SAND2010- 0457C

ParaText: Scalable Text Modeling and Analysis

Daniel M. Dunlavy
Comp. Sci. & Informatics
Sandia National Laboratories
P.O. Box 5800, M/S 1318

Timothy M. Shead
Data Analysis & Visualization
Sandia National Laboratories

P.O. Box 5800, M/S 1323

Eric T. Stanton
Data Analysis & Visualization
Sandia National Laboratories
P.O. Box 5800, M/S 1323

Albuquerque, NM 87185-1318 Albuquerque, NM 87185-1323 Albuquerque, NM 87185-1323

dmdunla@sandia.gov

ABSTRACT

Automated analysis of unstructured text documents (e.g.,
web pages, newswire articles, research publications, business
reports) is a key capability for solving important problems in
areas including decision making, risk assessment, social net-
work analysis, intelligence analysis, scholarly research and
others. However, as data sizes continue to grow in these
areas, scalable processing, modeling, and semantic analy-
sis of text collections becomes essential. In this paper, we
present the ParaText Text Analysis Engine, a distributed
software framework for processing, modeling, and analyz-
ing collections of unstructured text documents. Results on
several document collections using hundreds of processors
are presented to illustrate the flexibility, extensibility, and
scalability of the ParaText system.

Categories and Subject Descriptors

1.2.7 [Computing Methodologies]: Natural Language Pro-
cessing—text analysis; H.3.3 [Information Systems|: In-
formation Search and Retrieval—retrieval models

General Terms

Algorithms, design, performance, text analysis

1. INTRODUCTION

Automated processing, modeling, and analysis of unstruc-
tured text (news documents, web content, journal articles,
etc.) is a key task in many data analysis and decision mak-
ing applications. In many cases, documents are modeled as
term or feature vectors and latent semantic analysis (LSA)
[3] is used to model latent, or hidden, relationships between
documents and terms appearing in those documents. LSA
supplies conceptual organization and analysis of document
collections by modeling high-dimension feature vectors in
many fewer dimensions.

Most of the past work on scaling LSA modeling has fo-
cused on the computation of a truncated singular value de-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

tshead@sandia.gov

etstant@sandia.gov

composition (SVD) of the term-by-document matrix model-
ing the data. In this paper, we concentrate on the scalability
of the full pipeline—from ingesting text and modeling the
data, to analysis tasks such as information retrieval and doc-
ument similarity. Moreover, we have implemented several
alternate methods for parts of the pipeline that require sig-
nificant inter-processor communication and present results
of strong scaling studies for these methods.

2. RELATED WORK

As noted above, scalability studies associated with LSA
have focused mainly on the computation of the SVD (e.g.,
[5, 8]). Much of that work uses scaling studies on general
algorithms for singular value or eigenvalue decompositions
(see e.g. [1] and references within). Other approaches for
increasing computation performance of LSA include alterna-
tives to the SVD for dimensionality reduction (e.g., [9]) and
feature selection to reduce the size of the term-document
matrices (e.g., [11]). The goal of our work is to investi-
gate the best use of distributed memory architectures for
the entire process of text analysis from raw data ingestion
to semantic modeling to application analysis using the LSA
models. In ParaText, we have created a modular system for
prototyping new algorithms and studying the scalability of
the entire process of text modeling and analysis.

3. THE PARATEXT SYSTEM

The ParaText system is comprised of a collection of text
analysis components designed to work within the Titan data
processing pipeline [10], where data sources, filters, and sinks
can be combined in arbitrary ways (Figure 1). The Para-
Text components can be used either as a C++ programming
library, or via a web service that implements a RESTful API
[4] atop an Apache httpd server. Thus, the ParaText capa-
bilities outlined in this report can be accessed using a variety
of programming languages and environments.

3.1 Text Extraction

The first part of the pipeline consists of filters for extract-
ing and transforming text. With the exception of determin-
ing which files should be processed on which processors, the
filters described in this section all parallelize extremely well.

