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Abstract

Improved resource utilization and fault tolerance of
large-scale HPC systems can be achieved through fine-
grained, intelligent, and dynamic resource (re)allocation.
We explore the components and enabling technologies nec-
essary for the creation of an interacting system that could
provide this capability: specifically 1) Scalable monitor-
ing and analysis to inform resource allocations decisions,
2) Virtualization to enable dynamic reconfiguration, 3) Re-
source management for the combined physical and virtual
resources and 4) the overall orchestration of the allocation,
evaluation, and balancing or resources in a dynamic envi-
ronment. We discuss both general and HPC-centric issues
that impact the design of such as system. Finally, we present
our proof-of-concept system, giving both design details and
examples of its application in real-world scenarios.

1 Introduction

As the compute nodes of high performance compute
(HPC) clusters become more complex and powerful, the
required complexity of a resource management system for
efficiently utilizing these resources increases dramatically.
When there was only a single processing unit per compute
node the scheduling choices were relatively simple e.g. al-
locate a compute node per application process. With the
introduction of multiple processing units per compute node
(typically 2) the complexity became a bit more complex in
that there was now the possibility of contention for both
memory and network bandwidth. Contention for network
bandwidth was largely ignored and the main decision point
was memory footprint. Current systems, however, not only
have more processors per node (4 - 8) but each processor

currently has four or six cores with more coming in the fu-
ture. Some systems such as Los Alamos National Lab’s
Roadrunner system [7] have nodes consisting of a hetero-
geneous mix of processors. Making scheduling decisions
in these environments can still be simple e.g. allocate a set
of nodes to a user application based on how many of which
type of processing unit they ask for and round up to the node
level. However, such simple scheduling decisions are made
at the possible expense of overall platform efficiency and
perhaps even application performance.

In order to make more intelligent decisions the schedul-
ing system would need more insight into how resources are
actually being utilized by the applications running on them.
Additionally, in order to correct for contention or underuti-
lization, the scheduling system should have a mechanism
for migrating processes from one resource to another in or-
der to minimize contention and maximize utilization.

In this paper we explore the components and enabling
technologies for such a system. Specifically we address
the following: 1) Obtaining and calculating meaningful
low level resource utilization information through a scal-
able monitoring and analysis system designed for real time
periodic collection and analysis of hardware level informa-
tion for doing failure prediction to enable more fault tolerant
HPC systems. 2) Utilization of virtualization technology for
providing process level mobility for migration to enable re-
source rebalancing in response to application requirements,
system state, and/or failure prediction. 3) Utilization of a
open source resource management system (SLURM) com-
monly used in HPC environments for management and al-
location of both the physical and the virtual resources. 4)
Orchestration of the allocation, evaluation, and balancing
of resources with respect to the applications running on a
system via our proof-of-concept Controller code.

The paper is organized as follows: In Section 2 we dis-
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cuss current HPC usage models as we know them. This is
based on our experience and discussions with system ad-
ministrators of our capacity compute clusters at Sandia Na-
tional Laboratories. We use these usage models to motivate
applying virtualization and ”Cloud” i.e. Infrastructure as a
Service (IaaS) concepts to HPC platforms and discuss con-
siderations in such application in Section 3. Section 4 gives
insight into resource allocation, contention, and monitoring
issues. Our system design including all of the high level
components and how they interact is covered in Section 5
followed by some examples of real use of the system for al-
location, balancing, and relocation due to impending failure
in Section 6. Finally we discuss related work and summa-
rize in Sections 7 and 8, respectively.

2 HPC Usage Models

Although there are exceptions, modern HPC platforms
typically still use a per-node allocation scheme when allo-
cating resources to applications. Given the increasing num-
ber of resources available in a compute node (our testbed
nodes have 4 CPUs, 24 cores, and 32 GB of memory) this
can be very wasteful. As nodes grow in computational re-
sources, allocation will certainly have to be done on a finer
granularity whether on a per-CPU, per-core, or some other
granularity. With this, however comes increased possibility
for contention in some subsystem.

