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Abstract

Data partitioning is a common approach to processing
data sets too large to fit into the memory of the avail-
able processors. Partitioned data may, however, be in-
homogeneous in its class or feature statistics. In such
instances, a training data set associated with a particu-
lar partition will therefore likely not be representative of
the general population, with the resulting local models
generalizing poorly in some regions of feature space. In
response, we present an ensemble approach which em-
braces the model variation induced by the various inho-
mogeneous partitions, combining those models in a way
that makes use of each model’s applicability to the spe-
cific test instance in question. We use the Mixture of
Experts model as our framework for combining experts
conditioned on the input, where normalized Gaussian
density models learned at training time provide a soft
decomposition of the input space. We evaluate our tech-
nique in a statistically significant study across multi-
ple datasets, and show that our proposed local experts
method statistically significantly outperforms non-local
baselines.

1. Introduction
Data partitioning is a common approach to processing data
sets too large to fit into the memory of the available proces-
sors; “divide and conquer” is often an effective mechanism
for parallelism. One complication, however, is that the par-
titioned data may be inhomogeneous in its class or feature
statistics. This occurs, for instance, in temporal data sets
subject to concept drift, or in multi-processor simulations of
physical phenomena where the partitioning was chosen for
computational load-balancing, not statistical analysis.

When mining such datasets, a training data set associated
with a particular partition will likely not be representative of
the general population as a whole. In particular, the resulting
local models may not be applicable to, and may not general-
ize well to, other regions of feature space because they have
not been exposed to training instances from other partitions.

In response, we present an ensemble approach which em-
braces the model variation induced by the various inhomoge-
neous partitions. We build models on each partition and sub-
sequently combine their outputs to classify new data. This
combination must be done with respect to each model’s ap-
plicability to the test instances; otherwise, models may be
applied to test instances that come from distributions differ-

ent from what the model was trained on. In particular, alocal
method that combines a classifier’s probabilistic output with
some measure of that classifier’sapplicability at some test
instancex is needed.

When conditioned on the input, such an applicability mea-
sure can be thought of as alocal accuracy estimate(Woods,
Kegelmeyer, and Bowyer 1997; Cevikalp and Polikar 2008).
In contrast to such local methods, it is also possible to incor-
porate a measure of general prior confidence in a classifier,
independent of the input; this globally weighted approach
is considered as a baseline in the study done for this paper.
Fig. 1 illustrates the key differences in the resulting weights
assigned to the experts, as a function of test point, for both
global and local approaches.

One way to derive a local accuracy estimate of an expert
for a test instancex is to estimate the similarity ofx to data
on which the classifier was trained. While maintaining all
the training data used to create a model is generally not fea-
sible, estimating the distribution of training data with den-
sity models provides an efficient mechanism that can later
be evaluated to provide estimates of model applicability. In
this work, class-conditional density models, in the form of
normalized Gaussians learned on training data, are used.

Early work in this area focused primarily on regression
scenarios (Sato and Ishii 2000; Moody and Darken 1989),
while the use of normalized Gaussian networks in non-
stationary environments has also been previously investi-
gated (Ramamurti and Ghosh 1999). Our application of
these methods to cope with inhomogeneous data scenarios
is novel, as is our particular instantiation of the Mixture of
Experts model for this task.

Examples of Inhomogeneous Partitions

One spatially oriented example of inhomogeneous data par-
titions comes from the United States Department of Energy’s
Advanced Simulation and Computing (ASC) program (Kus-
nezov 2004), wherein a supercomputer simulates, for in-
stance, the structural properties of a safety container. These
simulations are very fine-grained and high-fidelity, and so re-
quire that the resulting simulation data, terabytes to petabytes
in size, be partitioned and distributed across separate disks,
to facilitate parallel computation. Since these partitions are
definedspatially, they tend to be very inhomogeneous in
their content, as each partition contains only a small part of
a complex assembly.
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Figure 1: Notional illustration of weight matrixW for Unweighted, Weighted, and Mixture of Experts (MoE) approaches to
combining expert predictions. (Compare with Fig. 3, taken from experimental results.) Darker intensity indicates heavier
weight in the final expert combination. The Local MoE method is able to weight the experts to varying degrees as a function of
the test point, while the global Weighted Average approach cannot.