Document Ingestion. At the beginning of the analysis
pipeline, the DOCUMENT INGESTION filter is responsible for
partitioning a set of documents and loading them into mem-
ory as a table where each row corresponds to a document.
Currently, this filter is parameterized using a list of docu-
ments that is distributed to each processor. Each instance

Document Ingestion
Pocuments
Text Extraction

Pocuments

Tokenization

[Tokens

Token Length Filtering
[Tokens
N-Gram Extraction
[Features

Case Folding

Features

Token Value Filtering

Term Dictionary

‘erm Dictionary

Term Document Matrix

Frequency Matrix\Frequency Matrix

Log Weighting Entropy Weighting

Weighted Matrix /Weight Vector

Scale Dimension

jeighted Matrix

4

Trilinos SVD
[singular ValuesfRight Singular Vectors

Document Similarities

Figure 1: Data flow pipeline of the ParaText Sys-
tem. Filters in yellow boxes require minor inter-
processor communication, red boxes indicate signif-
icant amounts of communication.

of the filter on each processor then reads its own subset of
files from the list. We have implemented several partition-
ing strategies that control how processors determine which
files to load locally. The Document partitioning strategy
does a simple round-robin distribution where each process
loads 1/p documents from the list. This strategy is simple to
implement and requires no communication, but can lead to
imbalanced loading as some processors may accumulate doc-
uments that are smaller- or larger-than-average. The Bytes
partitioning strategy tries to balance loading by assigning
files to processors so that each processor receives roughly
the same number of input bytes. This process is a variation
on bin packing, which is a combinatorial NP hard problem,
so we follow a heuristic approach of maintaining a “bucket”
for each processor, then inserting each file, in descending
order of file size, into whichever bucket contains the fewest

number of file bytes at the moment. Early versions of this
approach (which we call Thrash) did not require communi-
cation, but performed poorly due to filesystem contention as
every processor simultaneously tried to retrieve the size of
every file in the list. Subsequent versions use a single proces-
sor to retrieve file sizes and distribute them to the remaining
processes before beginning the bucketing process.

Text Extraction. Once the local table of documents to be
loaded has been created, we use MIME type information to
extract text, using the TEXT EXTRACTION filter. This fil-
ter contains a collection of strategy objects, each of which
is responsible for extracting text from documents of a given
MIME type. Note that the text extraction strategies can
perform arbitrarily-complex operations to extract text from
a document, including extracting text from binary file for-
mats such as PDF or word-processing documents, extracting
metadata from images, or even performing optical character
recognition on the contents of an image. For the experiments
presented here, we relied on a default extraction strategy
that handles all text/* MIME types. The text of each doc-
ument is stored as a Unicode string using UTF-8 encoding,
so the system is capable of working with mixed-language
text.

Tokenization. Following text extraction, the TOKENIZA-
TION filter converts document text into a table of tokens. To-
kenization is performed by splitting the document text into
tokens using delimiters specified as half-open ranges of Uni-
code codepoints. Delimiters are divided into two categories:
“dropped” and “kept” — “dropped” delimiters are discarded
from the output, while “kept” delimiters are retained in the
output as individual tokens. This makes it easy to tokenize
logosyllabic scripts such as Chinese, Korean, and Japanese
by specifying an entire range of logograms as “kept” delim-
iters, so that individual glyphs become tokens.

Token Length Filtering. We use two instances of the To-
KEN LENGTH filter to discard tokens that are either too short
or too long. This improves the downstream analysis by re-
ducing noise in the data models.

N-Gram FEztraction. The N-GRAM EXTRACTION filter
converts individual tokens into m-grams and is parameter-
ized for selection of arbitrary values of n. We used unigrams
(n =1) for all experiments in this paper.

Case Folding. We use the CASE FOLDING filter to trans-
form the resulting tokens to a form where they can be used in
case-insensitive comparisons. This transformation is carried-
out using the rules provided by Unicode for case-folding, so
the results are valid for all languages supported by Unicode.