A barrier to higher-granularity resource allocation is a
lack of insight into the run-time resource demands of an ap-
plication. Typically, how the allocated resources are utilized
by an application is not monitored or, if it is, the information
is only used for gross machine utilization statistics. Some
of the major factors in allocation requests are memory re-
quirements, CPU utilization, memory bandwidth, and node
interconnect bandwidth. While memory footprint presents a
hard limit on how many processes can be hosted on a node,
we see many application runs on our production systems
that utilize less than 20% of the 32GB available. Discus-
sions with some users revealed that they preferred to run a
single process per CPU, even though each CPU had mul-
tiple cores available, in order to avoid possible contention
for L3 cache and main memory. The same users said that if
there was a way to provide feedback on the actual utilization
of these resources so that they could take better advantage
of them they would. Of course they don’t want such mea-
surements to have any impact on their applications run time.

Our goal, then, is to enable intelligent and dynamic
placement of tasks on resources to not only minimize sin-
gle job run-time where possible, but also maximize system
throughput. Information from lightweight, run-time moni-
toring and analysis of resource utilization can not only pro-
vide feedback to the users and their applications but can also
inform a resource management system that can orchestrate

such intelligent, dynamic allocation though lightweight pro-
cess migration mechanisms.

In addition to the obvious general benefits of improved
resource utilization, such a capability would be of particu-
lar use in several scenarios in the HPC environment. For
example, users doing development need to test their appli-
cations at scale, thus requiring a large number of resources
but for a very short period of time. In our current HPC
production systems, such users have to wait in a queue for
for up to a week to run such a test. The situation would
be vastly improved by the ability to place short jobs on re-
sources already running long-lived jobs in a such a way as
to have minimum impact on the long running jobs. The im-
pact (e.g., time and memory footprint constraints) would be
monitored and bounded by the resource management sys-
tem. Also of note is that the users of a HPC platform typ-
ically all have to build their application codes for the plat-
form on which they are running. Use of full virtualization
would allow a user to utilize their system image and envi-
ronment on any such enabled system. Additionally even if
the host operating system were upgraded the user could use
their image until such a time as they deemed it valuable to
them to port to a later OS. This would decouple the sys-
tem administrators upgrading a platform from the applica-
tion programmers need to port to a new software platform.
Currently one can not happen without the other which re-
quires a lengthy process of upgrading a small section on
which the application programmers must ensure their codes
run before a whole system upgrade can be completed.

3 Virtualization and IaaS

As alluded to above, even with understanding of resource
usage provided by an appropriate monitoring system, unless
there is a mechanism to provide process mobility within the
pool of platform resources, users would ultimately be re-
sponsible at launch time for appropriate use of resources
based on feedback from their last similar application run.
Virtualization then seems a likely candidate mechanism for
such process mobility with the provision that the overhead
doesn’t surpass the gains. Though there are other MPI based
process migration mechanisms (e.g. LA/MPI integrated
with BLKR [3] and CHARM++ [16]) virtual machine tech-
nologies such as Xen [15] and KVM [6] provide nice con-
tainers that can be migrated within a pool of interconnected
resources transparently to an MPI application process run-
ning within though it should be noted that there are trans-
port related dependencies that must be accommodated for
technologies other than ethernet (used in this work), i.e. In-
finiband and Myrinet, but these are beyond the scope of this
paper. Use of such virtualization technologies allows the
infrastructure presented to the user application to be tai-
lored to the applications needs and to be dynamically lo-



cated within the pool of physical resources as necessary to
maximize performance and resource utilization (IaaS).

3.1 Overhead

There has been substantial work done to quantify and
identify sources of overhead associated with running HPC
applications in virtualized environments. While we have
seen from 20% to over 100% overhead in running a partic-
ular HPC application in a Kernel Virtual Machine (KVM)
environment on our testbed system when scaling from 1 to
240 processes, there are claims [9] of actual speedups run-
ning certain NAS Parallel Benchmarks in a Xen environ-
ment. Hardware vendors we have spoken with claim that
more support is being built into the chip sets to maximize
performance in these environments. Thus we are taking the
approach of building the infrastructure for facilitating the
efficient application of these resources to traditional HPC
platform resource management. Additionally there are also
potential gains to be had in the area of resiliency using a
combination of such a management system together with a
viable resource health monitoring facility. In that scenario,
in order for virtualization to be a viable technology in HPC
the cost of the overhead only has to be lower than the combi-
nation of the benefits in platform efficiency and the benefits
from less frequent checkpoints.

