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Abstract—We examine fast algorithms to allocate processors [
to compute jobs in mesh-connected clusters. We find that a 1D 3
curve-based strategy can give allocations of comparable quality ; |
to a fully 3D algorithm MC1x1 using a snake curve that goes ! |
along the mesh’s short dimensions first. We also propose several ;O lO |
buddy-system strategies, the best of which actually finds better ! ST

allocations than MC1x1 if the job sizes and mesh dimensions are
powers of 2. Furthermore, these algorithms are much faster than
MC1x1, which takes more than 200 times as long in some cases.

I. INTRODUCTION

When users submit a job to a Linux cluster, they specify the
number of processors it requires and also give an estimatéli [9], [10]), which do not explicitly restrict the type of
running time. This estimate serves as a maximum allowéfocations found.
time; jobs still running after their estimated running time A natural algorithm for high-quality mesh allocation is
are killed. The run time system takes submitted jobs aMiC1x1 by Bender et al. [7]. This algorithm assumes a
is responsible for deciding when to run them and whichmesh architecture. For simplicity we focus on a 2D mesh
processors to assign to each job. In both research and acwitthout wraparound, but the algorithm easily generalizes to
systems, these decisions are typically made in 2 steps. Findher cases. MC1x1 assignssaore to each free processor
the schedulerdecides when to run each job. When the schetidicating the quality of the candidate allocation centered on
uler has decided to start a job, tladlocator is responsible that processor. The free processor with the lowest score is
for assigning it to specific processors. Typically, the scheduleglected and its allocation is used.
makes its decision based only on the number of processorJo generate the allocation for a particular centeMC1x1
available, ignoring which specific processors are available, searches for free processorssimellsaround the center. Shell
there is no interaction between these stages. 0 is the single processar. Shell 1 is the processors whose

This paper is concerned with the allocator. The qualityoordinates are each within 1 afs coordinates. Larger-
of an allocation on a mesh computer can have a significamtmbered shells are defined similarly. Thus, the shell number
effect on job running time; previous work has shown thaif a processor in MC1x1 is simply it5., distance from the
hand-placing a pair of high-communication jobs into a higlsenter, defined in 2D aB.(c, p) = max(|c, — pz|, |¢y — pyl)
contention configuration can roughly double their runningherec is the centerp is the other processor, and the subscript
times [1]. The placement of job tasks has been shown to spekshotes the corresponding coordinateof y) of that point.
up an actual application by up to 1.64 times [2]. As vendofsigure 1 illustrates MC1x1's shells around processor X.
return to building Linux clusters with mesh interconnects (e.g. MC1x1 selects as many free processors from a shell as
[3]), high-quality processor allocation is again necessary fpossible before considering higher-numbered shells. An allo-
good performance on mesh-connected clusters. Furtherma@atjon's score is the sum of its processors’ shell numbers.
with the exponential growth in the number of cores on chip$he drawback of MC1x1 is that it requires scoring every
high-quality allocation of cores will be necessary for googossible center to make an allocation decision. In principle,
performance on mesh-connected chips (e.g. [4]) as well. this process can be sped up by having each idle processor score

To minimize both latency and contention, the allocatorself in parallel, but the scoring process can still be relatively
goal is to give each job a set of nearby processors. An ide@the consuming since each candidate center must identify its
allocation is contiguous, but using only contiguous allocatioris nearest idle neighbors. The results of these computations
lowers system utilization [5]. Reduced contention is not suffinust then be compared to select the winning allocation. As
cient to compensate for this utilization drop [6]. Thus, researchachines get larger, a slow allocation algorithm will eventually
has focused on noncontiguous allocators (e.g. [7], [8], [L]mit system performance.



With this motivation, we look at 2 alternative approaches to
allocation, seeking a faster algorithm that gives allocations of
comparable or better quality. The first approach we consider
is curve-based allocation, previously proposed by Lo et al. [6]
and Leung et al. [1]. In this approach, processors are ordered
according to some curve and allocation decisions are based (a) (b)
on the ordered ranks of free processors rather than their mestFig. 2. Some curves used for allocation. (a) Row-major. (b) Snake.
coordinates. Thus, allocation is reduced to a 1D problem. Of
course information is lost in this reduction, but the idea is that
processors close on the curve will also be close in the mesh
so enough information will be preserved.