Token Value Filtering. To provide filtering of stop-words,
we use TOKEN VALUE filter that is parameterized by a list
of tokens to be discarded. For these experiments, we used
the standard stop word list from the SMART project [7].

3.2 Term Dictionary Creation

Once each processor determines the list of terms in its
local data (i.e., documents), the TERM DICTIONARY filter
creates a global “term dictionary” where each term is listed
exactly once. Because this process necessitates communi-
cation of large numbers of strings between processors, we
created several different implementations for testing: in N-
to-1, every processor sends its local terms to processor 0,
which creates the global dictionary and broadcasts the re-
sults back to every processor. For N-to-N, each processor
broadcasts its local terms to every other processor, which

then creates its own copy of the global dictionary. In the
Binary Tree approach, each processor sends its local terms
to a “neighbor”, which consolidates them with its own local
terms, sending the results to a “super neighbor”, and-so-on
until the complete global dictionary has been created on one
process that broadcasts the results to the others. The Round
Robin approach involves processor k sending its local terms
to processor (k + 1) mod p, where they are consolidated
with the local terms. This process runs p times, so that
every term eventually reaches every processor. Finally, we
have a MapReduce approach that uses the MapReduce-MPI
library [6] to consolidate and distribute terms.

3.3 Term Document Matrix Creation

Given the list of local terms and the global term dictio-
nary computed in the TERM DICTIONARY filter, each proces-
sor uses the FREQUENCY MATRIX filter to create its part of
a sparse, distributed term-document frequency matrix (no
inter-processor communication is required). For each term
from the local term list, the document ID is mapped to a
column of the frequency matrix, and the global term dic-
tionary is used to lookup the frequency matrix row, so that
the appropriate frequency value can be incremented. Two
methods are implemented in the FREQUENCY MATRIX fil-
ter for term dictionary lookup: Global lookup is a naive
approach where each term is simply looked-up in the global
term dictionary with O(mlog m) performance; Global+Local
lookup is a more sophisticated two-stage approach where lo-
cal lookup results are “cached” in a smaller lookup table to
improve performance when tokens are repeated throughout
and across documents (which is often the case in practice).

3.4 Term Weighting

Once the term-document frequency matrix is generated,
it must be weighted before computing the SVD in order to
model the importance of terms both within each document
as well as across the entire document collection. In this pa-
per, we focus on the standard log-entropy weighting scheme
[3] employed in many LSA studies; this will help illustrate
the challenges associated with term weighting on distributed
memory architectures. This weighting scheme involves the
product of local quantities (frequencies of terms within each
document) and global quantities (entropies of terms across
the entire document collection). In ParaText, the local and
global computations are separated into different filters; for
this weighting scheme, these are the LoG WEIGHTING and
ENTROPY WEIGHTING filters, respectively.

The entropy of term 7 across the collection is computed as

.

where tf;; is the frequency of term ¢ in document j and gf;
is the global frequency of term i across the collection. Thus,
interprocessor communication is required both in computing
gfi for each term and computing the sum in g; for each term.
We have implemented several methods to study the impact
of these inter-processor communication requirements. In the
N-to-1 method, every processor computes its local values of
gfi and sends those to processor 0, which sums the values
and broadcasts the results back to every processor. The
sums for g; are then computed in a similar fashion. In the N-
to-N method, gf; and g; are first computed locally and then

results are broadcast to all other processors for computing
the global values. In both methods, there is the option to
broadcast the locally computed values using either dense or
sparse vectors. Once the local and global term weights are
computed, the SCALE DIMENSION filter then applies these
weights to the matrix appropriately.

3.5 Singular Value Decomposition

To compute the SVD of the weighted term-document ma-
trix, A, ParaText wraps the distributed block Krylov Schur
method from the Anasazi package of the Trilinos solver li-
brary [1]. Using shallow copies of data into the sparse matrix
class in Trilinos, we avoid data replication. The rank k trun-
cated SVD of A is computed as Ay ~ UpX,Vy, where Uy,
Yk, and Vi are matrices containing the left singular vectors,
singular values, and right singular vectors, respectively.

