
Towards Formal Analysis of Device Authentication in Ubiquitous Computing

Abstract—Authentication between mobile devices in ubiq-
uitous computing environments is a challenging problem.
Indeed, without pre-shared knowledge, we will show that device
authentication between previously unknown devices in this
environment is not possible using a single broadcast channel
alone. To address this problem, various techniques have been
proposed, many using side-channels (or location limited chan-
nels) to transmit additional information. When discussing such
protocols, however, an important topic is proving them correct,
which requires analysis using some formal method such as BAN
logic. However, this technique is not fully capable of analyzing
many ubiquitous computing protocols, mainly because BAN
logic does not consider the additional capabilities afforded
by mobile devices when sending and receiving out-of-band
information. We propose extensions to BAN logic that address
these capabilities, enabling the careful analysis of mobile device
authentication protocols. Furthermore, we demonstrate our
extensions using two existing device authentication protocols.

Keywords-mobile communication, wireless LAN, protocols

I. INTRODUCTION

The field of ubiquitous computing has shown tremendous
growth over the past several years, both in the sophistication
and capabilities of devices, and in the variety of applications
to which devices are being applied. Many people rely
on mobile devices, such as smart phones, personal digital
assistants (PDAs), tablets, and laptop computers to stay in
touch with friends, family, co-workers, and other important
contacts.

One core component of ubiquitous computing is commu-
nication with other devices. However, communication in this
paradigm usually occurs using radio frequency (RF) trans-
mission, which can be overheard by other devices. In some
cases, this is not a problem, but often the communication
between two devices is expected to be private. Consider a
credit-card transaction between a smart-phone and a movie-
ticket kiosk; the consumer’s credit card information should
be protected from eavesdropping. The most common method
for protecting information sent via unsecured channels such
as RF is encryption. However, this raises additional is-
sues. First, devices in ubiquitous computing are usually
constrained in both power and computational capabilities,
making some encryption techniques either too expensive in
terms of power consumption, or undesirable in terms of time.
Fortunately, advances in device hardware have addressed this
concern very well. Second, in order to encrypt information,
both the sender and receiver must agree on the method
of encryption, as well as key information. While this is a
relatively simple operation between two machines operating

in a wired, trusted environment, accomplishing key estab-
lishment between devices in untrusted environments presents
several challenges. The greatest of these challenges is device
authentication, which means ensuring that only the intended
devices are those actually communicating. Put another way,
it is ruling out the possibility that an unknown device,
or “man-in-the-middle,” is present and intercepting data
between the devices. This challenge is especially difficult
because devices in ubiquitous computing are not assumed
to possess a priori knowledge of each other.

Several solutions have appeared to date, proposing authen-
ticated information exchange between mobile devices using
an array of methods other than the standard broadcast chan-
nel. These are sometimes called out-of-band, side-channels
or location-limited channels (LLCs), and include audio,
visual, infrared, ultrasound, and even laser transmission.
While not necessarily providing confidentiality, they allow
the receiver of the device to physically verify the source
of the transmission. Using the authenticated information
received, secure key establishment can occur.

In standard computing environments, authentication pro-
tocols are subject to rigorous performance analysis and
verification. One tool for doing this is known as BAN
Logic [1]. This work presents a logic of belief, which is
basically the process of coupling assumptions about current
states with a simple set of steps and reasoning, to arrive at
a conclusion regarding the soundness of an authentication
protocol. It has been used extensively to identify flaws in
new and existing security protocols, and is often employed
by authors to prove new proposals sound.

However, applying such formal analysis to device au-
thentication protocols in mobile computing has not been
studied to date. Questions arise such as: can the device
authentication protocols that use location-limited channels
be shown correct using protocol analysis techniques such as
BAN logic? More importantly, are location-limited channels
a necessary component of device authentication between
mobile devices in ubiquitous computing?

In this paper, we seek to answer these questions. Specifi-
cally, we show that device authentication between previously
unknown devices in ubiquitous computing is not possible
using only a single broadcast channel for communication.
Next, we attempt a formal analysis of device authentication
protocols that use LLCs. However, as originally proposed,
BAN logic is insufficient to address the characteristics of
such protocols, so we propose two extensions to BAN logic
to support them. To demonstrate our extension, we show the

SAND2010-5675C

analysis of a basic bi-directional location-limited channel
device authentication protocol. Then, we analyze a more
complicated, asymmetric device authentication protocol be-
tween two mobile devices.

The remainder of this paper is organized as follows.
Section II discusses background material and related works.
Section III considers device authentication using a single
broadcast channel only, while Section IV extends BAN
logic to support analysis of device authentication protocols.
Section V demonstrates the use of these extensions, and
Section VI concludes the paper with a discussion of future
work.

II. BACKGROUND

Mobile computing environments generally do not assume
the presence of a trusted authority (TA) to provide verified
authentication information, such as public keys. Therefore,
to authenticate public keys, another solution is necessary,
and several approaches have been developed to address
this problem. Solutions requiring some sort of additional
knowledge, passed between users either in the form of a
password or via some other communication channel besides
the standard channel make up the bulk of the work on this
subject.

1) Location-Limited Channels: In one of the first works
on the subject, the “Resurrecting Duckling” protocol [2]
is proposed, which uses physical touch between a mo-
bile device and a desired target to transmit authentication
information. Building on this concept, one of the most
widely referenced techniques for verifying key establish-
ment is proposed by [3] and introduces three components:
location-limited channels, demonstrative identification, and
pre-authentication. Location-limited channels (LLC) are a
means of communication between two devices with the
property that the operators of the devices have control over
which devices are communicating. Unlike radio frequency
(RF), where the sending and receiving devices are not
easily identifiable, LLCs could include non-RF communi-
cation. Demonstrative identification describes the process
by which the sending device is authenticated simply by
sending information via the LLC. For instance, a kiosk
showing a video display of a two-dimensional barcode can
be verified as the source of the data simply by looking
at it - it demonstrates that the information being shown
originated from that device. Although this seems rather
simple and intuitive, it plays a key role in key establishment
protocols between mobile devices. Pre-authentication is the
process of identifying the devices to communicate, and
exchanging information over the LLC between them. Using
that information, key establishment can occur.