The other approach we consider is based on buddy systems
from memory allocation, which Lo et al. [6] generalized to
2D. By using a data structure to organize the free processors,
this approach avoids having to consider them individually.

The contribution of this paper is threefold.

1) We extend the use of curve-based strategies to non- Fig. 3. Hilbert curve

square meshes by comparing allocation qualities for a

variety of different curves. These curves are evaluated

using experiments on the Red Storm [11] test machingglect free processors from the ordered list. A curve-based

a Cray XT3/4 cabinet, as well as simulations. algorithm was first proposed by Lo et al. [6], who considered
2) We propose genera"zations Of MBS and use Simu|ati0ﬁgvera| ”near OrderS, inCIUding the rOW-majOI’ and Snake curves

to compare them to MC1x1 and curve-based stratebown in Figure 2 and “shuffled” versions of these. To select

gies. One of our generalizations, called Granular MB®rocessors, they used a free list.

outperforms all the other algorithms when the mesh A curve-based strategy was independently proposed by

dimensions and job sizes are powers of 2. Leung et al. [1]. They ordered processors using a space-filling

3) We measure the running time of all these algorithmgUrve such as the recursively-generated Hilbert curve [16]

showing that the curve-based and buddy-based strategi@gwn in Figure 3. Although the Hilbert curve is in 2D, it

do indeed run much faster than MC1x1. has generalizations to higher dimensions [17]. To select free
Our simulations use traces from the Parallel Workload¥0CessOrs, they adapted the First Fit [18], Best Fit [18], and
Archive [12], which gives traces of job submission times>UM Of Squares [19] strategies from bin packing by treating
sizes, running times, and estimated running times for a V&@ch interval of free processors as a bin. For example, when
riety of HPC systems. Because detailed information on th§iNg the First Fit strategy to allocate a job requirihg
applications is not included, we do not model the affect &focessors, they return the first group loffree processors
allocation quality on running time; in our simulations, alfhat aré contiguous according to the curve. (When no such
jobs run for the actual time recorded in their trace. Instea@/OUP €xists, they return the processors whose difference
we evaluate the allocation quality with the average pairwidg "anks are minimal.) In experiments on a Linux cluster,
distance between processors in each allocation. This mekfUNg et al. [1] compared this algorithm to the previously
has been used by a number of other authors (e.g. [13], [Mf,e_d algorithm, which was a free list with processors in row-
[15]) and experimentally shown to correlate with running:ajor order. They found that both the change of ordering and
times [1]. Reporting an improvement in pairwise distancd'® use_o_f bln—packlng_heurlstlcs gave improvements, with the
instead of modeling the affect of allocation on job runnin§Urve giving the main improvement.
time is conservative since improved allocation can start a'"€ main obstacle to widespread use of curve-based al-
virtuous cycle by causing jobs to finish more quickly, reducingPrithms is selecting an appropriate curve. The experiments
contention and allowing later jobs to receive better allocatiorfd'€sented in previous work on these algorithms were primarily

The rest of the paper is organized as follows. We study? Square 2D meshes and generalizing some of the curves is
curve-based algorithms in Section Il and buddy-based a@gpn—tnw_al. Pamc_ularly challenging is the Hilbert curve, whose
rithms in Section Ill. We compare the relative running time§eneration algorithm creates a curve for a square mesh whose
of these algorithms to MC1x1 in Section IV. We review som&ide length is a power of 2. Bunde et al. [20] showed that
additional related work in Section V. We conclude with som@ natural way of using it on a6x22 mesh leads to poor

discussion in Section VI. performance. Even the snake curve presents a choice on a
non-square machine since there are 2 possible orientations for
Il. CURVE-BASED ALGORITHMS the curve.