3.6 Corpus Analysis

Document Similarities. An important application of text
modeling in general and LSA in particular [2] is determina-
tion of the topical or conceptual relationships between doc-
uments in a large collection. To model these relationships,
pariwise document similarity or distance measures are often
computed. In ParaText, document similarities are computed
as the cosine values between scaled LSA document vectors
(in V4xXk). Thus, the similarity between documents ¢ and
j are computed as (Vi, V;)/(||[Vill |V;]]), where (-,-) is the
standard inner product and V; is the ith row of Vi Zg.

4. RESULTS

Computing Environment. The system we used for testing
is comprised of 256 compute nodes, each with a Dual 3.6
GHz Intel EM64T processor and 6 GB RAM. The system’s
high-speed message passing fabric is Infiniband, and the file
system is Lustre v1.4.11.1 running on 47 servers and 186 ob-
ject storage targets, yielding a bandwidth of 15 GB/second.

Data. The data used in the experiments presented here
consist of a subset of HTML documents in the 2007 Spock
Challenge test set!. For experiments involving 64 processors,
2458 documents with 669940 unique terms (0.12% matrix
density) were used; and for experiments using 512 proces-
sors, 45945 documents with 4,440,327 unique terms (0.017%
matrix density) were used. Note that this decrease in fre-
quency matrix density for problems with more documents is
typical in text analysis.

Strong Scaling Studies. Figure 2 presents the results of
strong scaling studies using 64 processors for the filters men-
tioned in Section 3 having more than one implementation.
The plots all show mean CPU times (with error bars denot-
ing standard sample error) over three runs as a function of
the number of processors. We see that there are significant
differences in the document partitioning methods (Fig. 2a),
where partitioning by Bocuments appears the most scal-
able. Also the N-to-N methods appear to perform slightly
(but not statistically significantly) better than the N-to-I
methods (Figs. 2b and 2d, even though the former methods
require more overall communication. In terms of sizes of
packets being communicated, using dense over sparse arrays
in the ENTROPY WEIGHTING filter appears better for fewer
processors (Fig. 2d). However, as the number of proces-
sors increases (and thus the local term dictionaries become

"http://challenge.spock.com/

more sparse due to fewer documents on each processor), the
sparse data passing has potential for improved performance
(as demonstrated by the trajectory of improvement in the
figure). Since MapReduce for term dictionary creation seems
promising as the number of processors increases (Fig. 2b),
we plan to explore additional use of MapReduce in future
versions of ParaText where appropriate. Finally, caching of
locally computed information reduces the overall computa-
tional costs associated with distributed term dictionary cre-
ation (Fig. 2¢), and we will be investigating more pervasive
use of this idea throughout the ParaText pipeline.

Figure 3 presents the results of strong scaling studies for
all pipeline filters. Figure 3a illustrates that for the larger
problem using 512 processors, most of the filters requiring
little or no inter-processor communication achieve strong
scalability as expected, although improvement is still pos-
sible for the document ingestion and term document matrix
creation. For the filters requiring significant inter-processor
communication, we see that more work is needed to achieve
useful speedups as we increase the number of processors
(Figure 3b). We leave this as future work.

5. CONCLUSIONS

We presented the ParaText Text Analysis Engine, a set of
scalable methods for analyzing large document collections.
We described several alternate approaches for methods re-
quiring significant inter-processor communication and pre-
sented the results of strong scaling studies illustrating the
performance of those approaches on HTML documents. We
have also identified several directions for potential improve-
ments in terms of term dictionary creation (e.g., using dis-
tributed merge sort) and matrix computations (e.g., tuned
matrix vector products using graph partitioning and load
balancing). Previous LSA scalability research has focused
on the SVD computation. In this paper, we illustrate the
scalability of the entire process from raw data to analysis
for LSA models, illustrating that there are significant chal-
lenges associated with LSA scalability beyond matrix com-
putations.