3.2 Considerations in Provisioning and
Mobility for MPI Applications

In this section we discuss the process of launching, mi-
grating, and running an MPI application in a virtualized
environment. In particular we will be discussing this in
the context of KVM environments as this is what we are
currently using in our testbed environment. We use one-
SIS [10] to create the diskless NFSroot image used by all
our KVMs. We use a Linux operating system with a 2.6.27
kernel which is what also is run on our compute nodes.
When launching a particular instance, the boot image and
maximum memory allocation need to be specified and the
proper virtual networking set up. Since we are doing disk-
less booting we also require a properly configured dhcp
server. Additionally we use numactl to bind each instance
to a particular core and the memory region associated with
its CPU. Once this KVM is launched on a machine it takes
approximately 90 seconds to boot completely. At this time
it is a fully functional linux host and can support an appli-
cation with a memory footprint equal to the container size
less the operating system and container itself.

Live migration is accomplished by first setting up a con-
tainer to receive the virtual machine and then transferring
the KVM state to the container. Again the host, core, and
memory region are specified for a particular host. Note that

the new container must be the same size as the original. The
new container after state is transferred has the same identity
as the original and processes running inside don’t undergo
any change (the migration is transparent). Though static mi-
gration is an option the advantage of live migration is mini-
mal downtime as most state is transferred while the machine
is still running and only when there is a minimal amount left
is operation frozen and the remainder transferred. The time
for these two phases is quite different. Our container setup
takes about 0.8 seconds and is independent of specified con-
tainer size. The migration phase takes substantially longer
(10 - 13 seconds in our testbed for a 500MB KVM) but can
vary depending on how much memory pages are changing
during the migration process. Another factor in the migra-
tion phase is interconnect speed. In our testbed we use a
gigabit ethernet interconnect and would expect the migra-
tion to be faster with a higher speed interconnect.

For single process applications migration can be per-
formed at the whim of the entity performing migrations but
some consideration needs to be given when migrating an
MPI application. This is because it is possible for in flight
messages to be lost that are destined for a process resid-
ing on a migrating KVM during the final phase of migra-
tion while its state is frozen. In order to preclude such loss
we have written a MPI Barrier wrapper that performs
checks and cooperates with our migration coordination en-
tity (described in section 5.4) in order to perform the mi-
gration, if requested, at a barrier in such a way that no such
messages will be lost. This results in some additional over-
head, the necessity to re-link an application in order to use
this facility, and the loss of ability to migrate an MPI pro-
cess at an arbitrary time. Without this mechanism, however,
there is the possibility for the application to hang indefi-
nitely due to a lost message.

4 Resource Considerations

When making decisions on process placement, which in
this work we do by placing KVMs, it is important to take
into consideration as many resources as possible. For in-
stance if one were only to take into consideration memory
footprint and ignore the CPU load of an application it would
not matter on which processing element any KVM landed.
In this case one might co-locate many KVMs on the same
core of the same CPU. Though this would be fine from
a system memory perspective it would clearly impact the
performance of the KVMs as the one processing element
would have to time slice between all KVMs each of which
could only achieve a fraction of the performance possible
if it resided alone on a processing element. Likewise tak-
ing into account memory activity and the load that will be
put on the memory bus, network activity and both the in-
ternal and external network loads, and all other shared re-



sources will be required in order to make sound decisions
about which resources should host which processes.

Furthermore, where information comes from has a bear-
ing on the validity of the information and how it should be
interpreted. In this work we used the host resource view of
both cpu and memory utilization to inform migration place-
ment decisions. The reasons for not using all of the above
information is that we don’t currently have the tools to de-
rive good approximations of memory bus utilization and our
test MPI application is not network intensive.

4.1 Utilization & Viewpoint

Why viewpoint needs to be taken into account for proper
resource utilization measurements is illustrated in Figure 1.
CPU loads were generated for processes running in KVM’s
with single and multiple VM’s per core. The realized
utilization obtained from calculations from /proc/stat
from the VM view and the Host view (i.e., reading from the
VM’s file system vs the Host’s) are principally in agreement
for 1VM/core, however the processes running in the virtu-
alized environment when there are multiple KVMs per core
(plotted as a single line as the results were the same) not
only do not achieve their requested utilization levels (ex-
cept at levels below 25% in this case) but their sums don’t
equal the utilization reported by the host for the core on
which they are running. We believe this is because their ap-
parent utilization depends on where their sleep takes place
relative to when they are swapped out. The way our work
load generator works is to spend a user specified fraction of
a time interval in computation after which a usleep is per-
formed for the duration of the interval. (We performed this
test using our own load generator as well as another [8].)