A protocol for device authenticationusing these two con-
cepts, shown in Table I using a protocol trace developed
in [4], has served as the basis for most of the later work
on the subject [3]. Using this protocol and an LLC, devices

Ch Alice Bob
1 LL −AddrAlice, H{KAlice} →
2 LL ← AddrBob, H{KBob}−
3 RF ← Key exchange protocol →

Table I
BASIC PROTOCOL FOR EXCHANGING KEYING INFORMATION VIA A

LOCATION-LIMITED CHANNEL (CH: COMMUNICATION CHANNEL, RF:
RADIO FREQUENCY, LL: LOCATION-LIMITED)

exchange information - specifically, the network addresses
of the devices and the hash values of the devices’ public
keys. Then, using the network addresses exchanged, the
devices establish communication over the normal channel
and request the others’ public key. The key received is
hashed and compared to the value received via the LLC.
If the values match, then the public key is authenticated.

2) Building on Location-Limited Channels: Many works
build upon the foundations established by [3]. Approaches
based on visual channels are proposed in [5]–[10], audio
transmission [11]–[15], infrared [3], ultrasound [16], and
facial recognition [17] or other biometric identification tech-
niques such as grip pattern analysis [18]. While most of
these approaches use two-way LLC transmission (as seen in
Table I), some of them achieve device authentication using
only one LLC transmission [4], [10], [15].

3) Device Authentication Without a Side-Channel: One
approach to device authentication appears to use no addi-
tional side-channel [19]. This solution is based on a tech-
nique called distance bounding [20], in which the distance
between devices is known, or can at least be bounded to
within the transmission range of both devices. We believe
this technique violates the constraints of true ad-hoc authen-
tication in mobile computing by placing the constraint of
close physical proximity on mobile devices for the entire
duration of the device authentication protocol. Furthermore,
the transmission range of devices and absence of an active
attacker, employing jamming techniques for instance, is very
difficult to ascertain. Therefore, we do not consider this
solution an answer to the problem of device authentication
in ubiquitous computing using a single broadcast channel
only.

A. BAN Logic Basics

We can turn to formal methods as a tool in evaluating
the soundness of proposed authentication protocols. An
approach to formalizing the logic associated with authen-
tication, called “BAN Logic,” is presented in [1]. This work
presented a logic of belief, which is basically the process of
coupling assumptions about current states with a simple set
of steps and reasoning, to arrive at a conclusion regarding
the soundness of an authentication protocol. It has been used
extensively to identify flaws in new and existing security
protocols, and is often employed by authors to prove new

proposals sound.
BAN logic is not without limitation, however. Various is-

sues have been identified with the original BAN Logic [21]–
[23]. Specifically, these works point out that BAN Logic
can be used to show an authentication protocol secure,
when in fact it is insecure. While the creators of BAN
logic refute at least one of these claims [24], others have
shown that often the issue is a result of ambiguous assump-
tions [25], [26], which should be more carefully specified.
Additional approaches have been published to clarify the
original protocol by developing a semantic model for BAN
logic [27], and other approaches have been proposed to
extend BAN logic’s capabilities, as well as address some
of the concerns [25], [28]. A fourth approach was proposed
by [29] that combined the approaches of previous works
to generate a unified logic. These subsequent approaches
often add additional components or logic to allow more
complex protocols to be correctly analyzed. However, the
original BAN logic continues to be used by authors to prove
authentication protocols, generally due to the simplicity of
the approach [30].

Constructs: We must first cover several basic compo-
nents of BAN logic, including its constructs and postulates.
The constructs are represented as follows [1]:
A |≡X : A believes X . A may act as though X is true.
A ▹ X : A sees X . A has received a message containing

X .
A |∼X : A said X . A once said X , though when X was

said is unknown.
A Z⇒ X : A controls X (A has jurisdiction over X).

A is an authority on X and should be trusted to
provide a correct X .

♯(X) : X is fresh. X has not been sent in any previous
message during the current protocol run. X is
typically a nonce.

A
K←→ B : K is a shared key A and B may use to

communicate
K7→ A : K is the public key of A, with a matching secret

key K−1 that remains secret to A or any principal
trusted by A.

A
X� B : X is a secret formula, such as a password,

known only to A and B.
{X}K : The formula X encrypted under K.
⟨X⟩Y : X combined with formula Y . Usually, Y is

a secret, and its presence proves the identity of
whoever utters ⟨X⟩Y .

Postulates: The postulates which manipulate these con-
structs are as follows:

Message-Meaning Rule If A believes K is the shared key
with B, and A sees X encrypted under K, then A believes
B once said X:

A believes A
K←→ B, A sees{X}K

A believes B said X

Or, written using the construct notation (as all future
postulates will be):

A |≡A
K←→ B, A ▹ {X}K
A |≡B |∼X

For public key cryptography, the postulate is similar:

A |≡ K7→ B, A ▹ {X}K−1

A |≡B |∼X

For instances where the key is simply a shared secret,
such as a password, the postulate is:

A |≡A
Y� B, A ▹ ⟨X⟩Y

A |≡B |∼X

Nonce-Verification Rule This rule checks to see if the
message was sent recently, that is, the sender still believes
in the message. If A believes X is fresh, and A believes B
once said X , then A believes B believes X .

