SAND2010- 0441C

See Applications Run and Throughput Jump: The Case for
Redundant Computing in HPC

Rolf Riesen
Sandia National Laboratories
rol f @andi a. gov

Kurt Ferreira
Sandia National Laboratories
kbf erre@andi a. gov

Jon Stearley
Sandia National Laboratories
j rstear @andi a. gov

Abstract

that this approach, independent of the specific checkpoint
method, does not scale beyond a few tens of thousands of
For future parallel computing systems with one hundredodes [9, 2].

thousand nodes or more we propose redundant comput-This leads to a problem for users of extreme-scale sys-
ing to reduce the number of application interrupts. Théems: Their applications will spend most of their exe-
frequency of faults in exascale systems will be so higigution time storing checkpoints, performing restarts, and
that traditional checkpoint/restart methods will breakecomputing work that has been lost. For large-scale sci-
down. Applications will experience interruptions so of-entific applications the additional parallelism availaiole

ten that they will spend more time restarting and recosthese systems becomes a hindrance instead of a perfor-
ering lost work, than computing the solution. We showmance boost. This is an inefficient use of resources and
that redundant computation at large scale can be cost gfray forces applications to use fewer nodes than are avail-
fective and allows applications to complete their work inaple, thereby getting less work done, or taking longer to
significantly less wall-clock time. On truly large systemsyeach a solution.

redundant computing can increase system throughput byThe number of interrupts an application experiences is
an order of magnitude. dependent on the Mean Time Between Failures (MTBF).
An MTBF of four or five years for each node in a sys-
tem seems to be the norm [12]. Applications are vulner-
able not only to hardware failures, but also to software

h ber of errors and environmental causes such as power outages
e average number of processor cores per system on gy gy tdowns due to things as mundane as the failure of

topS00 list is approaching ten thousand with the largesf ;qjing fan or a clogged filter. Any such failure leads to
systems exceeding one hundred thousand cores [8]. Even application interrupt and a subsequent restart.
though more and more of these cores are gathered on Sin'Given a node MTBMogeand the assumption that all

gle integrated circuits, the overall component count Olflodes have the same MTBF, it is easy to compute the

these enormous systems keeps increasing. With moferpr Osysfor an entire system consistingmhodes [5]:
cores, whether on a single chip or not, more memory and

more supporting components are required. With an in-
creased component count, the number of faults a system
experiences increases as well.

Most large-scale parallel applications rely on check-
point/restart techniques to recover from faults. Eachtfaul with a node MTBF of five years and a node count of
in a component that the application is currently usingpne hundred thousand, the system MTBF is just over 25
causes an application interrupt and the application abortginutes. An application spanning the entire system can
Later, the application has to restart and resume from th&pect to restart two or more times per hour. This out-
last successful checkpoint. Several studies have showdbk becomes even worse with larger systems and when

1 Introduction

i@node
n n

1)

1
6]

*Sandia is a multiprogram laboratory operated by Sandia CGarpo
tion, a Lockheed Martin Company, for the United States Depamnt of
Energy under contract DE-AC04-94AL85000.

the somewhat optimistic node MTBF of five years in our
example is adjusted down. In addition, The time to write
a checkpoint and to restart increases with the application

size. Values of tens of minutes are not uncommon at them. If we consider each of the replicated bundles of
peta or exascale. Therefore, such applications spenchades to be a bin with a capacity equal to the number
significant portion of their time not doing the computa-of replicas, then asking how many faults this new system
tions they were designed for. can handle without interruption is equivalent to asking
That checkpoint/restart is no longer a solution for giwhat is the expected number of throws of random balls
gantic systems has been recognized [2, 10] and sevetditil one bin has been filled to capacity. In the case of
research groups are working on the problem of reducinigvo replica per process, the birthday problem tells us that
the frequency or overhead of checkpointing: [4, 9]. Outhe expected number of throws@/n) (wheren is the
suggestion for making these huge systems practical is tmmber bins or unique processes). More precisely, the
use redundant computing. This approach has a long higverage number of faults our redundant system of size
tory in mission-critical systems and the time has come can absorb, assuming double redundancy, is [6, 3]:
to apply it to large-scale High-Performance Computing N |
(HPC) systems. Fi=1+Y n @)
A side effect of redundant computing is that result ver- & (N—K)!-nk
ification can be done at no additional cost. The number Figure 1 shows a plot of Equation 2 as a function of the