4.2 Scheduling and Resource Manage-
ment Issues

In this section we discuss some of the issues with man-
aging both physical and virtual resources in a HPC environ-
ment with a variety of workloads and how we propose to
address them.

In order to minimize adverse impact to user applications
our proposed approach is to initially allocate resources ac-
cording to the users specifications with the only difference
being that the application would be run in a VM as opposed
to directly on the hardware. Monitoring resource utiliza-
tion under these conditions can then give insight as to how
resources are being utilized. The results would not only
provide feedback to the user for future allocation but would
also be used to initiate migration of VMs to more appropri-
ately utilize resources.

In the case where contention was observed, this dynamic
reconfiguration would mean spreading out over more phys-

Figure 1. Percent CPU utilization requested in
a VM vs. measured as viewed on the host ma-
chine and within the VM. Requested utiliza-
tion may not be realized due to contention.
Host and VM views may be inconsistent.

ical resources. Alternatively, if resources were being lightly
used it could mean consolidation onto fewer physical re-
sources thus freeing up more for other applications or co-
locating another application to share resources rather than
allocate dedicated resources to it. This would require ei-
ther previous knowledge of the other application’s operat-
ing characteristics or continuous monitoring and evaluation
of the resource utilization. As mentioned previously, there
are many factors to be taken into account when calculating
resource utilization and decisions to migrate running pro-
cesses should not be made too frequently or with too little
information. For instance since the operational character-
istics of an application may vary dramatically over phases
of execution making a decision to perform a consolidation
too soon in an applications execution sequence may just re-
sult in having to make the decision to spread it back out later
on. Given the relatively high cost of performing a migration
these should be done as infrequently as possible.

Another scenario is a user who wants to test his latest
code at scale but doesn’t want to have to wait in the queue
for a long period of time. In this case (memory footprints
permitting) the application could be co-located with any
number of other applications which could potentially be ad-
versely impacted but only for the short duration of the test.

In a final scenario, a high priority user needs to run and
normally other jobs would be terminated so the high priority
job could run. In such a case these lower priority but well-
balanced jobs could be temporarily consolidated or frozen
and saved to disk in order to free up enough resources for
the high priority job and continue making progress but with
degraded performance until such a time as they either fin-



ished or appropriate resources were freed and they were re-
distributed to them.

Finally, the dynamic nature of migration adds complex-
ity to resource monitoring and management. The continu-
ous evaluation of resources of both physical and virtual enti-
ties with respect to their job state means that dynamic track-
ing of the fluid job-to-resource mapping must take place.
Further, traditional schedulers do not have the facility for
adjusting job allocations at run-time. We have had to imple-
ment such features in our system described in Section 5.

5 System Design

In this section we first discuss the component parts of our
IaaS enabled HPC system shown in Figure 2. We follow this
section with some real world examples of the use of such a
system in our testbed environment.

Figure 2. High level view of our proof of con-
cept IaaS enabled HPC system.

5.1 Compute Resources

Just as important as all of the support systems is the
actual hardware of which the compute resources are com-
prised. In order for virtualization to be viable in a HPC
setting there must be hardware support. Older systems lack-
ing such support could still take advantage of mobility but
the lack of performance due to computational overhead and
lack of hardware I/O support for advanced networking tech-
nologies, i.e. Infiniband, would render such systems inef-
fective for HPC applications. Our particular testbed envi-
ronment is comprised of ten nodes each with 4 AMD 2.2
Ghz Istanbul Opteron processors with 32GB of memory.
In the examples shown we use our 1 gigabit ethernet in-
terconnect as we just recently upgraded from the Barcelona

processor which didn’t provide virtualization support for In-
finiband and currently we have not done the necessary re-
configurations.

5.2 Scalable Monitoring

As mentioned previously, understanding how system re-
sources are being utilized both individually and collectively
is of paramount importance when making resource alloca-
tion decisions. In a real system this may mean real time
monitoring of tens to hundreds of thousands of computa-
tional units and their associated computational load, mem-
ory usage and bandwidth, network utilization, etc. as well
as similar metrics for the virtual machines running on them.
Such monitoring must be of high enough fidelity to al-
low timely decisions to be made when resources are be-
ing severely oversubscribed or failure is predicted but at
the same time be lightweight enough to not be a significant
contributor to resource contention. In order to accomplish
this we use OVIS [11], our monitoring and analysis sys-
tem which has been principally developed to scalably col-
lect and analyze just such data for the purpose of failure
prediction. We have previously proposed [1] that OVIS’s
monitoring and analysis capabilities could enable intelligent
resource utilization decisions necessary for HPC in Cloud
computing environments.

