
See Applications Run and Throughput Jump: The Case for
Redundant Computing in HPC

Rolf Riesen
Sandia National Laboratories∗

rolf@sandia.gov

Kurt Ferreira
Sandia National Laboratories

kbferre@sandia.gov

Jon Stearley
Sandia National Laboratories

jrstear@sandia.gov

Abstract

For future parallel computing systems with one hundred
thousand nodes or more we propose redundant comput-
ing to reduce the number of application interrupts. The
frequency of faults in exascale systems will be so high
that traditional checkpoint/restart methods will break
down. Applications will experience interruptions so of-
ten that they will spend more time restarting and recov-
ering lost work, than computing the solution. We show
that redundant computation at large scale can be cost ef-
fective and allows applications to complete their work in
significantly less wall-clock time. On truly large systems,
redundant computing can increase system throughput by
an order of magnitude.

1 Introduction

The average number of processor cores per system on the
top500 list is approaching ten thousand with the largest
systems exceeding one hundred thousand cores [8]. Even
though more and more of these cores are gathered on sin-
gle integrated circuits, the overall component count of
these enormous systems keeps increasing. With more
cores, whether on a single chip or not, more memory and
more supporting components are required. With an in-
creased component count, the number of faults a system
experiences increases as well.

Most large-scale parallel applications rely on check-
point/restart techniques to recover from faults. Each fault
in a component that the application is currently using,
causes an application interrupt and the application aborts.
Later, the application has to restart and resume from the
last successful checkpoint. Several studies have shown

∗Sandia is a multiprogram laboratory operated by Sandia Corpora-
tion, a Lockheed Martin Company, for the United States Department of
Energy under contract DE-AC04-94AL85000.

that this approach, independent of the specific checkpoint
method, does not scale beyond a few tens of thousands of
nodes [9, 2].

This leads to a problem for users of extreme-scale sys-
tems: Their applications will spend most of their exe-
cution time storing checkpoints, performing restarts, and
recomputing work that has been lost. For large-scale sci-
entific applications the additional parallelism availablein
these systems becomes a hindrance instead of a perfor-
mance boost. This is an inefficient use of resources and
may forces applications to use fewer nodes than are avail-
able, thereby getting less work done, or taking longer to
reach a solution.

The number of interrupts an application experiences is
dependent on the Mean Time Between Failures (MTBF).
An MTBF of four or five years for each node in a sys-
tem seems to be the norm [12]. Applications are vulner-
able not only to hardware failures, but also to software
errors and environmental causes such as power outages
and shutdowns due to things as mundane as the failure of
a cooling fan or a clogged filter. Any such failure leads to
an application interrupt and a subsequent restart.

Given a node MTBFΘnodeand the assumption that all
nodes have the same MTBF, it is easy to compute the
MTBF Θsys for an entire system consisting ofn nodes [5]:

Θsys=
1

1
Θ1

+ 1
Θ2

+ . . .+ 1
Θn

=
1

n 1
Θ

=
Θnode

n
(1)

With a node MTBF of five years and a node count of
one hundred thousand, the system MTBF is just over 25
minutes. An application spanning the entire system can
expect to restart two or more times per hour. This out-
look becomes even worse with larger systems and when
the somewhat optimistic node MTBF of five years in our
example is adjusted down. In addition, The time to write
a checkpoint and to restart increases with the application

1

SAND2010-0441C

size. Values of tens of minutes are not uncommon at the
peta or exascale. Therefore, such applications spend a
significant portion of their time not doing the computa-
tions they were designed for.

That checkpoint/restart is no longer a solution for gi-
gantic systems has been recognized [2, 10] and several
research groups are working on the problem of reducing
the frequency or overhead of checkpointing: [4, 9]. Our
suggestion for making these huge systems practical is to
use redundant computing. This approach has a long his-
tory in mission-critical systems and the time has come
to apply it to large-scale High-Performance Computing
(HPC) systems.

A side effect of redundant computing is that result ver-
ification can be done at no additional cost. The number
of cores per socket keeps increasing and main memory
capacity is also growing. In some main memories, error
correcting codes are employed. However, CPU registers,
caches, and the buses between these building blocks are
largely unprotected and may introduce silent errors. Re-
dundant computing can detect these errors and abort an
application when an error occurs. With triple redundancy,
error correction becomes an option.

In Section 2 we propose how redundant computing can
be employed in HPC systems and why it reduces the
number of interrupts an application experiences as the
node count goes up. We analyze the payoff in Section 3
by comparing the modeled wall-clock time of an appli-
cation with and without redundant nodes. We draw our
conclusions in Section 4.

2 Redundant Computing

Redundant computation increases an application’s re-
silience to faults by increasing the time between applica-
tion interruptions; i.e., it increases the application Mean
Time Between Interrupts (MTBI)Θapp. In redundant
computation each process is replicated a number of times
throughout the system. Individual components and nodes
will fail, but an application will continue without inter-
ruption, provided that, in a bundle of replicated processes,
at least one of them is still functioning.