A second example relates to distributed mining of very
large scale search query data, e.g., data stored by popular
search engines. Such data is not only temporally inhomoge-
neous because search trends and user behaviors can change
over time, but is also spatially inhomogeneous in that log
data are stored in a distributed fashion. These concepts also
apply more generally to parallel distributed database systems
which often contain inhomogeneous data partitions.

Contribution and Novelty
The contributions of this paper are two-fold. First, we moti-
vate, propose, and formulate a Mixture of Experts approach
for combining predictions from multiple models to cope with
inhomogeneous partitions; the use of local experts in such
scenarios is novel. Second, we show in a statistically signif-
icant empirical study that the proposed Mixture of Experts
method performs better on inhomogeneous partitions than
several baseline alternative algorithms, and performs as well
as a single model trained on all the data.

2. Mixture of Experts Approach
The Mixture of Experts (MoE) model (Jacobs et al. 1991;
Jordan and Jacobs 1994; Jacobs 1995) is fundamentally a
conditional mixture model in which the mixing coefficients,
like the expert response, are functions of the input. Essen-
tially, it is a mechanism for combining expert predictions,
represented as component densities in the MoE model.

Background
Use of the MoE model is motivated in data mining scenarios
involving inhomogeneous partitions, because experts trained
on individual partitions will only be applicable (and appro-
priate for evaluation) on a subset of test instances whose dis-
tribution is unknown, i.e. that subset of instances which most
closely resembles the instances on which the particular local
expert was trained.

While some models do allow for combining multiple ex-
perts, and some even allow the specification ofa priori belief
in a particular expert, suchnon-localor global approaches
cannot vary the weights assigned to a given classifier as a
function of the input. Hence, with global weights, there is no
way to disregard a particular model response for an input on
which it would tend to misclassify (Fig. 1).

The local weights in the Mixture of Experts model are im-
plemented by the mixing coefficients, which effect a decom-
position of input space. In its most rigorous form, ahard de-
compositioncan be extracted, with the resultinggating net-
work identifying one single expert from some ensemble of

such experts whose sole prediction is used as the final pre-
diction at a particular test pointx. Generalizing, the model
also permits the use of asoft decomposition, in which the
outputs frommultiple experts are considered atx. Such a
mixture can be thought of as a weighted mean of the expert
responses conditioned on the input, as visualized in Fig. 1c.
Note that the MoE model generalizes to an arbitrary number
of classes.

The MoE model itself does not prescribe how to determine
the mixing coefficients. We adopt prior work in this area
(Ramamurti and Ghosh 1999; Procopio et al. 2009) that uses
normalized Gaussians to determine a soft decomposition of
input space. This specific approach is not novel; in particu-
lar, Sato and Ishii in (Sato and Ishii 2000) use the Normalized
Gaussian Network (Moody and Darken 1989), orNGnet, as
the basis for their proposed on-line EM algorithm, used in
turn to fit model parameters. Our approach for determin-
ing the mixing coefficients is similar, although our end task
is classification, not regression, and the data scenarios are
considerably different. Note that we do not explicitly fit the
model using EM as outlined in (Jordan and Jacobs 1994);
rather, we directly derive mixing coefficients from learned
density models.

MoE Model Specification
The Mixture of Experts model on which our approach is
based is a type ofconditional mixture modelin which the
mixing coefficients are functions of the input:

p(t|x) =
K

∑

k=1

πk(x)pk(t|x) . (1)

Here, the individual component densitiespk(t|x) are theex-
perts, the mixing coefficientsπk(x) are known asgating
functions, andt is the resulting vector of probability mass
assigned to the class targets (Bishop 2006).

Mixing Coefficients: Density Models The mixing coeffi-
cients in this technique are determined by class-conditional
Gaussian density models fit to training data when training the
expert. When training expertk, a single multivariate Gaus-
sian modelGk,c is learned for each classc of training data
from the current partition. Because only a single Gaussian is
used to estimate this density, the density model is determined
directly from the sample mean and covariance of that data;
use of the EM algorithm is not required. This is speedy, and
as we show in this paper, effective. However, it also possi-
bly underfits complicated cluster structures; see the “Future
Work” section for our thoughts on relaxing this “single Gaus-
sian per class” assumption.