OVIS utilizes a distributed database for data storage and
a lightweight daemon running on each device for which
data is to be collected (compute node and VM in this case
but can include network and storage devices also) which
directly inserts information at regular time intervals into
the database. Parallel analysis engines are used to com-
pute models against which individual ensembles of mea-
surements are compared for detection of either anomalous
behavior or signatures indicative of problems. For this proof
of concept system we have utilized some of the data being
collected for this purpose to also compute resource utiliza-
tion information – specifically regarding memory and CPU
utilization for this study. OVIS is then used to inform our
Controller subsystem of resource contention as well as im-
pending failure.

5.3 Resource Management

We leverage the SLURM (Simple Linux Utility for Re-
source Management) [13] resource management (RM) sys-
tem which is commonly used in HPC systems. This RM
provides facilities for maintaining separate resource parti-
tions, launching batch jobs on resources, running prede-
fined prolog and epilog scripts for setting up and cleaning
resources, and can write pertinent information about alloca-
tions and the jobs running on them to a MySQL database.
SLURM can manage resources on a per-node, per-CPU, and



per-core granularity. We are currently utilizing it in a per-
node management mode to preclude an application from ob-
taining resources within the managed virtual environment
which would then not be taken into account in the resource
utilization calculations.

The current release of SLURM (v2.0) does not provide
the ability for determining and tracking the dynamic virtual
to physical resource mapping information we require. In
our overall system, then we keep both a virtual and physical
partition in SLURM for resource allocations and job infor-
mation, with the additional tracking information as part of
the capabilities of the Controller, which is described in the
next subsection.

5.4 Orchestration by the Controller

Figure 3. High level view of our proof of con-
cept IaaS enabled HPC system.

At the heart of this system is our Controller whose inter-
actions with the monitoring system (OVIS) and the resource
management system (SLURM) is diagrammed in Figure 3
and described in detail in this section. There is an assump-
tion in this diagram that OVIS is continuously monitoring
all pertinent hardware related measurable attributes on each
compute node of the system with some specified periodic-
ity and so has current information with respect to the uti-
lization of resources that can be returned to the Controller
upon request, or pushed to the Controller in case of emer-
gency (e.g., impending failures either due of resource over-
subscription or predicted failure).

An allocation cycle begins with a user request which in
our case is sent to the Controller rather than SLURM but us-
ing the same syntax as though it were being sent to SLURM
with the exception that it accepts some additional arguments
which allow the user to specify how much memory they ex-
pect each process to consume, a maximum packing density

(cores/CPU), and expected process to process bandwidth.
The Controller currently passes the physical allocation re-
quest straight through to SLURM, if no Controller specific
flags are specified, and the physical resources, if available,
are allocated to the Controller. If Controller specific flags
are specified the Controller will make the physical alloca-
tion request based on its evaluation of the resources required
to satisfy the request. For example, if the user is request-
ing 16 processors and has specified a memory size of less
than 1.8GB per process the Controller would know, based
on how the physical resources are interconnected within the
actual compute nodes, that utilizing the first 16 cores of a
compute node would mean sub-optimal placement of some
processes with respect to the memory they would be using
and hence that it should request an allocation from SLURM
that will allow it to satisfy the user request while utilizing at
most 8 GB per CPU including host OS overhead.

Once the Controller figures out the job resource require-
ments it next examines the pool of resources it currently
controls. Note that when the Controller receives a resource
allocation from SLURM it is issued to the Controller and
not to the user application. The Controller maintains con-
text on how the pool of resources under its control are being
utilized by user applications and makes requests of SLURM
on a compute node granularity though it will allocate to
user applications on a per processing element granularity.
Thus if a user requests a single processing element and
the Controller has no free resources that can satisfy the re-
quest while continuing to service the running applications,
the Controller will request another compute node in order
to satisfy the request. If, in the example of the previous
paragraph, it had 4 compute nodes each with a free CPU
whose directly associated memory was also free it would
utilize these rather than request additional resources unless
the inter-process bandwidth was specified and would ex-
ceed that available over the associated interconnect.