The potential benefits of redundant computation can be
illustrated using a generalization of a common problem in
probability theory called the birthday problem [7]. The
birthday problem is concerned with the expected number
of people needed to find two with the same month and day
of birth. The birthday problem result is used in the anal-
ysis of many problems, including collisions and chaining
in hashes [6].

We generalize the results of this problem to describe
the impact of redundant computing on application fault
tolerance and the increase in MTBF of our redundant sys-

tem. If we consider each of the replicated bundles of
nodes to be a bin with a capacity equal to the number
of replicas, then asking how many faults this new system
can handle without interruption is equivalent to asking
what is the expected number of throws of random balls
until one bin has been filled to capacity. In the case of
two replica per process, the birthday problem tells us that
the expected number of throws isO(

√
n) (wheren is the

number bins or unique processes). More precisely, the
average number of faultsF our redundant system of size
n can absorb, assuming double redundancy, is [6, 3]:

F(n) = 1+
n

∑
k=1

n!
(n− k)! ·nk (2)

Figure 1 shows a plot of Equation 2 as a function of the
number of nodes. From this figure we see the well known
result for the birthday problem forn = 365 (around 24.16
people). We also see that adding redundant nodes to our
system dramatically increases its ability to absorb faults,
thereby increasing the effective MTBF of the application.
For example, forn = 200,000 nodes, on average, we can
sustain 561 faults before our application will be inter-
rupted. Therefore, the MTBF will increase by a factor of
561 in the redundant case over the non-redundant case.

While the analysis above outlines the benefits of redun-
dant computation, it does not indicate the performance
overhead of such a mechanism. Performance overhead
includes keeping the replica state consistent as the ap-
plication progresses. To evaluate the overhead of the
replica consistency we built a prototype library that han-
dles the replica coordination protocol. This library is
implemented at the MPI profiling layer and intercepts
all MPI calls from the application. The simple proto-
col used by this library converts all messages between a
source and a destination to message exchanges between:
1) the source and destination, and 2) between the redun-
dant partners of the source and destination, assuming they
exist.

Since the consistency protocol doubles message traf-
fic in the system, point-to-point micro benchmark per-
formance suffers. For higher level benchmarks and
applications the impact is, in general, minimal. Fig-
ure 2 shows the overhead of the consistency protocol for
HPCCG. The HPCCG mini-application, part of the Man-
tevo project [11], is a simple sparse conjugate gradient
solver designed to capture an important component of
Sandia National Laboratories production workload. The
majority of its runtime is spent performing sparse matrix-
vector multiplies, where the sparse matrix is encoded in
compressed row storage format. The interprocessor com-
munication consists of nearest neighbor boundary infor-
mation, in addition to globalMPI Allreduce operations
required for the scalar computations in the CG algorithm.
As the figure shows, the performance impact of the pro-

2

N
od

e
F

ai
lu

re
s

un
til

 A
pp

lic
at

io
n

In
te

rr
up

t

Number of nodes

 100

 200

 300

 400

 500

 600

10 20 50 100
200

500
1,000

2,000
5,000

10,000

20,000

50,000

100,000

200,000

24.16

365

Figure 1: Expected number of node failures before an application interrupt in a system with redundant nodes. Numbers
are calculated using the birthday problem Equation 2.

tocol on HPCCG when using redundant nodes is mini-
mal. For applications where the additional bandwidth is
an issue, alternative consistency protocols are being in-
vestigated.

3 Discussion

Initial reactions to applying redundancy to HPC systems
often concern cost. This includes the cost of acquiring
twice as many compute nodes and supplying twice as
much power and cooling to the system. Another cost of
concern is the software performance overhead associated
with enabling redundant computing. Finally, but not least
is the notion that purchasing the largest and most expen-
sive computer in the world should not carry the stigma
of getting at most half of the peak performance of such a
system.

Acquisition and power costs must be weighed against
the time for an application to reach a solution. If, due to
application interrupts, a solution takes 200 hours to com-
pute, but the same solution can be attained in 25 hours by
using redundant computing, then the extra cost becomes
negligible. The throughput of this example improves by
a factor of eight, dwarfing the doubling in cost.

John Daly has proposed Equation 3 to calculate the ex-
ecution time of an application [1]. WhereTw(τ) is the
total wall-clock time when using the checkpoint interval
τ. Θ is the MTBF for the application andTs is the solve
time; i.e, the amount of time required to complete the as-

signed work.δ is the time it takes to write a checkpoint,
andR is the time to restart after an application interrupt.