A |≡ ♯(X), A |≡B |∼X
A |≡B |≡X

Jurisdiction Rule If A believes that B has jurisdiction over
X , and A believes B believes X , then A trusts B on the
truth of X , thus A believes X:

A |≡B Z⇒ X , A |≡B |≡X
A |≡X

III. USING BAN LOGIC TO ANALYZE AUTHENTICATION
IN MOBILE COMPUTING

First, we must establish the conditions by which the prob-
lem of device authentication in mobile computing is bound.
We assume the only channel of communication is a wireless
broadcast channel (RF), available to all devices, including
those of an attacker. We assume no a priori knowledge exists
between the two devices wishing to communicate securely.
Furthermore, we assume the existence of an active attacker,
who is able to intercept and modify the contents of RF
transmissions between our two devices - this is commonly
referred to as the “man in the middle.”

We will use BAN logic to analyze a basic question of
authentication protocols for mobile computing: is authen-
tication possible without the use of a side-channel (LLC,
human interaction, etc.)? In considering this question, we
make the following claim: If a protocol exists that allows
device authentication without use of LLCs (i.e. using RF
communication only), then it can be verified to be correct
using BAN logic.

It is important to note that we assume both parties
participating in the authentication protocol are trustworthy.
That is, neither device knowingly provides incorrect infor-
mation. This is consistent with [1], which does not deal with
authentication of untrustworthy principals, stating “We focus
on the beliefs of trustworthy parties involved in the protocols

and on the evolution of these beliefs as a consequence of
communication.” Other security protocol analysis works also
make this assumption [31]–[34].

A. Analyzing Authentication in Mobile Computing

Let us consider the following definitions regarding our
environment and goals:

Definition 1. A device authentication protocol is a pro-
cedure for identifying the identity of another device on a
network.

Definition 2. Ad-hoc computing environments exhibit the
following characteristics:

• No pre-shared, or a priori, knowledge exists between
devices

• Device location is not fixed, nor is device proximity
assumed

• Only a broadcast method of communication is used for
normal data transfer

We must establish these definitions for several reasons.
First, it is important to be very clear about our definition of
“ad-hoc computing,” as interpretations have been proposed
which differ from ours [19]. Next, we must remove any
ambiguity regarding the meaning of “device authentication”
protocols. It is essential that we be clear about these def-
initions in order to proceed with the following proposition
regarding device authentication in ad-hoc computing:

Proposition III.1. Key-based device authentication between
two previously unknown mobile devices in an ad-hoc com-
puting environment is not possible using only a single
broadcast communication channel.

Proof: We will prove this proposition by contradiction.
To do so, we will assume that there is a protocol for device
authentication between two previously unknown devices in
an ad-hoc environment that does not use additional informa-
tion, such as that provided by a demonstrative side-channel,
and attempt to prove this assumption correct.

Let us first establish the goals of device authentication.
The goals of authentication, according to [1], can vary,
but generally consist of a shared session key between two
entities, that is:

A |≡A
K←→ B

B |≡A
K←→ B

Because we assume no a priori knowledge between de-
vices, the shared key A

K←→ B must be established via
the authentication protocol between A and B, it cannot be
assumed to exist beforehand. There are two possible cases
for authentication protocols that are key-based: those that
use symmetric keys and those that use asymmetric keys.

Case 1: Symmetric Keys.: Device authentication pro-
tocols using symmetric keys, by the very definition of
symmetric keys, assume that information is already shared
between both devices - specifically a shared symmetric key.
It is trivial to show, because this violates the constraints
we have established for key-based device authentication
in mobile computing, that this family of protocols is not
possible.

Case 2: Asymmetric Keys.: For device authentication
protocols utilizing asymmetric keys, it is required that each
device know the public key of the other device. Doing so
requires that each device, at some point during the mutual
device authentication protocol, receives the public key of the
other device. To put it formally, at some point, the following
must occur:

A→ B :
KA7→ A

B → A :
KB7→ B

However, simply receiving a public key does not assure
a device that it is the authentic public key of the intended
target device. Therefore, the goal in this protocol is more
stringent, specifically, it is assurance the public key of the
sending device is authentic, or to put it formally:

A |≡ Kb7→ B

B |≡ Ka7→ A

Note that both components are required for mutual device
authentication to occur. We will therefore begin with an
analysis of the first component, A |≡ Kb7→ B.

Case 2.1: Authenticating B to A.: Typically, when
proving a protocol using BAN logic, assumptions are estab-
lished first. We assume the following for our hypothetical
device authentication algorithm:

A |≡ Ka7→ A B |≡ Kb7→ B

A |≡A Z⇒Ka7→ A B |≡B Z⇒Kb7→ B

A |≡B Z⇒Kb7→ B B |≡A Z⇒Ka7→ A

A |≡ ♯(
Ka7→ A) B |≡ ♯(

Kb7→ B)

A |≡ ♯(
Kb7→ B) B |≡ ♯(

Ka7→ A)

¬(A |≡ Kb7→ B) ¬(B |≡ Ka7→ A)

Most of these assumptions are obvious. However, the
assumptions in the last row require a brief explanation.
Normally, we only state what we assume to be true, rather
than what we assume is not true. However, in this case,
these statements of negation are necessary because of the
ad-hoc computing environment. It is not enough to omit the
assumption that we believe a specific public key belongs
another device, we must explicitly state that we do not
believe a specific public key belongs to another device,
because an ad-hoc environment explicitly excludes this type
of prior knowledge.