As part of this step the Controller would contact OVIS
with a request for actual resource utilization information
on the potential target resources in its pool. This step is
necessary to inform the Controller about resource usage not
bounded by allocations such as network traffic and memory
bus utilization (not currently being collected) as this could
have significant bearing on what additional resources may
or may not be effectively utilized if allocated. As previously
mentioned, there are many factors to be taken into account
when making resource utilization decisions and so, in prac-
tice in our proof-of-concept system, extreme generality of
all requests and (re-)allocation scenarios is not supported,
and rather, at this point a few common rulesets are applied.

The next step, after determining which physical re-
sources will be allocated to an application, is to set up the
virtual environment. This is initiated by the Controller at
which time the maximum memory occupancy must be spec-



ified. Once the KVM is launched the size cannot be changed
without destroying and rebooting it. This of course would
require checkpointing the application and restarting it in the
new containers which is a very costly operation. The boot
time of our image is approximately 90 seconds which is a
lot of overhead for short lived applications. Fortunately mi-
gration only takes approximately 10 to 20 seconds which
provides the opportunity to maintain a pool of idle VMs
that can be migrated to appropriate resources when needed.
The only issue is that of memory size which we expect can
be anticipated over a training period. In order to discover
what the true footprint of an application is, however, one
must query /proc/meminfo from inside the VMs as this
is opaque to the host. With KVM in particular we found that
upon initial launch the host reports relatively little memory
usage with respect to the maximum container size. Upon
migration however, the host reports the total KVM con-
tainer size as being used and migration will fail if the maxi-
mum size exceeds available resources on the receiving host
even though the memory utilization on the original host may
have been relatively small (see Section 6.1). As an exam-
ple, upon launch using our operating system and specify-
ing a memory size of 2.0GB the original host sees about
250MB being used by the KVM process. Upon migration
the receiving host sees the whole 2.0GB being used. Thus,
though the original host may be oversubscribed with respect
to the sum of the maximum sizes of the original KVMs,
target hosts of subsequent migrations may not. Once the
KVMs have been booted and are recognized by SLURM
the Controller submits the original job request to SLURM
on behalf of the original user.

Separate from initial allocation of virtual resources to an
application is the periodic data collection to be used in as-
sessment of the state of actual resource utilization and, in
particular, contention. We plan such automated assessment
in order to minimize wall clock completion time for each
job and maximize resource utilization and system through-
put. Currently this is in the experimental phase and is per-
formed for at least a subset of the potential resources upon
a new job entering or a job exiting the system as described
in Section 6.1. The detection by OVIS of failure indicators
is communicated to the Controller without request and is
acted upon as described in Section 6.2.

In the event that a dynamic configuration of job-resource
mappings is deemed advantageous (such scenarios have as
been described in previous sections), the Controller is re-
sponsible for the launching of new containers, arranging
resources with the Resource Manager, and performing the
migration. For the case of MPI-based applications, orches-
tration of the migration is performed in concert with the
MPI Barrier wrapper discussed in Section 3.2. New
virtual-to-physical mappings are maintained by the con-
troller to enable continuous application-centric monitoring

of the dynamic environment. These are also necessary at
allocation time as well, as the virtual-to-physical jobs map-
ping would typically not be one-to-one based on the granu-
larity of resource assignments and dynamic changes.

Once the job runs to completion or the time limit is
met SLURM writes out results as normal and informs the
Controller which then removes the virtual resources. At
this point the Controller, can return completely unused re-
sources to the physical resource pool or allocate them to
some other application via the process described above.

6 Real World Examples

In this section we give some examples and show re-
sults of two real world scenarios. The first is a case that
is real world in that there are applications which begin with
a smaller memory footprint than where they end up. As a re-
sult the total memory required by the end of the run is what
would need to be allocated for at the beginning. Currently
an application must wait in the queue until resources are
available to satisfy the total required allocation. We demon-
strate a scenario where we can utilize some aspects of KVM
virtualization and migration to give such a user earlier ac-
cess to compute resources than would be currently possible.
The second is based on a failure mechanism that we see in
one of our production clusters at Sandia. This failure oc-
curs when the system is left, for some currently unknown
reason, in a state with abnormally high Active memory us-
age after having been allocated to and cleaned after com-
pletion of an application run. In this case future jobs being
allocated these resources have less memory headroom avail-
able to them than their peer processes on other resources
and hence have a higher probability of failure if they have
significant memory usage.