We begin our study of fast allocation algorithms with curve- In this section, we use experiments and simulations to
based algorithms. There are 2 key decisions to make whesmpare the different alternatives for curves. We begin by
designing these algorithms: what curve to use and how donsidering curves for the test machine for Red Storm [11],



Linear Ordering
Col-major Spliced Zoltan Row-major
Algorithm snake Hilbert  Hilbert snake

Best Fit 1.003 1.037 1.160 1.209
(2) (b) Sum of
Fig. 4. Snake curves. (a) Row-major snake. (b) Column-major snake Squares 1.004 1.037 1.154 1.206

First Fit 1.011 1.042 1.164 1.212
Fig. 7. Ratio of average makespan to baseline (MC1x1) in experiments on
Cray XT3/4 cabinet. Lower is better.

Fig. 5. Spliced curve foR0x4 mesh; fivedx4 Hilbert curves

Trace Jobs Processors
i ) . ) NASA-iPSC-1993-2.1-cIn.swf 18,239 128
which consists of a single Cray XT3/4 cabinet. Its processors| | ANL-CM5-1994-3.1-cln.swi 122,057 1,024
running a lightweight Linux, form 20x4 2D mesh. LLNL-T3D-1996-1.swf 21,323 256
As mentioned above, there are 2 choices for a snake curve spsc.sp2-1998-3.1-cln.swf| 54,041 128
on a non-square mesh. These are shown in Figure 4. So that| | NL-uBGL-2006-1.swf 19,405 2.048
the names have consistent meaning across different machines;
in this paper we will always list mesh dimensions in non- Fig. 8. Traces considered for linear ordering.

increasing order. Thus, the row-major snake always traverses
the long mesh’s long dimension first and column-major snake
always traverses its short dimension first. Hilbert, and Row-major snake.

‘With a 5:1 aspect ratio, it is not clear what constitutes a gince it is difficult to vary the dimensions of a real machine,
Hilbert curve on this mesh. We examined 2 alternatives. Wgs ran simulations using traces from the Parallel Workloads
call the first “spliced Hilbert” since it simply splices five<  aArchive [12] on meshes with aspect ratios ranging from 1:1
4 curves together, as shown in Figure 5. The second, caligflie:1. The specific traces used are listed in Figure 8. These
Zoltan Hilbert”, is the generalized Hilbert curve from theyaces were selected because they came from machines whose
Zoltan I_|brary [21]. This curve follows the aspe_:ct ratio of thehumber of processors was a power of 2, making. it easy to
underlying geometry more closely than the spliced alternativgyry the simulated system’s aspect ratio. For scheduling, we
An example curve for 20x4 mesh is shown in Figure 6. se EASY [22]. For the Hilbert curve on non-square meshes,

All runs used identical job streams containing replicas §fe ysed the spliced Hilbert curve.
various-sized instances of a communication test suite. Ther, pairwise distances achieved by each algorithm are
communication test suite contains all-to-all broadcasts. Thifown in Figure 9. The results depend on the mesh's aspect
test is repeated 25 times in each suite. The suite also comp%ﬁﬁ), with Hilbert giving the best results for square meshes

a variety of statistics, which consumes a small fraction of the | e column-major snake giving the best results otherwise
total running time. Because locality is most important for jobs

with high communication demand, this test suite represents a
best-case scenario for the benefits of allocation. [Il. BUDDY-BASED ALGORITHMS

Our test stream had 1,820 jobs of size 2, 660 jobs of size _ _
5, 620 jobs of size 15, and 660 jobs of size 20. This gives Now we turn to buddy-based algorithms, which Lo et al. [6]

a range of “large” (approximately 1/4 or 1/5 of the machindjréated as a generalization of the buddy system for memory
and small jobs. Small jobs are interspersed among the lafjocation. Their algorithm divides the processors of a 2D
ones to cause fragmentation. Since the machine did not hay&@gsh into a hierarchy of square blocks, each having a power
scheduler, the jobs are scheduled with First-Come First-Sen®? side length. The children of a block are the 4 subblocks
(FCFS). The machine is busy through the last job's releasd®'med by splitting it in half along each dimension. The
We ran the job stream 3 times for each combination @{gor_lthm keeps track of the free b_Iocks of each size. If all
bin packing heuristic and curve. Figure 7 shows the effefitChildren of a block (called "buddies”) are ever free, they
of each combination on the makespan of the job stream. FF removed from the free block list and replaced with their
this particular system and job stream, the linear orderings frd?grent. Similarly, blocks in the free list are split to satisfy a

best to worst are Column-major snake, Spliced Hilbert, ZoltdRAuest for fewer processors. If a request is not for a power of
4 processors, it is satisfied with several blocks of the desired

combined size. Because it may use multiple blocks to satisfy
a request, this algorithm is called Multiple Buddy Strategy

