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Abstract

We compare the numerically and analytically-computed radiation-induced photocurrents from an abrupt junction

pn diode to evaluate the error incurred in using the Ambipolar Diffusion Equation to obtain an analytic solutions.

1 Summary
Numerical device simulators, capable of simulating non-linear and multi-dimensional transient drift/diffusion carrier

movement and the resulting photocurrents are commonly used in the electronics community(e.g. [1]). While such

simulators, which discretize the set of equations on a spatial mesh, can provide detailed solutions, they typically

require hours of compute time for a single semiconductor device. Device simulators are sometimes incorporated into

circuit simulators, such as SPICE [2] or Xyce [3], but are computationally prohibitive beyond application to a handful

of transistors. Circuit simulators use approximate solutions to simulate radiation-induced photocurrents in devices.

One approximation is to use photocurrent solutions to the Ambipolar Diffusion Equation (ADE) as a surrogate for the

actual drift-diffusion carrier transport photocurrents. The error in using these approximate surrogate solutions has yet

to be analyzed. The purpose of this paper is to quantify this error for some specific cases.

The transport behavior of excess carriers in semiconductors is described by the equations of current and continuity

for electrons and holes, as well as Poisson’s equation, which relates the electric field and net charge density. For each

carrier, the current equation may be substituted into the continuity equation, resulting in three equations describing

carrier transport (pp. 320-327, [4]). The equations are:
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where n and p are the electron and hole concentrations, Dn and Dp, µn, µp, τn0 , τp0 , τn and τp are the diffusion

coefficient, mobility, and initial carrier lifetime and carrier lifetime, respectively, for electrons and holes. E is the

electric field, gn and gp are the excess carrier generation densities and n0 and p0 are the initial concentrations of

electrons and holes within the device. Poisson’s equation relating the electric field and net charge density and is given

by,
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where e (p− n+Nd −Na + pa − nd) is the net charge density and κ is the dielectric constant. The above equa-

tions may be solved numerically within a device. For an abrupt junction pn diode the resulting carrier distribution will

result in a depleted region near the junction as well as separate undepleted p and n regions. Currents may be solved by

evaluation of the current densities,

Jn = −Dn
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at the device contacts using the boundary conditions. Simultaneously solving the three equations analytically is

difficult. Ward [5] used perturbation techniques to solve the steady two-dimensional potential distribution in an n-

channel MOSFET. One difficulty in deriving analytic steady or transient solutions is the free boundary for edges of

the depleted region of the device. As such, the system of equations (1, 2, and 3) are not amenable to exact analytic

mathematical analysis for transient photocurrent effects. The electrical neutrality or charge balance approximation

suggested by van Roosbroeck [6] is used to combine the electron and hole current-continuity equations into the single

ambipolar diffusion equation (ADE) as described on pp. 327-328 in Mckelvey [4]). Analytic arguments are given in

[4] that support the use of the ADE when the generated excess carrier concentrations are small compared to the initial

carrier concentrations. This corresponds to ”low-dose” radiation environments. To our knowledge there has been no

comparison using advanced numerical codes to determine the actual error incurred in using photocurrent solutions to

the ADE as surrogates to the actual solution to the entire system of equation. In this study, we compare exact 1D

analytic photocurrent solutions to the ADE with those obtained with the Medici numerical code [1]. In making the

comparison, we assume that the numerical error Medici incurs in solving the carrier transport equations is negligible

compared to the error incurred in using the van Roosbroeck [6] approximation.

For our comparison we assume a finite abrupt pn diode with constant material properties within each doped region.

Figure 1 shows a reverse biased pn diode under light or ionizing radiation. We assume ohmic contacts at the device

ends. The local coordinates are taken for convenience in the mathematical analysis. In order to obtain an analytic

transient photocurrent solution, the pn diode is separated into three regions; the depletion region with the width and

boundaries established by an approximation, and the undepleted p and n regions. The depletion width and boundaries

are computed from the analytical approximation for an abrupt junction diode given on pp. 158-159 of Grove [10]. The

current for the entire device consists of the sum of the depletion zone drift current along with the two minority carrier

diffusion currents from the undepleted regions [7].

In order to derive a single equation from equations 1 and 2, we impose the electrical neutrality condition u =
n − n0 = p − p0 [6]. This is an approximation. McKelvey argues that the error should be small when u << n0 and

u << p0. Using this approximation and multiplying eq. (1) by pµp and equation (2) by nµn and adding we get a

single equation, the ambipolar diffusion equation. In Cartesian coordinates, the one-dimensional ADE may be written

([6],[4]),

ut = Dauxx − µaEux − 1

τa
u+ g(x, t) , 0 ≤ x ≤ L , t > 0 (6)

where u(x, t) is the excess carrier density, g(x, t) is the excess carrier generation rate (in excess of the thermal

carrier generation rate)due to irradiation, and L is the length of the undepleted n-type region, labeled as X1 in Figure

1. The equations for the ambipolar coefficients, Da and µa and τa(t) are given on page 328 of McKelvey [4]. E is

the electric field, composed of an internal field due to internal charged carriers and an applied field due to an applied

potential.