of cores per socket keeps increasing and main memogymber of nodes. From this figure we see the well known
capacity is also growing. In some main memories, errqiggsy|t for the birthday problem far= 365 (around 24.6
correcting codes are employed. However, CPU registerseople). We also see that adding redundant nodes to our
caches, and the buses between these building blocks &fgtem dramatically increases its ability to absorb faults
largely unprotected and may introduce silent errors. Rgnereby increasing the effective MTBF of the application.
dundant computing can detect these errors and abort gg, example, fon = 200,000 nodes, on average, we can
application when an error occurs. With triple redundancygystain 561 faults before our application will be inter-
error correction becomes an option. rupted. Therefore, the MTBF will increase by a factor of
In Section 2 we propose how redundant computing cage1 in the redundant case over the non-redundant case.
be employed in HPC systems and why it reduces the \whijle the analysis above outlines the benefits of redun-
number of interrupts an application experiences as thgant computation, it does not indicate the performance
node count goes up. We analyze the payoff in Section &erhead of such a mechanism. Performance overhead
by comparing the modeled wall-clock time of an appli-includes keeping the replica state consistent as the ap-
cation with and without redundant nodes. We draw ouplication progresses. To evaluate the overhead of the
conclusions in Section 4. replica consistency we built a prototype library that han-
dles the replica coordination protocol. This library is
. implemented at the MPI profiling layer and intercepts
2 Redundant Computing all MPI calls from the application. The simple proto-
col used by this library converts all messages between a
Redundant computation increases an application’s reource and a destination to message exchanges between:
silience to faults by increasing the time between applicat) the source and destination, and 2) between the redun-
tion interruptions; i.e., it increases the application Meadant partners of the source and destination, assuming they
Time Between Interrupts (MTBIPapp In redundant exist.
computation each process is replicated a number of timesSince the consistency protocol doubles message traf-
throughout the system. Individual components and nodéig in the system, point-to-point micro benchmark per-
will fail, but an application will continue without inter- formance suffers. For higher level benchmarks and
ruption, provided that, in a bundle of replicated processeapplications the impact is, in general, minimal. Fig-
at least one of them is still functioning. ure 2 shows the overhead of the consistency protocol for
The potential benefits of redundant computation can h@PCCG. The HPCCG mini-application, part of the Man-
illustrated using a generalization of a common problem itevo project [11], is a simple sparse conjugate gradient
probability theory called the birthday problem [7]. Thesolver designed to capture an important component of
birthday problem is concerned with the expected numbe3andia National Laboratories production workload. The
of people needed to find two with the same month and dayajority of its runtime is spent performing sparse matrix-
of birth. The birthday problem result is used in the analvector multiplies, where the sparse matrix is encoded in
ysis of many problems, including collisions and chainingzcompressed row storage format. The interprocessor com-
in hashes [6]. munication consists of nearest neighbor boundary infor-
We generalize the results of this problem to describmation, in addition to globalPl Al reduce operations
the impact of redundant computing on application faultequired for the scalar computations in the CG algorithm.
tolerance and the increase in MTBF of our redundant sy#ss the figure shows, the performance impact of the pro-

365
600 | !

500 1
400 1
300 H
200 1

100 f

Node Failures until Application Interrupt

0 0 D Y9 Y % Y9 e %9, %, %, %, % %
(9]
Number of nodes

Figure 1: Expected number of node failures before an aggiténterrupt in a system with redundant nodes. Numbers
are calculated using the birthday problem Equation 2.

tocol on HPCCG when using redundant nodes is minisigned work.d is the time it takes to write a checkpoint,
mal. For applications where the additional bandwidth isndR s the time to restart after an application interrupt.
an issue, alternative consistency protocols are being in-

vestigated.

R +0 T
Tw(T) = Ogpp- €%2rP (e% = 1) = for d<<Ts

3 Discussion ®3)
We can use Equation 3 to calculate how long an ap-

Initial reactions to applying redundancy to HPC systemglication will need to execute to solve a problem. We
often concern cost. This includes the cost of acquiringan perform this calculation for an increasing number of
twice as many compute nodes and supplying twice agdes and then compare it to the case where we use re-
much power and cooling to the system. Another cost alundant nodes. Figure 3 shows the result of one such
concern is the software performance overhead associateglculation. For this figure we assumed a perfectly weak-
with enabling redundant computing. Finally, but not leasscaling application that requirdg = 168 hours to com-
is the notion that purchasing the largest and most expeplete its work. We chose a fixed checkpoint tidhe- 5
sive computer in the world should not carry the stigmaninutes and fixed the time to restartRi= 10 minutes.
of getting at most half of the peak performance of such a For each node size we calculated the optimal check-
system. point interval T according to Equation 38 in [1]. The

