boundary sites are identified as
one of the types defined above. For each pair of grains, the boundary is followed (i.e. by moving to
the next boundary site bounded by the appropriate grains and keeping track of the direction of
movement) until a terminal triple/quad junction is reached. This maps out a discrete grain boundary
in space; an example of such a boundary is shown in Fig. 2.
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A best linear fit is calculated for each boundary using a linear regression algorithm with one
restriction — namely that the intercept is forced to be at x=y=0 (i.e. at the triple/quad point) so that
all grain boundaries will intersect at a single point. Recall that the correlation coefficient % for a
linear fit of the form y = ax to a series of points (x;,);) is defined by

0= 2 (yi-ax) ()

where 7 is the number of points fit, and « is the slope of the line, i.e. @ = tan™ @ where 6 is the angle
of the line with respect to the x-axis; note that # < 180°. Minimization of %* with respect to a gives
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Examples of linear fits to n boundary points are shown by the dashed lines in Fig. 2.

For a boundary consisting of n discrete segments, there are n possible linear fits to the boundary.
Because the linear regression algorithm relies on minimization of %>, this parameter is not useful to
determine which of the n possible linear fits is the most accurate. Instead we calculate Pearson’s
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correlation coefficient 7 [1] as the relevant goodness-of-fit parameter. This coefficient is calculated
by dividing the covariance of two variables, cov(x,y), by the product of their standard deviations, o,
and o,. For a series of points (x;,;), r is given by

e cov(x,y) _ Eil(xi - )‘c)(yl. _ y)
R R et

where X is the mean x value and y is the mean y value. Pearson’s correlation coefficient
determines the amount of correlation between two variables. In this case, |/{ determines how
reasonable a linear fit is to a given segment. As the length increases from 1 to » for a given
boundary, |r| starts at 1.0 (since a linear fit to a segment of length 1 is, by definition, exact), and
then generally drops to low values for extremely short segments. As the boundary length increases,
|r| rapidly increases, remains high and then decreases as the boundary starts to curve. We take the
best linear fit as the largest value of || before the decrease. Figure 2 shows these trends in the four
fits pictured, and Fig. 3 gives a complete plot of |r| versus n for a representative boundary in the
microstructures studied here.

This fitting procedure is repeated for all three or four grain boundaries at a given triple or quad
point, respectively, to determine the best fit tangent lines for each boundary. Angles between these
tangents can now be easily calculated, and the procedure is repeated for all remaining triple and
quad junctions.
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Results and Discussion

As an example of the usefulness of this method, we apply it to examine the difference between
cross-sections of 3D equiaxed microstructures and true 2D columnar microstructures, both
generated by Monte Carlo Potts model grain growth [2-5]. The 3D system is a periodic
100x100x100 site cubic lattice evolved from an initially random structure under appropriate
conditions to approximate isotropic grain growth (simulation temperature 7' = 1.5, cubic lattice with
first, second and third neighbor interactions). After evolution for 100 timesteps, we calculated the
average grain radius, R. The grain junction angle calculation was then performed for a series of 2D
slices of the microstructure separated by R in order to improve statistics without introducing
artificial correlations by analyzing slices that are close to each other.

The distribution of grain junction angles for the 2D slices of the 3D microstructure is shown in
Fig. 4(a). The distribution is approximately Gaussian and peaked near 120°, as expected for a
regular distribution of triple junction angles in a plane [6]. However, the distribution also shows
sharp peaks at 18°, 45°, 63°, 90°, 117°, 135°, 153°, 162°, and 180°. These peaks are spurious and
caused by short boundary segments in the 3D cross-sections, as indicated by Fig. 4(b)-(d), which
show the angular distributions when short boundary segments are systematically removed from the



system. When we consider only boundaries that contain at least four segments, the spurious peaks
disappear (except for a small peak at 90°, which is expected in this square lattice).

Two-dimensional slices of 3D microstructures contain many small grains, thus short boundaries,
since all cross sections of a 3D equiaxed grain are generally smaller than the nominal grain size.
The number of curve fits that a boundary can be tested against is no more than the number of
boundary segments, n. The limited number of fits means that only a limited number of tangent
angles can be measured for short boundaries; those disproportionately sampled angles show up as

peaks in Fig. 4(a).
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Figure 4. A representative distribution of grain junction angles for a 3D simulated polycrystal
using the method described in the text. Distributions are given for (a) the raw microstructure
including all boundaries, and with minimum boundary lengths restricted to (b) 2, (c) 3, and (d) 4
segments. The solid dark lines show best fits to a Gaussian distribution, the mean is approximately

120° in each case.

Figure 5 shows the grain junction angle distribution for a 2D polycrystal, evolved using the same
Monte Carlo Potts model for grain growth, grown to the same average grain size R as the 3D
system, this time on a periodic 1000x1000 two-dimensional square lattice at 7= 2.0. We have
chosen this lattice size to match sample size for the 2D and 3D systems.
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Unlike the 3D angle distribution, the 2D distribution is not symmetric and is skewed towards
higher angles. The mean angle remains 120°, but the distribution is peaked at a somewhat lower



angle. The distribution is also narrower than in 3D, as expected; however, there is substantial spread
in the grain junction angles about the mean of 120°. Recall that in a 2D, perfectly isotropic,
continuum polycrystal, all triple junction angles should be 120° [7]. The fact that there is a spread
of grain junction angles suggests several possibilities. First, it is impossible to exactly map a 120°
angle onto a square lattice; grain junction configurations will encompass a variety of mappings,
each with slightly different angles. Second, the Potts model used to generate the 2D microstructure
is well known to exhibit anisotropy due to lattice effects [8], resulting in a tendency for grain
boundaries to lie along low-index directions of the square lattice. Finally, in the Potts model, there
is a finite grain junction equilibration time, in contrast to front-tracking or vertex grain growth
models. Thus, grain junctions need not instantaneously maintain their equilibrium angles, and a
spread of angle is possible at any given time.

Nevertheless, it is clear that the triple junction angle distribution can be used to differentiate
between an equiaxed, 2D microstructure that is a slice of a 3D structure and one that is truly two-
dimensional, i.e. a columnar microstructure.

Conclusions

Accurate measurement of dihedral angles between grain boundary junctions can be a valuable tool
for analysis of both simulated and experimental microstructures. These angles provide unique
signatures of the accuracy of grain growth simulations, energetic anisotropy of grain boundaries,
and microstructural dimensionality. However, these angles are difficult to determine because
tangents to discretized boundaries are poorly defined.

We have developed a method that can accurately calculate grain junction angles for discretized
experimental and simulated microstructures. We have tested the model by comparing cross-sections
of 3D microstructures with true 2D, columnar microstructures. We have found that the grain
junction angle distribution varies sufficiently to utilize it as a metric to differentiate a columnar
structure from the cross-section of an equiaxed structure by analyzing planar micrographs. Future
work will include analysis of experimental microstuctures, as well as more quantitative measures of
the differences between columnar and equiaxed samples.
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