For low-level injection in n-type material, u(x, t) is much less than the majority carrier doping for the device

and the ambipolar coefficients became approximately those of the minority carrier; Dp, µp, and τp(t), respectively.

For convenience, we drop the p subscript for these parameters for the rest of our analysis. We assume the boundary

conditions, u(0, t) = u(L, t) = 0 with the initial condition u(x, 0) = f(x). Under these conditions, the dominant

current component in the undepleted n-type region is the minority carrier current.

The solution to the excess carrier density u(x, t) of equation (6) for the undepleted n-type region is,
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L and V̄n(0) and Ḡn(w) are given by
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Figure 1: Reverse biased pn diode under light or ionizing irradiation. Device is irradiated from the left. For the 1D analysis, the

contacts are assumed to cover the entire left and right hand surfaces. The shaded region represents the depletion zone and the

unshaded regions represent undepleted zones. The total current is the sum of the drift and diffusion current from the depleted and

undepleted zones. Local coordinate systems are shown.

Equation (7) represents the general solution for the excess carrier density within the undepleted n-type region of the

device. From eq. (5) utilizing the boundary condition at x =), the current density is,
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With the addition of the first term representing an initial excess carrier density at time t = 0, equations (7) and

(10) are slight generalizations of equations found in [9].

Our interest is the carry out a comparison for a simple square wave gamma pulse. Assuming f(x) = 0 and that

pn diode is heavily-doped, so that there is no ohmic field effect in the undepleted regions, the total photocurrent for a

step function is known [9].
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Since the photocurrent is the solution to a linear PDE, we may use the principle of super-position to compute the

photocurrent for a square pulse as

Jpulse (t) = Jtotal(t)− Jtotal(t− t0) (12)

For our example comparison, we use the parameters of Figure 2 in [9]. Specifically, the diffusion length is set

at Lp =
√
Dτ = 0.015 and the parameter L/Lp = 0.32, corresponding to ζp = 0.32 in [9]. The initial minority

carrier lifetime is τp = 10−5s. A 0.2µs square wave gamma pulse is assumed to begin at t = 0. Figure 2 gives

the computation of the total analytic photocurrent density for a pulse, Jpulse, as well as the numerical photocurrent

computed with Medici with respect to time for three radiation doses-rates. The solid curves represent the numerical

solution, while the dashes curves represent the analytic solution. It is apparent from the curves that the analytic and

numerical curves are very close for the 1x108 Rad(Si)/s dose rate, while a fairly significant error is apparent at the

1x109 Rad(Si)/s dose rate, and a very significant error appears at the 1x1010 Rad(Si)/s dose rate. We note that the

curves so appear similar in shape for each of these cases, indicating that it may be possible to adjust the apparent

dose rate at higher dose in the analytic photocurrent solutions to get better agreement between the two methods of

solution. In the full paper, we will compare the analytic and numerical models for other doping parameters and for

carrier mobility and lifetime models typically used in numerical models.

3



1.0E+02
)

Numerical/Analytic photocurrent comparison for p+n diode
Majority and minority carrier lifetimes equal (MEDICI)

1.0E+01

1.0E+02
n
t
D
e
n
si
ty

(A
/c
m

2
s)

Numerical/Analytic photocurrent comparison for p+n diode
Majority and minority carrier lifetimes equal (MEDICI)

Analytic (1e10 Rad(Si)/s)

Analytic(1e8 Rad(si)/s)

Analytic (1e9 Rad(Si)/s

1.0E+00

1.0E+01

1.0E+02
P
h
o
to
cu
rr
e
n
t
D
e
n
si
ty

(A
/c
m

2
s)

Numerical/Analytic photocurrent comparison for p+n diode
Majority and minority carrier lifetimes equal (MEDICI)

Analytic (1e10 Rad(Si)/s)

Analytic(1e8 Rad(si)/s)

Analytic (1e9 Rad(Si)/s

Medici (1e8 Rad(Si)/s)

Medici(1e9 Rad(Si)/s)

Medici(1e10 Rad(Si)/s)

1.0E 01

1.0E+00

1.0E+01

1.0E+02

0.E+00 5.E 08 1.E 07 2.E 07 2.E 07 3.E 07 3.E 07 4.E 07 4.E 07

P
h
o
to
cu
rr
e
n
t
D
e
n
si
ty

(A
/c
m

2
s)

Time (s)

Numerical/Analytic photocurrent comparison for p+n diode
Majority and minority carrier lifetimes equal (MEDICI)

Analytic (1e10 Rad(Si)/s)

Analytic(1e8 Rad(si)/s)

Analytic (1e9 Rad(Si)/s

Medici (1e8 Rad(Si)/s)

Medici(1e9 Rad(Si)/s)

Medici(1e10 Rad(Si)/s)

Figure 2: Reverse biased pn diode under ionizing irradiation. The total current is the sum of the drift and diffusion current from the

depleted and undepleted zones. Three radiation doses are shown
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