Working backwards from our goal, by the jurisdiction
rule, we see that for A |≡ Kb7→ B to be true, we must
establish A |≡B Z⇒Kb7→ B and A |≡B |≡ Kb7→ B. We assume
A |≡B Z⇒Kb7→ B, that is, B has control of its own public key.
To establish the second part of this rule, A |≡B |≡ Kb7→ B, we
must establish A |≡ ♯(

Kb7→ B) and A |≡B |∼ Kb7→ B.
Considering our assumptions, we see that only A |≡ ♯(

Kb7→
B) is shown. To establish A |≡B |≡ Kb7→ B, we would need
to show that A |≡B |∼ Kb7→ B. This is achieved either by
assumption (which we do not have) or by the message-
meaning rule, which stipulates A |≡ Kb7→ B and A▹ {X}K−1

b

must be true for A |≡B |∼ Kb7→ B. However, this contradicts
our assumption ¬(A |≡ Kb7→ B), and therefore, Case 2.1 is
not possible.

Case 2.2: Authenticating A to B.: By symmetry, Case
2.2 is also not possible.

Final Steps.: By analyzing the necessary steps for key-
based device authentication protocols between two previ-
ously unknown mobile devices, we have demonstrated that
such protocols under the constraints of ad-hoc computing are
not possible using only a single broadcast communication
channel. Because our example is representative of any key-
based device authentication protocol operating under the
constraints of ad-hoc computing, and we have shown that
such an protocol is not possible, we have successfully proven
our proposition.

In essence, what BAN logic tells us about the constraints
of ad-hoc computing is that it is necessary to have some
sort of basis to believe a message was sent from a particular
device. Because we use a broadcast method of communica-
tion, we cannot make any statements about the origin of a
particular message simply because we suppose it came from
a specific device, or the message claims to have originated
from a specific device. To prove that a message originated
from a specific device, BAN logic tells us that the message
must have been encrypted (or otherwise encoded) using a
key (or secret) that A believes is either shared with B, or
belongs to B. There is no other way, using the BAN logic
constructs and postulates we specified, to form a belief about
the origin of a message.

IV. AN ADDITIONAL COMPONENT TO BAN LOGIC FOR
MOBILE COMPUTING

If we cannot achieve device authentication using only
a single broadcast channel, suppose data X is transmitted
from B to A using a side-channel, or LLC. This allows the
users of each device to identify the other device, establishing
the origin of the data received (demonstrative identifica-
tion [3].) This additional information exchanged supplies
the conditions necessary to establish our goals. While the
data can also be seen by an attacker, an attacker is not
able to modify the data transmitted. The receiving device

knows with certainty the information was said by the sending
device.

Doing so allows us to conclude the following:

A ▹ X
A |≡B |∼X

The last statement is of particular importance. Under the
message-meaning rule and normal communication, to estab-
lish A |≡B |∼X would require us to establish A |≡ Kb7→ B and
A ▹ {X}K−1

b
. However, since we are using another method

which allows A to verify the origin of X , we can establish
A |≡B |∼X without using the message-meaning rule.

This is an extension to BAN logic afforded by the
properties of LLCs, and to assist in our proofs of device
authentication protocols, we will denote this extension using
the following construct:

A
XL99 B : A receives X from B via a channel by which

A can verify the origin of X is B.

The following postulate will also be added:
Side-Channel-Communication (SCC) Rule If A receives

X from B via a side-channel, then A sees X , and A is
entitled to believe B said X:

A
XL99 B

A ▹ X,A |≡B |∼X

A. Handling Hash Functions

The device authentication protocol we seek to prove
correct involves the transmission of hash values via the side-
channel. However, this raises serious issues; specifically,
how do we treat hash values with respect to the constructs
and postulates of BAN Logic? The authors of BAN logic,
in an extended technical report [35], propose a postulate for
handling a hash function H , as follows:

A |≡B |∼H(X),A ▹ X
A |≡B |∼X

However, it is clear from their work that H(X) refers to
signed hashes, not an arbitrary hash function, as the authors
state, “If H is an arbitrary function, nothing convinces one
that when A has uttered H(m) he must have also uttered
m. In fact, A may never have seen m.”

How then are we to deal with the use of arbitrary hash
functions in our protocols? According to [35] we cannot
assume that because B said H(X), B also said X . However,
we can deduce the following: if A believes H(X), and sees
some message Y (not necessarily from B), and confirms that
H(Y) equals H(X), then A can reasonably assume that Y
equals X , and can say that A sees X1. However, what we

1Although we recognize that collisions exist in hash functions, we assume
the use of strong cryptographic hash functions for this step. Assuming an
attacker is unable to produce a collision (i.e. generate Y ̸= X such that
H(Y) = H(X)) in this case is similar to assuming an attacker is unable
to decrypt encrypted messages in other BAN logic postulates

really need to determine is: did B say X?
To help with this determination, we must first reveal an

implicit assumption within the constructs of BAN logic,
specifically, the notion of uniqueness. In all postulates in-
volving a key K, it is assumed K is unique. For instance, we
assume K7→ A ̸= K7→ B. In other words, without the assurance
that K is unique, the message-meaning rule would not be
true, if it were possible that K7→ A =

K7→ B. Uniqueness of
keys is a safe assumption to make in the case of sufficiently
large cryptographic keys, and for secret data that is generated
prior to protocol execution.

However, in the case of hash values, it is not safe to say
that all values generated are unique. Virtually any crypto-
graphic hash function will generate an infinite number of
collisions for an infinite input set. Additionally, two entities
hashing the same value, using the same hash function, will
return identical hashes. Consider the case where A generates
the hash value of the word “cat,” and B also generates the
value of the word “cat”. If they both use the same hashing
function, they will both return the same value, and it will be
impossible to determine which entity performed the hash.
This is the problem stated by [35] above.