3@? S 2 0)

% i (MBS). Figure 10 shows the MBS block hierarchy foba4

i ‘LT{ ?ﬁu_@ﬁ mesh, with a4x4 block and fourlx1 blocks at the top level.
The 4x4 block has four2x2 children, each with 4 children of

Fig. 6. Hilbert-like curve generated by Zoltan 20x4 mesh their own.




NASA-iPSC LANL-CM5 LLNL-T3D SDSC-SP2| LLNL-uBGL
16x8 32x32 64x16 128x8 | 16x16  32x8 16x8 64x32

Col-major snake BF 2,687 — 239,926 374,717 — 5,854 1,374 5,723,590
Col-major snake FF 2,701 — 241,719 378,303 — 5,908 1,385 5,753,018
Col-major snake freelist 2,733 — 249,856 394,57 — 6,093 1,420 5,754,982
Hilbert BF 2,696 210,704 240,787 374,717 5,190 5,864 1,375 5,736,044
Hilbert FF 2,714 211,652 242,928 378,308 5,217 5,922| 1,391 5,782,192
Hilbert freelist 2,742 218,807 250,573 394,575,370 6,105 1,424 5,778,155
Row-major snake BF 3,072 225,099 317,199 546,671 5665 8,093 1,552 7,067,454
Row-major snake FF 3,081 225,995 317,328 545,859 5,693 8,095 1,559 7,082,168
Row-major snake freelist 3,096 230,064 318,105 547,037 5,779 8,157| 1,576 7,083,150

Fig. 9. Average sum of pairwis€; distances with EASY scheduling.

OGO GO O 00 GO
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Fig. 10. MBS blockh|erarchy|llustrated for @x4 mesh (b)

Fig. 11. Blocks formed in the first 2 phases of initializing the buddy structure
for Granular MBS on &x4 mesh

A. Generalizing MBS

There are 2 obvious generalizations of MBS to 3D mesheagpeated until no block succeeds in finding a buddy.
The first, which we calOctet MBS performs as MBS except  This way of building a block hierarchy has the advantage of
that each block is a cube instead of a square. In this schemeating blocks of each power of 2 size. Thus, the block sizes
each subblock has 7 buddies and all the block sizes aréhave finer granularity than even the original MBS algorithm
power of 8. The other obvious generalization, again identical which all block sizes are powers of 4. In honor of this
to MBS except for how the blocks are divided, computes theait, we call the algorithm that applies the MBS algorithm to
block structure for a 2D slice of the system and uses it on eaglis block hierarchyGranular MBS In addition, the scheme
layer of the 3D mesh. As with the original MBS algorithmhandles machines whose dimensions are not powers of 2.
each subblock has 3 buddies and all the block sizes are powers )
of 4. We call this second generalizatibayered MBS B. Simulations

Although these schemes are natural, each has drawback§o evaluate these alternatives, we again use traces from
Because block sizes are powers of 8 in Octet MBS, a systéhe Parallel Workload Archive [12] to drive simulations that
will have relatively few block sizes and most jobs requireve evaluate based on the achieved average pairwise distance.
multiple blocks. The result is unnecessary dispersal when thé&sheduling is performed by EASY [22]. We compare against
blocks are not near each other. Layered MBS avoids thtse curve-based strategy using best fit and the snake curve that
problem, but does not exploit connections between processgogs along the dimensions in order of their length.
in the third dimension since each block is flat. Every job Figure 12 shows the relative performance of the curve- and
allocated to a single block will get processors lying in a plan®&BS-based algorithms against MC1x1 for some representative