Tw(τ) = Θapp· e
R

Θapp

(

e
τ+δ

Θapp −1

)

Ts
τ for δ << Ts

(3)
We can use Equation 3 to calculate how long an ap-

plication will need to execute to solve a problem. We
can perform this calculation for an increasing number of
nodes and then compare it to the case where we use re-
dundant nodes. Figure 3 shows the result of one such
calculation. For this figure we assumed a perfectly weak-
scaling application that requiresTs = 168 hours to com-
plete its work. We chose a fixed checkpoint timeδ = 5
minutes and fixed the time to restart atR = 10 minutes.

For each node size we calculated the optimal check-
point interval τ according to Equation 38 in [1]. The
checkpoint intervalτ is dependent on the MTBIΘapp of
the application. For a given number of nodes we used
Equation 1 to calculate the system MTBF based on a node
MTBF of five years. We useTw(τ,n) to mean the wall-
clock time of an application when run onn nodes. The
dark green line in Figure 3 shows that the amount of time
required to complete the application increases exponen-
tially with the number of nodes used.

We then repeated these calculations for the case with
redundant nodes. For a given number of nodes we used
the same checkpoint intervalτ as for the non-redundant
case. That is not entirely correct, since Daly’s calcula-

3

E
xe

cu
tio

n
tim

e

D
iff

er
en

ce
 to

 n
at

iv
e

Nodes

Redundant
Native

Redundant %

0.0 s

5.0 s

10.0 s

15.0 s

20.0 s

25.0 s

30.0 s

35.0 s

4 8 16 32 64 128
256

512
1,024

0 %

20 %

40 %

60 %

80 %

100 %

Figure 2: Performance and overhead of HPCCG application. The number of nodes on thex-axis is from the applica-
tions’ perspective. Twice that many nodes are used to provide full redundancy.

A
pp

lic
at

io
n

W
al

lc
lo

ck
 T

im
e

T
w

(τ
,n

)

T
w

r(
τ,

n)
 a

s
a

P
er

ce
nt

ag
e

of
 T

w
(τ

,n
)

Number of nodes

Tw(τ,n) No redundant nodes
Twr(τ,n) With redundant nodes

100 * Twr(τ,n) / Tw(τ,n)

100 h

200 h

300 h

400 h

500 h

600 h

700 h

800 h

900 h

1 kh

1,000
2,000

5,000
10,000

20,000

50,000

100,000

200,000

500,000

1,000,000

0 %

20 %

40 %

60 %

80 %

100 %

Figure 3: Comparing application wall-clock time with and without redundant nodes. When redundant computing
consumes less than 50% of the time of a non-redundant run, then the extra cost of redundant computing may pay off.

4

tion of the optimal checkpoint interval may not be suit-
able for a redundant system. Since redundancy improves
the MTBF of a system, ourτ should probably be higher.
Using the sameτ as for the non-redundant case gives us
a worst case scenario because we may be checkpointing
too frequently.

We useTwr(τ,n) to mean the wall-clock time of an ap-
plication when run on 2· n nodes (n nodes plusn redun-
dant nodes). To computeTwr(τ,n) we need the MTBF
of an application running on a system with redundant
nodes. The birthday problem, Equation 2, gives us the ra-
tio of faults to interrupts in a system withn nodes. When
we multiply that ratio with the system MTBF of a non-
redundant system (Equation 1), we can calculate the ap-
plication MTBF:

Θapp= Θsys·F(n) =
Θnode

n

(

1+
n

∑
k=1

n!
(n− k)! ·nk

)

(4)

Using the values from Equation 4 in Equation 3 lets us
calculate the wall-clock execution time for an application
on a system with redundant nodes. The light green line
in Figure 3 showsTwr(τ,n) as a function of the number
of nodes. Running on larger number of nodes still intro-
duces overhead due to the increased number of faults in
the system. However, it is substantially less than the case
without redundant computation. The brown curve in Fig-
ure 3 is the percentage of the wall-clock time with redun-
dant computation of the wall-clock time without redun-
dancy: 100·Twr(τ,n)

Tw(τ,n) . When that curve drops below 50%,
using twice as many nodes for redundant computing may
pay off. In Figure 3 that happens for 100,000 nodes and
more.

Figure 3 shows that the benefit of redundant computa-
tion does not come into play until we reach a large num-
ber of nodes. The exact number depends on the node
MTBF Θnode, the time to write a checkpointδ, and the
time to restartR. We used fixed values for the latter two,
but in a real system they are likely to increase with the
number of nodes being used. For the redundant case it
seems that we should be able to increase the checkpoint
interval τ and further improve those results. Note that
the overhead of the redundancy protocol is not included
in Figure 3. Beyond five-hundred-thousand nodes, for
which we do not have performance measurements, it is
likely to have some impact. Nevertheless, current mea-
surements indicate that it will be minimal when compared
to the benefits of redundant computing.

