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Comparison of analytic 1D pn junction diode photocurrent solutions following ionizing radiation
with Numerical solutions obtained with the Medici simulator’
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Abstract

We compare the numerically and analytically-computed radiation-induced photocurrents from an abrupt junction
pn diode to evaluate the error incurred in using the Ambipolar Diffusion Equation to obtain an analytic solutions.

1 Summary

Numerical device simulators, capable of simulating non-linear and multi-dimensional transient drift/diffusion carrier
movement and the resulting photocurrents are commonly used in the electronics community(e.g. [!]). While such
simulators, which discretize the set of equations on a spatial mesh, can provide detailed solutions, they typically
require hours of compute time for a single semiconductor device. Device simulators are sometimes incorporated into
circuit simulators, such as SPICE [2] or Xyce [3], but are computationally prohibitive beyond application to a handful
of transistors. Circuit simulators use approximate solutions to simulate radiation-induced photocurrents in devices.
One approximation is to use photocurrent solutions to the Ambipolar Diffusion Equation (ADE) as a surrogate for the
actual drift-diffusion carrier transport photocurrents. The error in using these approximate surrogate solutions has yet
to be analyzed. The purpose of this paper is to quantify this error for some specific cases.

The transport behavior of excess carriers in semiconductors is described by the equations of current and continuity
for electrons and holes, as well as Poisson’s equation, which relates the electric field and net charge density. For each
carrier, the current equation may be substituted into the continuity equation, resulting in three equations describing
carrier transport (pp. 320-327, [4]). The equations are:
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where n and p are the electron and hole concentrations, D,, and Dy, fin, fip, Tng» Tpys Tn and 7, are the diffusion
coefficient, mobility, and initial carrier lifetime and carrier lifetime, respectively, for electrons and holes. E is the
electric field, g, and g, are the excess carrier generation densities and 1 and pg are the initial concentrations of
electrons and holes within the device. Poisson’s equation relating the electric field and net charge density and is given

by,
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where e (p — n + Ny — N, + pa — ng) is the net charge density and « is the dielectric constant. The above equa-
tions may be solved numerically within a device. For an abrupt junction pn diode the resulting carrier distribution will
result in a depleted region near the junction as well as separate undepleted p and n regions. Currents may be solved by
evaluation of the current densities,
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at the device contacts using the boundary conditions. Simultaneously solving the three equations analytically is
difficult. Ward [5] used perturbation techniques to solve the steady two-dimensional potential distribution in an n-
channel MOSFET. One difficulty in deriving analytic steady or transient solutions is the free boundary for edges of
the depleted region of the device. As such, the system of equations (1, 2, and 3) are not amenable to exact analytic
mathematical analysis for transient photocurrent effects. The electrical neutrality or charge balance approximation
suggested by van Roosbroeck [0] is used to combine the electron and hole current-continuity equations into the single
ambipolar diffusion equation (ADE) as described on pp. 327-328 in Mckelvey [4]). Analytic arguments are given in
[4] that support the use of the ADE when the generated excess carrier concentrations are small compared to the initial
carrier concentrations. This corresponds to ”low-dose” radiation environments. To our knowledge there has been no
comparison using advanced numerical codes to determine the actual error incurred in using photocurrent solutions to
the ADE as surrogates to the actual solution to the entire system of equation. In this study, we compare exact 1D
analytic photocurrent solutions to the ADE with those obtained with the Medici numerical code [!]. In making the
comparison, we assume that the numerical error Medici incurs in solving the carrier transport equations is negligible
compared to the error incurred in using the van Roosbroeck [0] approximation.

For our comparison we assume a finite abrupt pn diode with constant material properties within each doped region.
Figure 1 shows a reverse biased pn diode under light or ionizing radiation. We assume ohmic contacts at the device
ends. The local coordinates are taken for convenience in the mathematical analysis. In order to obtain an analytic
transient photocurrent solution, the pn diode is separated into three regions; the depletion region with the width and
boundaries established by an approximation, and the undepleted p and n regions. The depletion width and boundaries
are computed from the analytical approximation for an abrupt junction diode given on pp. 158-159 of Grove [10]. The
current for the entire device consists of the sum of the depletion zone drift current along with the two minority carrier
diffusion currents from the undepleted regions [7].