Acquisition and power costs must be weighed againstheckpoint intervat is dependent on the MTBDapp of
the time for an application to reach a solution. If, due tdhe application. For a given number of nodes we used
application interrupts, a solution takes 200 hours to conf=quation 1 to calculate the system MTBF based on a node
pute, but the same solution can be attained in 25 hours B§TBF of five years. We us@&y(1,n) to mean the wall-
using redundant computing, then the extra cost becomekck time of an application when run ennodes. The
negligible. The throughput of this example improves bydark green line in Figure 3 shows that the amount of time
a factor of eight, dwarfing the doubling in cost. required to complete the application increases exponen-

John Daly has proposed Equation 3 to calculate the effally with the number of nodes used.
ecution time of an application [1]. Wherk (1) is the We then repeated these calculations for the case with
total wall-clock time when using the checkpoint intervalredundant nodes. For a given number of nodes we used
1. © is the MTBF for the application an@; is the solve the same checkpoint intervalas for the non-redundant
time; i.e, the amount of time required to complete the aszase. That is not entirely correct, since Daly’s calcula-

35.0 s | | H 100 %
30.0 s §= -~ ¢ $ $ ‘
- 80%
25.0 s 4 0
(6] =
E 05| - 60% &
c oS Redundant —e— o
S Native 8
3 Redundant % = c
() il
§ 150 0% 8
i =
100 s 1 e
- 20%
5.0 s |
P
0.0 s 0%
4

Nodes

Figure 2: Performance and overhead of HPCCG applicatior.ntimber of nodes on theaxis is from the applica-
tions’ perspective. Twice that many nodes are used to peduliiredundancy.

1kh - 100 %
= 900 h 2
= =
E -80% %
= 800 h | E
[} Y—
E 700 h g
5 -60% &
o 600 h { T,(t,n) Noredundant nodes —a— | c
% T,(T,n) With redundant nodes g
T 500 h | 100 * T, (t,n) / T\ (T,n) , 5
= 40% 2
§ 400 h 0
:
S 300 h 0% £
< s
< 200 h " ~ e
oo h < < < & < <7 & 0%
Y %, %, o % o %, 0 %, 0%0 OQOO 0%0 ‘%
0 0 o %Y,

Number of nodes

Figure 3: Comparing application wall-clock time with andtlwdgut redundant nodes. When redundant computing
consumes less than 50% of the time of a non-redundant rumhieeextra cost of redundant computing may pay off.

tion of the optimal checkpoint interval may not be suit-the number of nodes and the resources, such as power
able for a redundant system. Since redundancy improvasd cooling, that go along with it. We have shown in this
the MTBF of a system, our should probably be higher. section that this cost is justified by the faster execution of
Using the same as for the non-redundant case gives uapplications, resulting in higher throughput of the system
a worst case scenario because we may be checkpointing\ote, Redundant computing is not a substitute for
too frequently. checkpoint/restart. It reduces the number of interrup-
We useTy,(T,n) to mean the wall-clock time of an ap- tions an application experiences and therefore reduces the
plication when run on 2n nodes (nodes plusi redun- overhead of checkpointing. Redundant computation also
dant nodes). To compufE(T,n) we need the MTBF enables the detection of silent errors. These are errors
of an application running on a system with redundanghat occur in registers, caches, and data paths that are not
nodes. The birthday problem, Equation 2, gives us the r@rotected by error detection or correction codes. These
tio of faults to interrupts in a system withnodes. When errors are often silent because they produce a corrupted
we multiply that ratio with the system MTBF of a non- result but do not further disrupt the computation. Most
redundant system (Equation 1), we can calculate the agpplications assume that calculations done by the hard-
plication MTBF: ware are correct and do not or cannot check for invalid
results. Double redundancy lets us flag silent errors, and
triple redundancy would let us correct silent errors.
_ Onode

n 1
Oapp: eSyS'F(n)— n <1+k21(n—?()lnk> (4)
4 Conclusions

Using the values from Equation 4 in Equation 3 lets us

calculate the wall-clock execution time for an application hi ke th ition th dund
on a system with redundant nodes. The light green Iin,lé1t IS paper we take the position that redundant comput-

in Figure 3 showsTy:(T,n) as a function of the number ing is a viable solution to the problem of the ever increas-
Wi)

of nodes. Running on larger number of nodes still introi—ng number of application interruptions as massively par-
duces overhead due to the increased number of faults’

Emel systems get larger. The problem, applications spend-
the system. However, it is substantially less than the caé%g moreftlme_ wntmgdche_ckpomts and_ restarting rlathe(;
without redundant computation. The brown curve in FigI an performing productive computations, is real an

ure 3 is the percentage of the wall-clock time with redun[‘e‘:tdS to be addressed. At first glance, redundant com-
dant computation of the wall-clock time without redun-PUting seems to waste half of the compute resources in a

. 100 Twr(1,0) o System. We have shown that redundant computing actu-
dancy: Tw(Tn) ° When that curve drops below 50%, ally reduces the time to solution by such a large factor that

using twice as many nodes for redundant computing Mgy ,sing it is actually a bigger loss in system throughput.

pay off. In Figure 3 that happens for 100,000 nodes anghare is a comparatively small overhead to pay to en-

more. i able redundancy in software at the user level, and it does
Figure 3 shows that the benefit of redundant computgio; completely replace checkpoint/restart since it only re

tion does not come into play until we reach a large nuMg,ces the number of application interrupts; not eliminat-
ber of nodes. The exact number depends on the noge, iham completely.