6. ACKNOWLEDGMENTS

This work was funded by the Laboratory Directed Re-
search & Development (LDRD) program at Sandia National
Laboratories, a multiprogram laboratory operated by Sandia
Corporation, a Lockheed Martin Company, for the United
States Department of Energy’s National Nuclear Security
Administration under Contract DE-AC04-94A1.85000.

7. REFERENCES

[1] C. G. Baker, U. L. Hetmaniuk, R. B. Lehoucq, and
H. K. Thornquist. Anasazi software for the numerical
solution of large-scale eigenvalue problems. ACM
TOMS, 36(3):13:1-13:23, 2009.

[2] P. Crossno, D. Dunlavy, and T. Shead. LSAView: A
tool for visual exploration of latent semantic modeling.
In Proc. IEEE VAST, 2009.

[3] S. T. Dumais. Improving the retrieval of information
from external sources. Behavior Research Methods,
Instruments, €& Computers, 23(2):229-236, 1991.

[4] R. T. Fielding and R. N. Taylor. Principled design of
the modern web architecture. ACM TOIT,
2(2):115-150, 2002.

[5] D. Martin and M. Berry. Parallel svd for scalable
information retrieval. In Proc. Parallel Matriz
Algorithms and Applications, 2000.

[6] S. Plimpton and K. Devine. MapReduce-MPI Library.
http://www.sandia.gov/ sjplimp/mapreduce.html.

[7] G. Salton, editor. The SMART Retrieval System:
Ezxperiments in Automatic Document Processing.

Documents
Bytes
Thrash

CPU Time

M . .
24 8 186 32 [s23
Nurnber of Processort

(a)

Binary Tree
MapReduce
N-To-1
N-To-N
Round Robin
o B
E
S
=)
o
O 1
10
24 8 16 32 64
Number of Processors
Global
GlobakLocal
@
E
=10
=)
[
S
24 8 16 32 B4
Nurmber of Processors
(c)
10"
N-to-1 Dense
N-to-N Dense
N-to-1 Sparse
10°2
g
£ 10
>
o
[$)
10°
0.1
10

24 8 16 32 64
Number of Processors

(d)

Figure 2: Strong scaling studies using 64 processors
for methods associated with (a) document partition-
ing, (b) term dictionary creation, (c) frequency ma-
trix creation and (d) entropy weighting.

http://www.sandia.gov/~sjplimp/mapreduce.html

[9]

[10]

[11]

Prentice-Hall, 1971.

S. Vigna. Distributed, large-scale latent semantic
analysis by index interpolation. In Proc. InfoScale,
pages 1-10, 2008.

D. Widdows and K. Ferraro. Semantic vectors: a
scalable open source package and online technology
management application. In Proc. LREC, 2008.

B. Wylie and J. Baumes. A unified toolkit for
information and scientific visualization. In Proc. SPIE,
2009.

J. Yan, S. Yan, N. Liu, and Z. Chen. Straightforward
feature selection for scalable latent semantic indexing.
In Proc. SDM, pages 1159-1170, 2009.

Document Ingestion
Text Extraction
Tokenizer

Token Length
N-Gram Extraction

Case Folding
Token Value
------------- Term Doc Matrix
Log Weighting
Scale Dimension

CPU Time

Number of Processors

Term Dictionary
Entropy Weighting
Trilinos SVD

CPU Time

24 8 16 32 64
Number of Processors

(b)

Figure 3: Strong scaling studies for the ParaText
pipeline illustrating performance of filters with (a)
little or no inter-processor communication using 512
processors and (b) significant inter-processor com-
munication using 64 processors.

	Introduction
	Related Work
	The ParaText System
	Text Extraction
	Term Dictionary Creation
	Term Document Matrix Creation
	Term Weighting
	Singular Value Decomposition
	Corpus Analysis

	Results
	Conclusions
	Acknowledgments
	References