In order to derive a single equation from equations 1 and 2, we impose the electrical neutrality condition v =
n —ng = p — po [0]. This is an approximation. McKelvey argues that the error should be small when v << ng and
u << po. Using this approximation and multiplying eq. (1) by ppu, and equation (2) by nu, and adding we get a
single equation, the ambipolar diffusion equation. In Cartesian coordinates, the one-dimensional ADE may be written
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where u(x,t) is the excess carrier density, g(z,t) is the excess carrier generation rate (in excess of the thermal
carrier generation rate)due to irradiation, and L is the length of the undepleted n-type region, labeled as X in Figure
1. The equations for the ambipolar coefficients, D, and p, and 7,(t) are given on page 328 of McKelvey [4]. F is
the electric field, composed of an internal field due to internal charged carriers and an applied field due to an applied
potential.

For low-level injection in n-type material, w(z,t) is much less than the majority carrier doping for the device
and the ambipolar coefficients became approximately those of the minority carrier; D,, 1ip, and 7,(t), respectively.
For convenience, we drop the p subscript for these parameters for the rest of our analysis. We assume the boundary
conditions, u(0,t) = u(L,t) = 0 with the initial condition «(z,0) = f(x). Under these conditions, the dominant
current component in the undepleted n-type region is the minority carrier current.

The solution to the excess carrier density u(x, t) of equation (6) for the undepleted n-type region is,
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where o, = "% and V,,(0) and G, (w) are given by
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Figure 1: Reverse biased pn diode under light or ionizing irradiation. Device is irradiated from the left. For the 1D analysis, the
contacts are assumed to cover the entire left and right hand surfaces. The shaded region represents the depletion zone and the
unshaded regions represent undepleted zones. The total current is the sum of the drift and diffusion current from the depleted and
undepleted zones. Local coordinate systems are shown.

Equation (7) represents the general solution for the excess carrier density within the undepleted n-type region of the
device. From eq. (5) utilizing the boundary condition at = =), the current density is,
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With the addition of the first term representing an initial excess carrier density at time ¢ = 0, equations (7) and
(10) are slight generalizations of equations found in [9].

Our interest is the carry out a comparison for a simple square wave gamma pulse. Assuming f(z) = 0 and that
pn diode is heavily-doped, so that there is no ohmic field effect in the undepleted regions, the total photocurrent for a
step function is known [9].
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Since the photocurrent is the solution to a linear PDE, we may use the principle of super-position to compute the
photocurrent for a square pulse as

qulse (t) = Jtotal (t) - Jtoml (t - tO) (12)

For our example comparison, we use the parameters of Figure 2 in [9]. Specifically, the diffusion length is set
at L, = VD7 = 0.015 and the parameter L/ L, = 0.32, corresponding to {;, = 0.32 in [9]. The initial minority
carrier lifetime is 7, = 107%s. A 0.2us square wave gamma pulse is assumed to begin at ¢ = 0. Figure 2 gives
the computation of the total analytic photocurrent density for a pulse, Jyisc, as well as the numerical photocurrent
computed with Medici with respect to time for three radiation doses-rates. The solid curves represent the numerical
solution, while the dashes curves represent the analytic solution. It is apparent from the curves that the analytic and
numerical curves are very close for the 1210% Rad(Si)/s dose rate, while a fairly significant error is apparent at the
1210° Rad(Si)/s dose rate, and a very significant error appears at the 12101 Rad(Si)/s dose rate. We note that the
curves so appear similar in shape for each of these cases, indicating that it may be possible to adjust the apparent
dose rate at higher dose in the analytic photocurrent solutions to get better agreement between the two methods of
solution. In the full paper, we will compare the analytic and numerical models for other doping parameters and for
carrier mobility and lifetime models typically used in numerical models.
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Figure 2: Reverse biased pn diode under ionizing irradiation. The total current is the sum of the drift and diffusion current from the
depleted and undepleted zones. Three radiation doses are shown
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