To avoid both of these pitfalls, we propose a different artdgaces. For each trace, we chose two shapes, one a 2D mesh as
better way to divide the machine into blocks. The hierarctsquare as possible and the other a 3D mesh as close to a cube
of blocks is built in an iterative way, beginning with eactas possible. The plotted value is the ratio of the algorithm’s
processor being its own block. To build larger blocks, wsum of pairwise distances over the sum of pairwise distances
proceed in a series of phases. In the first phase, each blackieved by MC1x1, so lower is better and values below 1
attempts to find a buddy of the same size and dimensionsindicate that the algorithm performs better than MC1x1. Also
the  dimension. This makes blocks with dimensidhsix1 shown in the figure are the percentage of jobs in each trace
composed of 2 matched buddies, as shown in Figure 11(a). Huat are serial (uniprocessor) jobs as well as the percentage of
the second phase, blocks seek buddies institirection. In  parallel (multiprocessor) jobs whose size is a power of 2, 4,
the third, they seek buddies in thedimension. It is important or 8.
to note that all blocks seek buddies in each phase, even if theyrhe results show that Granular MBS is the best performing
failed to find a buddy in the previous phase. Thus, the secogeneralization of MBS. It beats Layered MBS and Octet MBS
phase joins blocks as shown in Figure 11(b), forming both all cases, sometimes substantially. Clearly, its fine-grained
2x2 blocks and1x2 blocks. These sequences of 3 phases dnock sizes pay off. The importance of fine-grained blocking



125F [ Snake best fit 1 mance comes by considering a second factor. Granular MBS
Ll éaciztfi;*B“gBS | benefits when machine dimensions are powers of two, allowing
' Granular MBS - it to form large blocks. When all machine dimensions are
115F 1 powers of two, the block hierarchy has a single top block

encompassing the entire machine, with 2 children each con-

11 N N taining half the machine, and so on down the hierarchy. This

symmetry increases the chances that a job can be allocated

Hos from within a single block and provides maximal flexibility

AN R N T AN ZEREN R RN ZRRAN ¢t since any subblock can merge if its buddy becomes free. This
factor further benefits runs with LLNL-T3D and LLNL-uBGL
095 traces. At the other extreme is thé<5<1 configuration of the

Sum of pairwise distance relative to MC1>

HPC2N trace, whose dimension of length 15 is just shy of a
power of two. This means that its top-level blockx@x1)

0'916><16xl 8x8x4| 64x32x1 16x16x8 16x8x1  8x4x4 10x10x1 5xHx4 16x15x1 8x
LLNL-T3D LLNL-uBGL SDSC-SP2 KTH-SP2 HPC2N

serial jobs 0% 0% 23% 33% 42% is relatively small, containing only 27% of the machine’s
mﬂiez'g’bs processors. Thus, most allocations will require processors from
... power oLzl 1c3x1)g¢ Loo% 61% 4t13% 43% the other blocks. Since the other blocks are distributed around
5% (] 16% 18% . .

" bowerof 8 15% 3% 7% 0% 0% the edges of the largest top-level block, this increases the

Fig. 12. Performance against MC1x1 for different traces and machine sha@é’serage sum of pairwisg; distances. ) )
Now that we have presented two factors as important in

determining the performance of Granular MBS, a natural

is further emphasized by the case where Layered MBS conmgestion is which of these factors is more important. The
closest to beating Granular MBS, tGéx32x1 configuration of unimpressive performance of the configurations of SDSC-SP2,
the LLNL-uBGL trace. Layered MBS does so well in this caswhich has powers of two machine dimensions running jobs
because the system allocates processors in groups of 64 [28]h other sizes, suggests that job sizes may be more important
As shown in the figure, this causes more than 99% of thiegan machine dimensions. For other evidence, we compared
jobs in this trace to have a size that is a power of 4, negatitfte results of removing jobs whose size was not a power of two
the granularity advantage of Granular MBS. Also relevant fsom the traces and running the unmodified trace on a machine
that the configuration is a 2D mesh since that forces botthose dimensions are powers of two. When jobs whose size
algorithms to allocate flat blocks; Granular MBS wins mor& not a power of two are removed, Granular MBS's average
handily on thel6x16x8 configuration since a 3D block haspairwise distance relative to MC1x1 is 1.024 onl@x 10
smaller average sum of pairwigg distances than a 2D blockmesh and 1.016 on &x5x4 mesh. The ratio of pairwise
with the same number of processors. distances is 1.093 when the unmodified trace is run o6~a