MTBF Gnoge the time to write a checkpoird, and the —“c 4,6 work we are considering improving the con-

tlmg to restarR. We used fixed v alues fpr the Iatter tWo’sistency protocol used by our library and reduce protocol
but in a real system .they are likely to increase with th%. erhead. Although the overhead seems to be acceptable
number of nodes being used. qu the redundant casefgi applications at the few-thousand-node scale, it may
seems that we should be able to increase the checkpo M ome worse at much laraer scales. We are also look-
interval T and further improve those results. Note tha 9 X

. . Ing at applying this idea to non-MPI applications, espe-
itseF?VSrrg%ad g;tgi(;e;?yerlﬂigi’ze%rﬁ;%?g; dn?]tolgglsmfi lally in a multicore world. Finally, we are looking at
~19 ' Y " éé)proaches where the data is replicated but the redundant
which we do not have performance measurements, it |

. X computation is only carried out when necessary.
likely to have some impact. Nevertheless, current mea- P y y

surements indicate that it will be minimal when compared
to the benefits of redundant computing.

In Section 2 we mentioned that there is significanfR€ferences
overhead for point-to-point micro benchmarks, and have
shown that the HPCCG application kernel suffers very[1] J. T. Daly, A higher order estimate of the optimum
little from the redundant computing overhead. Therefore checkpoint interval for restart dumps, Future Gener.
the main cost of redundant computing is the doubling in ~ Comput. Syst22 (2006), no. 3, 303-312.

2]

[4]

[5]

[6]

[7]

E.N. Elnozahy and J.S. Plank;heckpointing for
peta-scale systems: a look into the future of prac-
tical rollback-recovery, Dependable and Secure
Computing, IEEE Transactions dn(2004), no. 2,
97-108.

(8]

[9]

Philippe Flajolet, Peter J. Grabner, Peter Kirschen-
hofer, and Helmut Prodinge®n Ramanujan’'s Q-
function, Journal of Computational and Applied
Mathematic$8 (1992), 103-116.

Hans Meuer, Erich Strohmaier, Horst Simon, and
Jack Dongarralop 500 supercomputer sites, ht t p:
/I www. t 0p500. or g/ , November 2009.

Ron A. Oldfield, Sarala Arunagiri, Patricia J.
Teller, Seetharami Seelam, Maria Ruiz Varela, Rolf
Riesen, and Philip C. RotiModeling the impact of
checkpoints on next-generation systems, 24th IEEE
Conference on Mass Storage Systems and Tech-
nologies, September 2007, pp. 30—46.

Rinku Gupta, Pete Beckman, Byung-Hoon Park[10] A. J. Oliner, R. K. Sahoo, J. E. Moreira, and

Ewing Lusk, Paul Hargrove, Al Geist, Dha-
baleswar Panda, Andrew Lumsdaine, and Jack Don-
garra,Cifts. A coordinated infrastructure for fault-
tolerant systems, ICPP '09: Proceedings of the
2009 International Conference on Parallel Process-
ing (Washington, DC, USA), IEEE Computer Soci-
ety, 2009, pp. 237245, [11

Dimitri B. Kececioglu, Reliability engineering
handbook, vol. 2, DEStech Publications, Inc, May
2002.

Donald E. Knuth,The art of computer program-
ming, volume 3: (2nd ed.) sorting and search-
ing, Addison Wesley Longman Publishing Co., Inc.,
Redwood City, CA, USA, 1998.

Frank H. Mathis,A generalized birthday problem,
SIAM Review33(1991), no. 2, 265-270. MR 1 108
591

[12]

M. Gupta, Performance implications of periodic
checkpointing on large-scale cluster systems, Pro-
ceedings of the 19th IEEE International Parallel
and Distributed Processing Symposium (IPDPS’05)
- Workshop 18, 2005, p. 299.2.

] Sandia National Laboratorjantevo project home

page, https://sof tware. sandi a. gov/ mant evo,
Nov. 6 2008.

Bianca Schroeder and Garth A. Gibsadhlarge-
scale study of failures in high-performance com-
puting systems, Proceedings of the International
Conference on Dependable Systems and Networks
(DSN2006), June 2006.