In Section 2 we mentioned that there is significant
overhead for point-to-point micro benchmarks, and have
shown that the HPCCG application kernel suffers very
little from the redundant computing overhead. Therefore
the main cost of redundant computing is the doubling in

the number of nodes and the resources, such as power
and cooling, that go along with it. We have shown in this
section that this cost is justified by the faster execution of
applications, resulting in higher throughput of the system.

Note, Redundant computing is not a substitute for
checkpoint/restart. It reduces the number of interrup-
tions an application experiences and therefore reduces the
overhead of checkpointing. Redundant computation also
enables the detection of silent errors. These are errors
that occur in registers, caches, and data paths that are not
protected by error detection or correction codes. These
errors are often silent because they produce a corrupted
result but do not further disrupt the computation. Most
applications assume that calculations done by the hard-
ware are correct and do not or cannot check for invalid
results. Double redundancy lets us flag silent errors, and
triple redundancy would let us correct silent errors.

4 Conclusions

In this paper we take the position that redundant comput-
ing is a viable solution to the problem of the ever increas-
ing number of application interruptions as massively par-
allel systems get larger. The problem, applications spend-
ing more time writing checkpoints and restarting rather
than performing productive computations, is real and
needs to be addressed. At first glance, redundant com-
puting seems to waste half of the compute resources in a
system. We have shown that redundant computing actu-
ally reduces the time to solution by such a large factor that
not using it is actually a bigger loss in system throughput.
There is a comparatively small overhead to pay to en-
able redundancy in software at the user level, and it does
not completely replace checkpoint/restart since it only re-
duces the number of application interrupts; not eliminat-
ing them completely.

For future work we are considering improving the con-
sistency protocol used by our library and reduce protocol
overhead. Although the overhead seems to be acceptable
for applications at the few-thousand-node scale, it may
become worse at much larger scales. We are also look-
ing at applying this idea to non-MPI applications, espe-
cially in a multicore world. Finally, we are looking at
approaches where the data is replicated but the redundant
computation is only carried out when necessary.

References

[1] J. T. Daly,A higher order estimate of the optimum
checkpoint interval for restart dumps, Future Gener.
Comput. Syst.22 (2006), no. 3, 303–312.

5

[2] E.N. Elnozahy and J.S. Plank,Checkpointing for
peta-scale systems: a look into the future of prac-
tical rollback-recovery, Dependable and Secure
Computing, IEEE Transactions on1 (2004), no. 2,
97–108.

[3] Philippe Flajolet, Peter J. Grabner, Peter Kirschen-
hofer, and Helmut Prodinger,On Ramanujan’s Q-
function, Journal of Computational and Applied
Mathematics58 (1992), 103–116.

[4] Rinku Gupta, Pete Beckman, Byung-Hoon Park,
Ewing Lusk, Paul Hargrove, Al Geist, Dha-
baleswar Panda, Andrew Lumsdaine, and Jack Don-
garra,Cifts: A coordinated infrastructure for fault-
tolerant systems, ICPP ’09: Proceedings of the
2009 International Conference on Parallel Process-
ing (Washington, DC, USA), IEEE Computer Soci-
ety, 2009, pp. 237–245.

[5] Dimitri B. Kececioglu, Reliability engineering
handbook, vol. 2, DEStech Publications, Inc, May
2002.

[6] Donald E. Knuth,The art of computer program-
ming, volume 3: (2nd ed.) sorting and search-
ing, Addison Wesley Longman Publishing Co., Inc.,
Redwood City, CA, USA, 1998.

[7] Frank H. Mathis,A generalized birthday problem,
SIAM Review33 (1991), no. 2, 265–270. MR 1 108
591

[8] Hans Meuer, Erich Strohmaier, Horst Simon, and
Jack Dongarra,Top 500 supercomputer sites, http:
//www.top500.org/, November 2009.

[9] Ron A. Oldfield, Sarala Arunagiri, Patricia J.
Teller, Seetharami Seelam, Maria Ruiz Varela, Rolf
Riesen, and Philip C. Roth,Modeling the impact of
checkpoints on next-generation systems, 24th IEEE
Conference on Mass Storage Systems and Tech-
nologies, September 2007, pp. 30–46.

[10] A. J. Oliner, R. K. Sahoo, J. E. Moreira, and
M. Gupta, Performance implications of periodic
checkpointing on large-scale cluster systems, Pro-
ceedings of the 19th IEEE International Parallel
and Distributed Processing Symposium (IPDPS’05)
- Workshop 18, 2005, p. 299.2.

[11] Sandia National Laboratory,Mantevo project home
page, https://software.sandia.gov/mantevo,
Nov. 6 2008.

[12] Bianca Schroeder and Garth A. Gibson,A large-
scale study of failures in high-performance com-
puting systems, Proceedings of the International
Conference on Dependable Systems and Networks
(DSN2006), June 2006.

6