The use of 3D blocks also benefits Octet MBS, which beatsesh and 1.138 when run dw4x4 mesh. Thus, we see
Layered MBS on all the 3D meshes. Octet MBS perfornmthat restricting the jobs to have sizes that are powers of two
poorly on 2D meshes, however. Because of the way it builds/es better performance relative to MC1x1 than running on
its block hierarchy, Octet MBS uses entirelk1x1 blocks a slightly larger machine (128 processors instead of 100) so
on 2D meshes, essentially making it a curve-based stratabgt its dimensions can be powers of two.
without a carefully-selected curve or a bin packing heuristic. Removing jobs also lets us compare the importance of

The relative performance of Granular MBS against MC1xfilower of two sized jobs with another possible factor: serial
and the curve-based strategy depends on the trace. Granjs. Jobs of size 1 are also potentially disruptive to the
MBS beats both in both configurations of the LLNL tracedjlock structure since they can force large blocks to split. To
loses by a small margin in the SDSC-SP2 and KTH-SR®mpare the importance of serial jobs and jobs with sizes not
traces, and then is substantially worse than MC1x1 on tpewers of two, we looked at the KTH-SP2, SDSC-SP2, and
HPC2N trace. We believe this results from a combination 6fPC2N traces without each of these types of jobs. As above,
two factors. First of all, Granular MBS performs best whewe compared the ratios of the sum of pairwise distances of
the trace is dominated by jobs whose size is a power of tw@ranular MBS and MC1x1. Both configurations of the KTH-
These jobs can potentially be allocated using a single bloc&RP2 and SDSC-SP2 traces gave better relative performance
whereas jobs of other sizes requires a multi-block allocatievhen removing non-power-of-two-sized jobs than removing
and potentially causes a large block to split. The percentaggrial jobs. The reverse was true for the configurations of
of jobs whose size is a power of two roughly correspondee HPC2N trace, though the ratios were close. These results
to the observed relative quality of Granular MBS, since theuggest that whether job sizes are powers of two is more
LLNL traces on which it does best are composed entirely @hportant than whether there are a large number of serial jobs.
this type of job. The correspondence is not exact, howev&emoving serial jobs did help in nearly all cases, however.
since the HPC2N trace has more power-of-two sized jobs th@heir large share of the HPC2N trace may help explain why
KTH-SP2, but Granular MBS performs better on the latter. Granular MBS does so poorly on that trace.

A more complete understanding of Granular MBS's perfor- We were encouraged that Granular MBS performs so well,
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at least within its specific domain. To see how the algorithms R
respond to varying system load, we ran simulations with jo i 7
arrival times multiplied by different constants. This processs auo0 - 3 5 o oo T
o
creates traces with different utilizations while preserving th&a guBERODH % x e

trace’s essential characteristics (idle periods, workload varymg 290
throughout the day and week, etc). We note that it is nog B0 ik xxx o % x|
entirely uncontroversial since it alters relationships betwee&

job parameters, the daily cycle, and system load [24], but w&

. L | LayeredMBS + |
use fairly moderate multlplller vglues (between 0.55 and 1.2). 20 G:éulgmgg x
The results are shown in Figures 13-16, which plot the .5y L L L L ! ! L Mehd, ©
45 50 55 60 65 70 75 80 85 90 95

achieved utilization against average pairwise distance. The Utilization

points are closer together at high utilization because changirg. 15. Ave. pairwise distance for LLNL-uBGL trace d6x16x8 mesh
the inter-arrival times has less effect on utilization as the

machine saturates. While we expect the overall trend to be

that average pairwise distance increases with utilization, tNBS’s best observed improvement over MC1x1 is 8.3%,
results show some large violations of this expectation. BRehieved by that trace at 67.5% utilization 064x32 mesh.
explain this, we note that these large violations do not occ(#e observed a 9.6% improvement with FCFS scheduling.)
when FCFS scheduling is used. Thus, we attribute them to
small jobs (which tend to backfill easily) running earlier on
“spare” processors. Since allocating a small job can requireNow that we have established that the faster algorithms
that an MBS-based strategy break up large blocks, these j@ipg allocations that are comparable or better, we quantify
can be very disruptive to other jobs, which may then beir speed advantage. To do this, we timed simulation runs
allocated using multiple blocks. By moving these jobs earligierformed on an otherwise-idle MacBook Pro with a 2.16GHz
in the schedule, the disruption is removed and the averaggel Core Duo. The times in seconds for a variety of runs are
pairwise distance improves even though the average utilizatisiown in Figure 17. These times are for the entire simulation
is higher. Further support for this theory is that the largest ag@ they include time to read the trace, make scheduling
most frequent violations of the expected trend occur with Octet

MBS, whose block sizes increase most rapidly.