6.1 Speculative Oversubscription

In this section we describe the use of a characteristic
of the KVMs just mentioned that upon initial launch they
present a much smaller footprint to the host node than their
maximum allocated size. We use this feature to specu-
latively launch a job that oversubscribes the physical re-
sources if the processes running in the KVMs expand to
fill them. This provides the application with a space to run
while it waits for more resources to come available. We il-
lustrate this by launching a sixteen process job each requir-
ing a maximum of 2GB but with the known characteristic
of using that over time and not requiring it all up front. A
screenshot of the numa-maps output showing the per-core
memory in use at allocation is shown in Figure 4.

VM’s were initially placed on 4 of the 6 available cores
per cpu on a single node. Our system continuously moni-
tors Active memory usage. As the application progresses,



Figure 4. Numa-maps output of VM size at al-
location (t) and after migration (b).

it continues to consume memory, increasing in size un-
til OVIS detects that a dangerously high Active memory
level is reached for this node (Figure 5(t)), and notifies the
Controller. When this occurs, the Controller obtains free
resources that will satisfy the application’s requirements,
launches containers there, and informs the MPI-based ap-
plication of the need to migrate when a barrier is reached.
The application then informs the Controller when it is ready
and the Controller migrates a single KVM from each CPU
to the new host leaving each CPU hosting 3 KVMs (Fig-
ure 5(m and b) with a maximum size of 2GB which will fit
within the directly connected memory for each CPU. This is
necessary because for performance reasons we use numactl
to bind each KVM to the memory directly associated with
the CPU on which it resides.

Time traces of the memory utilization for both VMs and
nodes during this process are shown in Figure 6. In the top
plot the memory size of the VMs obtained via numa-maps
is plotted for 2 representative VMs - one not involved in
the migration and one before and after migration. The latter
2 overlap during the migration. The bottom Figure shows
the Active memory utilization for both the node being mi-
grated from and the node being migrated to. Triggering of
the migration occurs when the Active memory on the node
exceeds 75% of its total. The migration time can be seen to
be about 50 seconds here which corresponds to the time it
takes to transfer the 6GB (4 x 1.5GB) of state from the first
host to the second over a one gigabit/sec interconnect. This
would be about 5 sec using 10 gigabit ethernet.

Figure 5. Intentional initial oversubscription
of resources is adjusted by migration when
contention is detected as the application
progress. Screenshots of the OVIS moni-
toring and analysis system showing memory
utilization on the host and VMs. Triggering
(t), during (m), and after (b) migration.

6.2 Health Degradation

One of the common failures in one of Sandia’s produc-
tion HPC capacity clusters is a user application having an
MPI process on a compute node killed by an ”OOM killer”
process due to memory utilization being too high. In the
case that the user application is consuming too much mem-
ory this would be expected, but typically this happens on a
compute node that has been left in a state with high Active
memory as described above [2] and the rest of the process
group on other resources are well behaved. Having one of
the MPI processes killed on one such ill-behaved resources
kills the whole job.

In this case, we have simulated the failure precursor con-
dition by running an additional process on one of the nodes.
Our system continuously monitors the memory utilization
not only on a per node basis, as above, but also analyzes it
with respect to all nodes involved in the job. Detection of a
potential pre-failure condition occurs when 1) a high mem-
ory threshold has been reached on a particular node and



Figure 6. Memory utilization through time
during a live migration triggered by exces-
sive memory consumption on the node. VM
utilization (top), node utilization (bottom).

2) the node having this condition has an abnormally high
memory utilization with respect to the other nodes hosting
other processes of the same MPI job as well. Under the
assumption of generally well-balanced jobs, this indicates
that the problem is one of the node and not of the applica-
tion. Upon detection the combined condition OVIS sends a
message to the Controller which then flags the affected pro-
cesses (in this case all processes on the node with the prob-
lem) to notify them to let the Controller know when they are
at their next barrier so that the Controller can migrate their
host KVMs to a free node.

Figure 7 shows OVIS screenshots of our testbed running
a 64 process MPI job during this example. The shot on
the left shows the second node on the bottom to have much
higher Active memory (blue is higher, red lower) than those
hosting the peer processes (green). The shot on the right
shows that after migration the amount of active memory is
a little higher in the new host but this is due to a migration
causing the total memory allocated to a KVM to be used
on the new host node (as described in Section 5.4 while the
other nodes have not used memory up to their limit.