However, if we make a stronger assumption about the
value being hashed, that is, that the X which is used to
generate H(X) is unique, then we can also assume that
H(X) is unique2. We will use this belief in comparing
values and their hashes during our communication protocol.
We can say that if we have a hash value H(X), and we
receive another value Y , that we may determine Y = X if
we can show H(Y) = H(X), as long as we believe X is
unique.

Combining the notion of uniqueness with the BAN logic
construct of jurisdiction, we may conclude the following.
If A believes B is an authority on X , and A believes
X is unique, then A may believe B created X . More
importantly, A may conclude that no other entity could have
independently created X . So, once A establishes that it sees
X (realizing that A has no foreknowledge of the value of
X , so it is still incumbent on the protocol to establish the
value of X , as well as its origin in B), A may conclude that
at some point in time, X was said by B.

To show that we consider a value to be unique, we propose
the following additional construct:
†(X): X is considered to be sufficiently unique that two
entities independently generating the same X is considered
computationally unlikely.
The applications of this construct extend beyond hash func-
tions. For instance, uniqueness could be used to describe
newly generated symmetric or asymmetric keys. If A and B
independently generate KA and KB , they should be unique.

2This is not absolutely true. As stated previously, hash functions generate
infinite numbers of collisions. We assume a sufficiently complex hash
function is used, making the chance of a collision computationally unlikely
(i.e. using SHA256 results in a collision probability of 1 in 10153.)

Now we can address the question of establishing which
entity said X , based on our beliefs about X and H(X).
We do this by adding some constraints to the hashing
postulate proposed by [35], making it correct for arbitrary
hash functions. Our proposed addition is as follows:

Hash Analysis Rule If A believes B controls X , and if
A believes X is unique, and if A believes B said H(X),
and A sees X , then A believes that B said X .3

A |≡B Z⇒ X , A |≡ † (X), A |≡B |∼H(X), A ▹ X
A |≡B |∼X

Next, we consider why each component in this rule is
necessary:

A |≡B Z⇒ X: A has to believe B controls the value X , in
our case, B’s public key.

A |≡ † (X): As mentioned above, for this to hold, X
cannot be independently generated anywhere else (within
computational allowances); combined with the previous
component, this means A believes only B created X .

A |≡B |∼H(X): This is necessary to verify A ▹ X .
Otherwise, A has no way to know whether or not the
message it sees is actually X . Despite the assumptions
above, A does not initially know the value of X , but A
does know the value of H(X).

A▹X: This is actually determined using another component
in the same rule. A cannot know it has seen X until it
compares H(X) to the value contained in A |≡B |∼H(X).

V. APPLICATION

We will demonstrate the application of the SCC and Hash
Analysis Rules by applying them to the formal analysis
of two device authentication protocols. The first is a ba-
sic bi-directional protocol based on [3]. The second is a
uni-directional protocol requiring only one LLC transmis-
sion [15].

1) Proving the Basic Device Authentication Protocol Se-
cure: The basic mobile device key authentication protocol
is shown in Table II. The first step in analyzing this protocol
is to idealize the protocol, that is, to change it into a form
more easily analyzed by the logic. (See [1] for more details
on this process.) The idealized form of our protocol is as
follows:

Message 1 : A→ B : H(
KA7→ A)

3For simplicity we assume the following trivial rule:

B Z⇒ X
B Z⇒ H(X)

Ch Alice Bob
1 LL −AddrA, H(KA)→
2 LL ← AddrB , H(KB)−
3 RF −KA →
4 RF ← KB−
5 Calc H(KB)#4 Calc H(KA)#3

6 H(KB)#4
?
= H(KB)#2 H(KA)#3

?
= H(KA)#1

Table II
SIMPLE PROTOCOL FOR AUTHENTICATING PUBLIC KEYS VIA A LOCATION-LIMITED CHANNEL

Message 2 : B → A : H(
KB7→ B)

Message 3 : A→ B :
KA7→ A

Message 4 : B → A :
KB7→ B

The assumptions we make are as follows:

A |≡ KA7→ A B |≡ KB7→ B

A |≡A Z⇒KA7→ A B |≡B Z⇒KB7→ B

A |≡ ♯(
KB7→ B) B |≡ ♯(

KA7→ A)

A |≡ ♯(H(
KB7→ B)) B |≡ ♯(H(

KA7→ A))

A |≡B Z⇒KB7→ B B |≡A Z⇒KA7→ A

A |≡B Z⇒ H(
KB7→ B) B |≡A Z⇒ H(

KA7→ A)

A |≡ † (KB7→) B |≡ † (KA7→)

Why is ♯(
KA7→ A), ♯(H(

KA7→ A)), ♯(
KB7→ B), ♯(H(

KB7→ B))
assumed in this protocol? This may seem to be a poor
assumption to make. The notion of freshness is BAN logic
is meant to assure that the messages being exchanged are
recently generated (during the current run of the protocol),
and not being replayed by an attacker. It could be argued
that the properties of side-channels prevent a replay attack
of the data transmitted (A knows that the information
came immediately from B, therefore, it is fresh). We use
this reasoning in our assumptions above. However, a more
complete notion of freshness would be assured if some
nonce were included in the side-channel data, or if the side-
channel data were generated uniquely for each instance of
communication [9]. This would assure the sending device,
B, that subsequent protocol messages from A were, in fact,
fresh.

Note that both A and B trust the other on the correctness
of their respective public keys. This is a staple of BAN logic,
we assume our counterpart is trustworthy, that is, it has not
been compromised to provide incorrect information. We do
not, however, assume that anything purported to be received
by A from B is actually from B; deciding that is the purpose
of the message-meaning rule.