During evaluation, for each test pointx, the mixing coef-
ficients for modelk are determined from the response of the
density modelGk,c atx:
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where x is a d-dimensional feature vector,µk,c is a d-
dimensional mean vector,Σ′ is a scaledd × d covariance
matrix, and|Σ′| denotes the determinant ofΣ′. µk,c and
Σk,c are the sample mean and covariance, respectively, of
the training data used to fitGk,c. The remaining details of
the model are found in (Procopio et al. 2009).

MoE Model Implementation
The proposed Mixture of Experts approach can be efficiently
implemented as a wrapper around both the training and eval-
uation portions of some existing classifier system. All thatis
required is that base learners yield predictions as a PDF over
the C possible classes. Such probabilistic output is natu-
rally obtained for many classifiers (e.g., Naı̈ve Bayes), while
other classifiers, such as the Support Vector Machine (Vap-
nik 1995), require special scaling.

3. Experimental Approach
The primary research hypothesis of this study is that the local
Mixture of Experts approach to combining expert output will
outperform non-local techniques such as the Unweighted and
Weighted Average baselines, while approaching the perfor-
mance of that of single-model and ensemble-based “Sages”
trained on all of the data.

We conduct experiments under two scenarios. The first
scenario will examineheterogeneous partitions, using the
partitioning scheme described below to create partitions with
differing data distributions. In contrast, the second experi-
mental scenario will examinehomogeneous partitions, cre-
ated by randomly sampling from the general population, i.e.,
all of the data. Though we are primarily interested in mea-
suring the improved accuracy of our methods when applied
to heterogeneous data, we examine homogeneous data as
well, to assess whether the proposed local MoE method does
worse, compared to our baselines, in that context.

Partitioning for Simulated Heterogeneity
We wish to evaluate our method with data that will both per-
mit determination of statistical significance and also allow
replication by others. It would be straightforward to generate
simulated data, but it is often difficult to generalize from per-
formance on simulated data to real world data. More attrac-
tive would be a method for stratifying real data that would
yield heterogeneous partitions of data.

Principled partitioning methods, also referred to as bin-
ning or discretization methods, are known and are described
in the literature (Han 2005).Equal-width(distance-based)
partitioning divides a feature intoN intervals of equal size;
the resulting partitions will contain varying numbers of data
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Figure 2: Examples of feature space partitioning. Split lo-
cations are determined by dividing the range of the specified
attribute into even-sized partitions, without regard to class
labels or the distribution of the data.

instances (samples). In contrast,equal-depth(frequency-
based) partitioning divides a feature range intoN intervals,
which may be of varying size. The resulting partitions will
each contain approximately the same number of samples.

In this research, we used an equal-width partitioning
scheme, where we choose a subset ofF = 3 features in
each data set, splitting each feature once intoN = 2 equal-
sized partitions. This generates23 = 8 partitions which are
likely heterogeneous in feature value distribution. To avoid
bias, we choose the set of partition featuresF in an exhaus-
tive, one-time search procedure that minimizes the variance
of the number of examples falling in each partition. A future
study will also investigate performance using the equal-depth
partitioning approach.

Effective Homogeneity
To effectively assess performance on inhomogeneously par-
titioned data, we first need to be able to quantify the degree of
inhomogeneity. We propose a new approach to evaluate the
effective homogeneityof the partitions, which is not explic-
itly tied to the actual data, but rather to the performance of
local experts across all partitions. In particular, our method
measures homogeneity indirectly by considering the perfor-
mance degradation of non-native local experts, i.e., experts
trained on different partitions, versus the native expert.The
essence of the idea is that the greater the difference in the dis-
tribution of data across partitions, the larger the performance
differential will be for a local versus non-local expert applied
to a given partition.

The homogeneityH is determined by linear interpolation
onto the interval[0, 1] by bounding by the worst-case score
(random performance,R) and the best-case native score,ni).
Here, “native” refers to an expert associated with the same
data partition on which it was trained. ForK experts,

H(o,n, R, K) =
1

K

K
∑

k=1

(ok − R)

(nk − R)
, (3)

wheren is the vector of native scores for the partitions;o is
the vector containing the mean of the scores at each partition
of all non-native experts evaluated on the data from that par-
tition; andR as the worst-case (random) performance of the
the classifier (R = 1/C whereC is the number of classes).