Figure 7. System discovery of abnormal
memory utilization on a node triggers
migration of the endangered processes
(left).Migration is complete (right).

7 Related Work

There has been substantial work in the area of virtual re-
source management by cloud providers and others with re-
spect to relatively low performance usage models or where
a user is expected to set up and own an environment in
which they develop. Amazon’s EC2 and Eucalyptus’s open
source version of EC2 [4, 5] seem more targeted at setting
up virtual systems for developers with security, service level
agreements, and ease of custom configuration by the user
being priorities. The use cases for these systems, though
they don’t preclude such use, don’t appear to lend them-
selves well to the fluid, high throughput, and relatively open
environments typically being used for high performance
computing applications. The user needs may be different
for each request and a comparatively lightweight virtual in-
frastructure needs to be set up, used for the duration of an
application run that may last from seconds to months, and
then torn down. SLAs in these systems are meant to address
access to high level resources such as CPU cycles, storage,
and network bandwidth but do not address low level issues
such as L3 cache contention, memory bus contention, or any
other of the data transport and storage mechanisms internal
to a compute node that must be shared by co-located pro-
cesses and can have a dramatic affect on HPC application
performance. Also these systems typically provide robust-
ness to failure through redundancy which is a mechanism
typically not available in HPC systems which are typically
diskless.

There has been work done in the area of process mi-
gration both with and without the assistance of virtual ma-
chines [14, 16]. The case for doing process level migra-
tion is that it can be done by transferring much less state
and hence the time involved can be substantially less (sub-
second vs. seconds to tens of seconds). Additionally the
impact to the running application is much less as overhead



associated with such migration is typically only incurred at
the time of migration whereas the overhead of running in
a virtualized environment is incurred over the lifetime of
the application. The downside is that the application wish-
ing to use it must build with a particular MPI implementa-
tion. In recent years though, the overhead being reported
for running HPC applications in virtualized environments
has substantially decreased to the point where it is begin-
ning to look attractive as an environment for these appli-
cations. The main benefits being transparency with respect
to physical location and the ability to run in an environ-
ment quite disjoint from that of the underlying physical re-
sources. Nagarajan et. al. [9] have done proof of concept
work with respect to using a virtualized environment to en-
hance fault tolerance through proactive migration from un-
healthy to healthy resources. In this work they also investi-
gate the overhead of running the NAS parallel benchmarks
in a virtualized environment using Xen. The results of this
study are that the average case overhead is 4.4%. In the
best case they actually see a slight speedup which, pending
further investigation, they attribute to ”memory allocation
policies and related activities of the Xen Hypervisor”.

Shainer et. al. [12] showed that by proper relative place-
ment of application processes on shared hardware, wall time
to completion for a set of applications on a given hardware
platform can be decreased when compared to running them
disjointly. This is due to the difference in required resources
of the two applications. By proper resource requirement
analysis and placement, contention for resources is mini-
mized as is wall time. Of course if one of these individual
jobs had a high priority and a hard time limit it could have
been run faster by having all resources devoted to it.

We rely on all of this background work as motivation for
our proof of concept system to tie all of these disparate but
complementary pieces together. In particular, the applica-
bility of using virtualized environments for large scale HPC
applications hinges on it being/becoming a low overhead
technology which studies in this area seem to indicate will
become a reality in the near future. Additionally our own
work in the area of failure prediction in large scale HPC
platforms [11] has provided us with the necessary monitor-
ing and analysis component which we also plan to build on
for general purpose resource utilization/contention analysis
as discussed in Section 5.2 and as proposed specifically for
resource allocation for HPC in Cloud Computing Environ-
ments in previous work [1].

8 Summary and Conclusions

In this paper we have described how we believe manag-
ing resources in large scale HPC clusters can be made more
efficient by the use of the concept of IaaS together with
mechanisms for providing it such as virtualization technolo-

gies, scalable monitoring and analysis, generalized resource
management, and a coordination mechanism to make them
all work together. We have described why systems such as
Eucalyptus and EC2 aren’t just drop in technologies for this
job. We have designed and implemented a proof of concept
system which we believe is a good basis for such functional-
ity. Finally, though we have not yet achieved full function-
ality, we have applied our proof-of-concept system to some
real world problems (predicted physical resource failure and
load spreading) using an MPI application to demonstrate its
applicability to the HPC domain.
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