The main steps of our proof are as follows:

B receives message 1. The SCC rule yields that:

B ▹ H(
KA7→ A), B |≡A |∼H(

KA7→ A)

Likewise, receiving message 2 yields for A:

A ▹ H(
KB7→ B), A |≡B |∼H(

KB7→ B)

Since we have the assumptions

A |≡ ♯(H(
KB7→ B)) and

B |≡ ♯(H(
KA7→ A))

We can apply the nonce-verification rule to get

A |≡B |≡H(
KB7→ B) and

B |≡A |≡H(
KA7→ A)

Recall we also assume

A |≡B Z⇒ H(
KB7→ B) and

B |≡A Z⇒ H(
KA7→ A)

Next, we apply the jurisdiction rule to get

A |≡H(
KB7→ B) and

B |≡H(
KA7→ A)

Next, we consider messages 3 and 4, where we find A
and B receive messages purporting to be KB and KA,
respectively. However, since these messages do not come
from known sources, we will call them Y and Z for now.

A ▹ Y and
B ▹ Z

We use our hash analysis reasoning to check that H(Y)
equals H(KB) and H(Z) equals H(KA). (This is step 5 and
6 in the protocol listed in Table II.) Because they match, we
now assume

A▹
KB7→ B and

B▹
KA7→ A

Next, we recall our assumptions

A |≡B Z⇒KB7→ B and
B |≡A Z⇒KA7→ A and
A |≡ † (KB7→) and
B |≡ † (KA7→)

We couple those assumptions with the previously deter-
mined statements and apply them to our Hash Analysis Rule
to achieve

A |≡B |∼ KB7→ B and

Table III
UBISOUND KEY ESTABLISHMENT PROTOCOL [15] (RF: RADIO

FREQUENCY CHANNEL, LL: LOCATION-LIMITED CHANNEL, PB:
MANUAL USER INTERACTION (PUSH-BUTTON))

Ch Alice Bob
1 Chooses ga

2 RF −ga →
3 Chooses gb

4 Chooses random Rb

5 Hb = H(ga|gb|Rb)
6 RF ← Hb−
7 LL ← Rb−
8 RF ← gb−
9 H′

b = H(ga|gb|Rb)
10 Verifies Hb = H′

b
11 PB −verify →

B |≡A |∼ KA7→ A

Using the assumptions

A |≡ ♯(
KB7→ B) and

B |≡ ♯(
KA7→ A)

We can apply the nonce-verification rule to get

A |≡B |≡ KB7→ B and
B |≡A |≡ KA7→ A

Next, we apply the jurisdiction rule to get

A |≡ KB7→ B and
B |≡ KA7→ A

Which is the goal of our protocol.

A. One-way LLC for device authentication

In [15], a simplified the key establishment protocol, based
on [4], is presented. This protocol is shown in Table III. The
simplified protocol begins with both Alice and Bob selecting
new public keys, ga and gb. Alice sends her public key, ga, to
Bob using the unsecured wireless channel. Bob then chooses
a random number, Rb, of sufficient size to prevent guessing
by Marvin, the adversary. Next, Bob calculates a hash value,
Hb, as the concatenation of ga, gb, and Rb, and sends Hb

to Alice using the unsecured channel.
The next step involves the LLC. Rb is encoded and

transmitted over this channel, followed by Bob’s public key,
gb, which is sent over the unsecured wireless channel. After
receiving gb, Alice has all the information she needs to
calculate H ′

b = H(ga|gb|Rb), and verify that Hb = H ′
b.

Because Alice can verify that Rb came from Bob, using
the demonstrative identification [3] of the LLC, she can
verify that Hb was also generated by Bob. Assuming that an
adversary has not compromised Bob’s device, this confirms
to Alice that the information she received from Bob is au-
thentic, verifying his device, his public key gb, and allowing
key establishment to commence.

How does Bob establish that he is communicating with
Alice, though? This question is addressed in [4], and the
answer is reasoned as follows. Bob does not receive any
communication from Alice via an LLC, which may lead
to the conclusion that Bob cannot demonstratively identify
Alice’s device. While this would be true for completely
automated devices, we have the advantage of user interac-
tion to complete the protocol. When Alice verifies she is
communicating with Bob, she implicitly verifies to Bob that
Hb is correct. Because Hb contains ga, Alice’s verification
to Bob also confirms to Bob that he has used the correct
values in calculating Hb, and those values can be trusted to
establish a secure channel. Even if Bob were a kiosk device,
he could receive confirmation from Alice via a push-button
device, which only Alice would be able to press. ([4] points
out that it would take an extremely sophisticated attacker to
develop a button-pushing device that could not be detected
by the kiosk user.)

1) Proving the Protocol Correct: We will use BAN logic
to analyze the correctness of this protocol. To do so, we first
establish the following assumptions:

A |≡ ga B |≡ gb

A |≡A Z⇒ ga B |≡B Z⇒ gb

A |≡B Z⇒ gb B |≡A Z⇒ ga

A |≡ ♯(Rb) B |≡ ♯(Rb)
A |≡ † (ga) B |≡ † (gb)
A |≡ † (gb) B |≡ † (ga)
A |≡ † (Rb) A |≡B Z⇒ Rb

Next, we idealize the protocol. According to [1], ideal-
ization of protocols involves removing any messages not
encrypted. Doing so would leave us with the following
idealized protocol:

Message 1 : B → A : H(ga, gb, Rb)

While this is technically correct, according to the BAN
logic analysis process, we must point out that we require
additional information to be transmitted for the Hash ver-
ification step of the protocol. [1] argues that cleartext
messages can be forged. However the hashing element of
the protocol prevents cleartext messages, such as ga and gb,
from being forged. Effectively, the hash component verifies
the correctness of these values, and therefore they should
be included in the protocol idealization. We also add the
fifth message, the manual user interaction step “verify”
between A and B, because this step also serves to validate
information sent in cleartext during the protocol.