The proposed homogeneity measure is comparable in a
relative sense, and also has meaning in an absolute sense.



Further, our approach generalizes to arbitrary numbers of
classes and partitions. Homogeneity scores are reported as
continuous numeric values between 0 and 1; 0 is maximally
heterogeneous, and 1 is fully homogeneous. Table 1 includes
the effective homogeneity scores for our datasets after parti-
tioning by the method described in the previous section.

Evaluation Method
For both experimental scenarios, 8 disjoint partitions in fea-
ture space are created, according to the equal-width parti-
tioning scheme presented earlier in Sec. 3. A single expert
is trained on each partition, resulting in 8 total experts. (An
expert comprises both a base classifier model as well as a set
of class-conditional density models that determine classifier
applicability; see Eq. 1).

The classifier portion of each expert is evaluated indepen-
dently on holdout data. The response from each expert is
then combined by one of three methods: Unweighted Av-
erage, Weighted Average, or Local Mixture of Experts (see
Fig. 1). The class receiving the most weight in the combined
output is the final expert prediction. For each test point in the
holdout data, this final prediction is compared with ground
truth; over the entire test set, classifier accuracy (proportion
of correct predictions) is reported.

The base classifier throughout this study is fixed as the
Support Vector Machine (SVM) (Vapnik 1995) using the
Radial Basis Function (RBF) kernel. Associated learn-
ing parameters for RBF-SVM (cost parameterc and RBF
gammag) are optimized during training using 10-fold cross-
validation. LIBSVM v2.89 (Chang and Lin 2001) is used as
the SVM implementation.

We conduct an empirical evaluation over five datasets
from the UCI data repository, comparing the performance of
the proposed approach versus four baseline algorithms; the
datasets are summarized in Table 1. Stratified5 × 2 cross-
validation is used, in which a model is trained on one split
of the data and tested on the second split; thus there are 10
randomized experiments in total.

Statistical Evaluation
The mean and standard deviation for the resulting set of 10
scores are reported in Table 2. The individual scores from
the cross validation folds form the statistical basis for com-
paring classifiers using the Wilcoxon Signed-Ranks Test, a
non-parametric analog to the pairedt-test. All statistical tests
are conducted at the 95% confidence level (α = 0.05).

Algorithms
We compare the proposed local Mixture of Experts method’s
performance to that of four baseline algorithms: the Un-
weighted and Weighted Average methods discussed below,
the trivial classifier that predicts the majority class, andtwo
approaches referred to as the “Sages.”

The single-modelSage is trained on all of the data from
all of the partitions, and is therefore not disadvantaged by
seeing only local partitions of data. Themulti-modelSage
also sees all the data, but uses Bootstrap Aggregating, or
Bagging (Breiman 1996) to generate and vote over multiple
models. For the Bagging Sage, we usedb = 8 bags (boot-
strap samples), in order to match the 8 experts created in the

Table 1: UCI Datasets Used in the Evaluation

Dataset Instances Features Classes Homogeneity

adult 48842 14 2 0.83
krk 28056 6 18 0.23
letter 20000 16 26 0.38
nursery 12960 8 5 0.54
pendigits 10992 16 10 0.44

MoE approach (one expert for each partition; see Sec. 3.).
Each bootstrap sample contained the same number of data
instances as the training data set.

Datasets
The five datasets used in the evaluation comprise both bi-
nary and multiclass scenarios, and are associated with vary-
ing number of features, classes, and degree of class imbal-
ance (skew). Datasets with a larger number of instances
were preferred (N ≥ 10000) in order to be more representa-
tive of larger-scale data mining scenarios. A summary of the
datasets used in the evaluation is given above in Table 1.

4. Experimental Results and Discussion
Heterogeneous Partitions Scenario
The middle section of Table 2 presents the experimental re-
sults from the heterogeneous partitions scenario. In this sce-
nario, models are trained on disjoint subsets of feature data,
which were sampled in such a way as to have different dis-
tributions from the target population.

Performance of MoE Method When applied to heteroge-
neous partitions, the MoE method statistically significantly
outperformed the non-local methods. The performance of
the MoE approach also statistically significantly exceeded
that of the two Sages on two datasets (krk andnursery). This
is an important result; while all approaches saw all the same
data, the MoE ensemble of local classifiers, constrained to
training on disjoint, inhomogeneous subsets of data, outper-
formed both a single model and a bagged ensemble of mod-
els, both of which were able to see all the data at once. More-
over, on the remaining datasets, MoE approached the perfor-
mance of the top-performing model to within 1.5%.

The power of the MoE method is illustrated by the weight
matrix in Fig. 3b, taken directly from the experimental re-
sults on theadultdataset; this is a real data version of the no-
tional example in Fig. 1c. Crucially, the MoE method is able
to completely ignore the predictions of inappropriate mod-
els, i.e., models trained on partitions in which data do not
look like the test point under consideration.

As Fig. 3b shows, most of the weight for a given test point
is spread over one or two most applicable models. In com-
paring this matrix versus the Weighted Average weight ma-
trix approach shown in Fig. 3a, we conclude that the perfor-
mance benefit gained from the MoE approach is likely due
to (a) exclusion of inapplicable models’ predictions in the
final vote by assigning low weight, and (b) appropriate con-
sideration of multiple applicable models, beyond just the one
trained on the partition that the current test point came from.



Table 2: Experimental results (classification accuracy, %)for baselines (left section), heterogeneous partitions scenario (middle
section), and homogeneous partitions scenario (right section). Boldface indicates the highest accuracy within each section;
asterisk (*) indicates highest accuracy overall.

BASELINES HETEROGENEOUS PARTITIONS HOMOGENEOUS PARTITIO NS

Predict All Single Bagging Unweighted Weighted Local Unweighted Weighted Local

DATASET Major. Class Model Sage Sage Average Average MoE Average Average MoE

adult 76.07±.07 84.53±.34 *84.64±0.25 76.67± .28 76.59± .27 84.54±.20 84.10±.23 84.10±.23 84.14±.23

krk 16.23±.27 56.45±.92 56.61±0.44 35.27± .79 33.96± .79 *58.49±.23 48.05±.44 48.03±.42 48.22±.33

letter 4.22±.08 94.18±.87 *94.42±0.68 87.10±1.08 87.03± .97 92.95±.79 90.02±.93 90.02±.83 91.16±.89

nursery 33.40±.45 98.89±.27 98.78±0.12 94.50± .45 94.25± .59 *99.34±.17 96.89±.24 96.88±.24 97.01±.21

pendigits 10.74±.13 *99.53±.06 99.50±0.10 86.68±2.17 86.72±2.61 99.20±.09 99.09±.15 99.09±.15 99.28±.07

Performance of Global Approaches Another important
result was that for this heterogeneous partitions scenario,
the Unweighted and Weighted Average global approaches—
unable to derive and act on local applicability estimates—
performed statistically significantly worse than the Sage and
MoE methods. We conclude that the performance differen-
tial is due to MoE’s locally aware combination scheme (i.e.,
the expert mixture). In particular, Gaussian density models
are effective for determining correct mixing coefficients and
informing where models are applicable.

Improved Performance versus Bagging Sage Although
it is well known that use of ensemble methods (multiple clas-
sifiers) can yield improved classification performance, many
of these results center around Bagging (Bootstrap Aggre-
gating (Breiman 1996)). Bagging differs sharply from this
heterogeneous partitions scenario. With bagging, multiple
models are learned on random subsets ofoverlappingdata
sampled from the general population; the subsets are homo-
geneous, and the outputs of the ensemble are combined by
simple voting.

In contrast, here, the MoE method must cope with non-
overlapping, disjoint subsets, none of which are homoge-
neous in nature, and none of which share the same distri-
bution as the general population. A future study motivated
by this finding would be to compare MoE to a traditional en-
semble method, such as Bagging, where the ensemble size
is unconstrained. The idea would be to better understand
the accuracy advantages accrued from MoE’s local analysis
versus the general accuracy improvements derived from en-
semble methods.

Homogeneous Partitions Scenario

The right section of Table 2 presents the experimental results
from the homogeneous partitions scenario. In this scenario,
models are trained on equal-sized, homogeneous subsets of
data, randomly sampled from the general population. There
is no overlap in the data, however: each data instance in the
general population is assigned to only one specific partition.