Message 1 : A→ B : ga

Message 2 : B → A : H(ga, gb, Rb)
Message 3 : B → A : Rb

Message 4 : B → A : gb

Message 5 : A→ B : verification
Now we can prove the correctness of the protocol, the

goal of which is for each device to believe the public key

of the other device, so secure key establishment may occur.
Formally, this is:

A |≡ gb and
B |≡ ga

We begin by proving A |≡ gb. In message 2, we see
H(ga, gb, Rb) sent via LLC from B to A. By the side
channel communication (SCC) rule, we obtain:

A ▹ H(ga, gb, Rb) and
A |≡B |∼H(ga, gb, Rb)

Next, we apply the hash analysis rule. Because we
assume A |≡B Z⇒ gb, A |≡B Z⇒ Rb, A |≡ † (gb),
A |≡ † (ga), and A |≡ † (Rb), and we have deduced that
A |≡B |∼H(ga, gb, Rb), knowing that A |≡A Z⇒ ga, we
combine these with message 4, A ▹ gb to get:

A |≡B |∼ gb

Next, we consider another component of BAN logic not
yet mentioned, a freshness rule that states: if A believes one
part of a formula is fresh, then the entire formula must also
be fresh [1]. This is shown as follows:

P |≡ ♯(X)
P |≡ ♯(X,Y)

Using this rule, we can establish that since we assume
♯(Rb), we can deduce:

♯(ga)
♯(gb)

Knowing that ♯(gb) and A |≡B |∼ gb, we can apply the
nonce-verification rule to obtain:

A |≡B |≡ gb

And because we assume A |≡B Z⇒ gb, we can use the
jurisdiction rule to obtain the desired result:

A |≡ gb

This shows the first half of the protocol results. What
about B |≡ ga? Actually, A establishes this for B. Consider
what happens during step 10 of the protocol (shown in III).
A verifies that the information from B is correct, according
to what A sent and received using the LLC. So message 5
of the idealized protocol verifies for B that it has the correct
information, allowing B to conclude the ga it received
in message 1 was actually said by A (A |∼ ga). This also
provides the belief in a fresh ga for B, since A must have
established ♯(gb) prior to the verification step (thus implying
♯(ga) by the freshness rule). We can apply these beliefs to
the nonce-verification rule and jurisdiction rule to obtain the
second half of the desired result:

B |≡ ga

VI. CONCLUSION AND FUTURE WORK

We have shown that device authentication in ubiqui-
tous computing environments is not possible using only a
single broadcast communication channel. However, using
LLCs, we can achieve device authentication. Proving such
a protocol correct requires extensions of BAN logic, which
we proposed and demonstrated by analyzing two different
device authentication protocols. Future work will include
more detailed analysis of existing solutions, and the poten-
tial generation of new device authentication protocols for
ubiquitous computing.

REFERENCES

[1] M. Burrows, M. Abadi, and R. Needham, “A logic of authen-
tication,” ACM Trans. Comput. Syst., vol. 8, no. 1, pp. 18–36,
1990.

[2] F. Stajano and R. J. Anderson, “The resurrecting duckling:
Security issues for ad-hoc wireless networks,” in Proceedings
of the 7th International Workshop on Security Protocols.
London, UK: Springer-Verlag, 2000, pp. 172–194.

[3] D. Balfanz, D. K. Smetters, P. Stewart, and H. C. Wong,
“Talking to strangers: Authentication in ad-hoc wireless net-
works,” in In Symposium on Network and Distributed Systems
Security (NDSS 02), 2002.

[4] F.-L. Wong and F. Stajano, “Multi-channel protocols,” in 13th
International Workshop in Security Protocols, April 2005.

[5] J. McCune, A. Perrig, and M. Reiter, “Seeing-is-believing:
using camera phones for human-verifiable authentication,” in
The 2005 IEEE Symposium on Security and Privacy, May
2005.

[6] D. Shin and S. Im, “Visual device identification for security
services in ad-hoc wireless networks,” in Proceedings of
20th International Symposium on Computer and Information
Sciences (ISCIS’05), Istanbul, Turkey, October 2005.

[7] D. Shin, “Securing spontaneous communications inwireless
pervasive computing environments,” in ISM ’05: Proceedings
of the Seventh IEEE International Symposium on Multimedia.
Washington, DC, USA: IEEE Computer Society, 2005, pp.
662–667.

[8] W. R. Claycomb and D. Shin, “Secure real world interaction
using mobile devices,” in Proceedings of the Pervasive Mo-
bile Interaction Devices (PERMID) 2006 Workshop, Dublin,
Ireland, May 2006.

[9] ——, “Using a two-dimensional colorized barcode solution
for authentication in pervasive computing,” in Proceedings
of the IEEE International Conference on Pervasive Services
2006, Lyon, France, June 2006.

[10] N. Saxena, J.-E. Ekberg, K. Kostiainen, and N. Asokan,
“Secure device pairing based on a visual channel (short
paper),” in SP ’06: Proceedings of the 2006 IEEE Symposium
on Security and Privacy. Washington, DC, USA: IEEE
Computer Society, 2006, pp. 306–313.

[11] T. Kindberg and K. Zhang, “Securing spontaneous inter-
actions,” in Proceedings of the 2nd UK-UbiNet Workshop,
Cambridge, UK, May 2004.

[12] M. Goodrich, M. Sirivianos, J. Solis, G. Tsudik, and E. Uzun,
“Loud and clear: Human-verifiable authentication based on
audio,” Cryptology ePrint Archive, Report 2005/428, 2005.

[13] M. T. Goodrich, M. Sirivianos, J. Solis, C. Soriente,
G. Tsudik, and E. Uzun, “Using audio in secure device
pairing,” Int. J. Secur. Netw., vol. 4, no. 1/2, pp. 57–68, 2009.