Performance of MoE Method These results paint a clear
picture. First, as with the heterogeneous partitions sce-
nario, the local MoE method statistically significantly out-
performed the two global approaches (Weighted and Un-
weighted Average); this holds true across all datasets. How-

ever, while statistically significant, the advantage of theMoE
approach over the global approaches was much less pro-
nounced here than for heterogeneous partitions. The reason-
ing is straightforward; the density models are much more
general and yield only minimal variation in the resulting
weights (mixing coefficients) regardless of the input.

This follows, since the density models trained on a random
sample of the general population will not have widely vary-
ing response for points in that population. Moreover, this
finding is supported by Fig. 3d, which does show weights
varying locally as expected, but only minimally so. Yet,
the weights were still meaningful enough to outperform the
Weighted and Unweighted Average approaches. In compar-
ing Figs. 3c and 3d, it is clear that the any performance dif-
ference will be small since the weights approach those used
for the Unweighted Average (i.e., uniform weighting).

Overall, the MoE method performed worse than the two
Sages in the homogeneous partitions scenario, although per-
formance was generally close.

Performance of Global Approaches There was no sta-
tistically significant difference in the Unweighted versus
Weighted Averages approaches in the homogeneous parti-
tions scenario. This is reasonable, since the weights are
derived from classifier confidence, which is expected to be
more or less equal across experts that were trained on par-
titions of similar data (the scenario considered here). This
finding is illustrated in Fig. 3c; here, there is minimal if any
variation in the global weights assigned to the eight experts.
As a result, with uniform weights, output simply degenerates
to that of the Unweighted Average.

Summary
These results provide evidence for the efficacy of the Mix-
ture of Experts method under all scenarios involving disjoint
data partitions. If the partitions are heterogeneous, the MoE
approach using specialized local experts can exploit this to
meet or even exceed the would-be performance of a sin-
gle model having the advantage of being trained on all of
the data. If the partitions are homogeneous, the local MoE
method still performs better than other non-local methods.
Regardless of the degree of partition homogeneity, if data are
only available in disjoint partitions, the proposed local MoE
method generally improves on naive global combiners, and
in all cases, does no harm.
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Figure 3: Comparison of weight matrices for 8 experts over a random 10 instances in theAdult dataset, Weighted Average and
Local MoE methods. Heterogeneous scenarios are shown at left; homogeneous at right. Lighter intensity indicates low weight
for this model at this test point; darker intensity indicates higher weight.

5. Conclusions
In this paper, we adopted a local Mixture of Experts (MoE)
method for application to disjoint inhomogeneous data par-
titions, that is, subsets of data whose distribution differs
among the subsets and also from the general population. The
central challenge under these circumstances is that models
trained on one partition may not be applicable to (and may
perform poorly on) test instances from other regions in fea-
ture space.

The statistical evaluation yielded two principal results.
First, overall, the local MoE method performed on par with
single-model and multiple-model “Sages” learned on all of
the data; the class-conditional single Gaussian density model
approach for estimating applicability is effective.

The second key result is that for both heterogeneous parti-
tions and homogeneous partitions scenarios, for all datasets,
the local MoE method outperformed the global Unweighted
and Weighted Average methods. In such conditions, the ex-
perimental results never showed a penalty for combining ex-
perts according to their estimated local accuracy. If data
are only available in disjoint partitions, then regardlessof
the degree of partition homogeneity, the proposed local MoE
method generally helps versus naive global combiners, and
in any case, never does harm.

Future Work
The first area for future work is an enhancement to this tech-
nique resulting in more elaborate density models. Instead of
a single class-conditional Gaussian model, a Gaussian Mix-
ture Model (GMM), separate from the MoE mixture model
that combines the experts, could be used to estimate the dis-
tribution of the training data with additional fidelity.

Second, this study adopted anequal-width (distance-
based) partitioning scheme described in (Han 2005). Han
also presents an alternative frequency-based approach known
as equal-depthpartitioning. Evaluating the local MoE
method’s performance on inhomogeneous partitions gener-
ated by this alternative partitioning scheme will be useful.

Finally, we found that on two datasets in this study, the
local MoE method performed statistically significantly better
than the multiple-model Sage trained using Bagging. A more
in-depth comparison of the MoE “disjoint subsets” ensemble
technique versus Bagging’s “overlapping subsets” ensemble
approach will be a useful future study.
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