[14] C. Soriente, G. Tsudik, and E. Uzun, “Hapadep: Human
asisted pure audio device pairing,” Cryptology ePrint Archive,
Report 2007/093, 2007, http://eprint.iacr.org/.

[15] W. Claycomb and D. Shin, “Secure device pairing using
audio,” in Proceedings of the 43rd IEEE International Carna-
han Conference on Security Technology, Zurich, Switzerland,
October 2009.

[16] R. Mayrhofer, H. Gellersen, and M. Hazas, “Security by
spatial reference: Using relative positioning to authenticate
devices for spontaneous interaction,” in UbiComp 2007:
Ubiquitous Computing, 2007, pp. 199–216. [Online].
Available: http://dx.doi.org/10.1007/978-3-540-74853-3 12

[17] I. R. Buhan, J. M. Doumen, P. H. Hartel, and R. N. J.
Veldhuis, “Secure ad-hoc pairing with biometrics: Safe,” in
First International Workshop on Security for Spontaneous
Interaction, Innsbruck, Austria, September 2007, pp. 450–
456.

[18] I. Buhan, J. Doumen, P. Hartel, and R. Veldhuis, “Feeling is
believing: A secure template exchange protocol,” in Advances
in Biometrics International Conference, ICB 2007, 2007, pp.
897–906.

[19] S. Capkun, M. Cagalj, R. Rengaswamy, I. Tsigkogiannis, J.-
P. Hubaux, and M. Srivastava, “Integrity codes: Message in-
tegrity protection and authentication over insecure channels,”
IEEE Trans. Dependable Secur. Comput., vol. 5, no. 4, pp.
208–223, 2008.

[20] S. Brands and D. Chaum, “Distance-bounding protocols,” in
EUROCRYPT ’93: Workshop on the Theory and Application
of Cryptographic Techniques on Advances in Cryptology.
Secaucus, NJ, USA: Springer-Verlag New York, Inc., 1994,
pp. 344–359.

[21] D. M. Nessett, “A critique of the burrows, abadi and needham
logic,” SIGOPS Oper. Syst. Rev., vol. 24, no. 2, pp. 35–38,
1990.

[22] C. Boyd and W. Mao, “On a limitation of ban logic,” in
EUROCRYPT ’93: Workshop on the Theory and Application
of Cryptographic Techniques on Advances in Cryptology.
Secaucus, NJ, USA: Springer-Verlag New York, Inc., 1994,
pp. 240–247.

[23] W. Mao and C. Boyd, “Towards formal analysis of security
protocols,” in In Computer Security Foundations Workshop
VI. IEEE Computer Society Press, 1993, pp. 147–158.

[24] M. Burrows, M. Abadi, and R. Needham, “Rejoinder to
Nessett,” SIGOPS Oper. Syst. Rev., vol. 24, no. 2, pp. 39–
40, 1990.

[25] L. Gong, R. Needham, and R. Yahalom, “Reasoning about
belief in cryptographic protocols,” in Proceedings 1990 IEEE
Symposium on Research in Security and Privacy. IEEE
Computer Society Press, 1990, pp. 234–248.

[26] R. Kailar, V. D. Gligor, and L. Gong, “On the security
effectiveness of cryptographic protocols,” in In Proceedings of
the 4th IFIP Working Conference on Dependable Computing
for Critical Applications, volume 9 of Dependable Computing
and Fault-Tolerant Systems, 1994, pp. 139–157.

[27] M. Abadi and M. Tuttle, “A semantics for a logic of au-
thentication,” in In Proceedings of the ACM Symposium of
Principles of Distributed Computing. ACM Press, 1991, pp.
201–216.

[28] P. van Oorschot, “Extending cryptographic logics of belief to
key agreement protocols,” in CCS ’93: Proceedings of the 1st
ACM Conference on Computer and Communications Security.
New York, NY, USA: ACM, 1993, pp. 232–243.

[29] P. F. Syverson and P. C. V. Oorschot, “On unifying some
cryptographic protocol logics,” in SP ’94: Proceedings of the
1994 IEEE Symposium on Security and Privacy. Washington,
DC, USA: IEEE Computer Society, 1994, p. 14.

[30] J. M. Sierra, J. C. Hernandez, A. Alcaide, and J. Torres,
“Validating the use of ban logic,” in Proceedings of the In-
ternet Communication Security Workshop, ser. Lecture Notes
in Computer Science, vol. 3043. Springer, April 2004, pp.
851–858.

[31] C. Meadows and D. Pavlovic, “Deriving, attacking and de-
fending the gdoi protocol,” in Computer Security - ESORICS
2004, 9th European Symposium on Research Computer Secu-
rity, vol. 3193. Lecture Notes in Computer Science, 2004,
pp. 53–72.

[32] A. Datta, A. Derek, J. C. Mitchell, and D. Pavlovic, “A deriva-
tion system and compositional logic for security protocols,”
J. Comput. Secur., vol. 13, no. 3, pp. 423–482, 2005.

[33] I. Cervesato, C. Meadows, and D. Pavlovic, “An encapsu-
lated authentication logic for reasoning about key distribution
protocols,” in CSFW ’05: Proceedings of the 18th IEEE
Workshop on Computer Security Foundations. Washington,
DC, USA: IEEE Computer Society, 2005, pp. 48–61.

[34] A. Datta, A. Derek, J. C. Mitchell, and A. Roy, “Protocol
composition logic (pcl),” Electron. Notes Theor. Comput. Sci.,
vol. 172, pp. 311–358, 2007.

[35] M. Burrows, M. Abadi, and R. Needham, “A logic of authen-
tication,” Digital Equipment Corporation Systems Research
Center, Tech. Rep. SRC Research Report 39 - Revised,
February 1990.