IV. RELATIVE RUNNING TIMES

Another surprise in the data is that Granular MBS and o0 o x x
Layered MBS exhibit essentially the same performance on the *®[x )
64x32x1 machine running the LLNL-uBGL trace (Figure 16). g 6000 |- . x ) o]
This occurs because all jobs on the BlueGene system have so0 - 5 g o .

sizes that are multiples of 64 [23]. This factor of the systenk g | |
combined with how this particular system was used makeg . |
nearly all job sizes a power of 4 (see the statistics in F|g§ «

* *
ure 12). For these jobs, there is no difference between Layeréd i ’ ) T
MBS and Granular MBS on a two-dimensional machine. < 550 LaveraMBS ¢+ |
Though the picture is clouded by these anomalies, the gen- 540 - raniaMBs x|
eral trend is that pairwise distance increases with utilization. 5300 - - ” pos . Mg:l - ©
This is less so for Granular MBS on the LLNL-uBGL trace Utilization

since that trace is so well suited to the algorithm. Granuléfg. 16. Ave. pairwise distance for LLNL-uBGL trace 6Ax32x1 mesh



HPC2N LANL-CM5 MC1x1. Other than the initial shell, the two algorithms are
16x16x1  8x8x4 | 32x32x1 16x8x8  the same, with MC1x1 being MC with <1 initial shell.
MC1x1 1,130 984| 18,059 16,871  Also related to MC1x1 is a whole family of algorithms
Snake BF 67 69 203 195 parameterized by what candidate centers they use, how they
Layered MBS 43 42 88 89 create a candidate allocation around each of these centers, and
Octet MBS 44 44 225 92 how they evaluate the candidate allocations. Another member
Granular MBS 42 42 90 91  of this family is Gen-Alg, by Krumke et al. [15]. Gen-Alg’s
Fig. 17. Times in seconds to run simulations set of candidate centers are the idle processors, just as in

MC1x1. It chooses processors based on the number of hops
from the center. In a mesh, the number of hops is the same as

decisions, etc. Since these components of the running time are (Manhattan) distance, which makes Gen-Alg search in a
the same for each allocator, the table actually understates #@mond shape. Each candidate allocation is evaluated based
relative speed of the faster algorithms. In addition, the timegh its actual sum of pairwise distances. Krumke et al. [15]
version of MC1x1 simply returns the first processors it findshowed that Gen-Alg always finds an allocation whose sum
at the appropriate distance, making it faster than the versighpairwise distances is withif2 — 2/k) of the best possible
whose pairwise distance results are reported elsewhere in yafie, wherek is the job size.
paper, which is slightly more sophisticated. Again, this tends Also in the same family of algorithms as MC1x1 is MM,
to understate the relative speed of the faster algorithms.  proposed by Bender et al. [7]. MM evaluates candidate centers

Figure 17 clearly shows that the “faster” algorithms considn the same way as Gen-Alg, but considers more of them.
ered in this paper are indeed much faster than MC1x1, bySaecifically, a candidate center is any processor sharing
factor of up to 27 on the HPC2N trace and 205 on the LANLy, andz coordinates with (possibly different) free processors.
CMS trace. The curve-based strategies are consistently slo@ender et al. [7] showed that MM always finds an alloca-
than the buddy systems, but still much faster than MCl1xfion whose sum of pairwise distances is within a factor of
Though the absolute magnitude of the time per job is not-1/(2d) of the best possible value indadimensional mesh.
high (18,059/122,057=0.15 seconds), these results show {{THis approximation factor ig/4 in a two-dimensional mesh
MC1x1’s running time grows fairly quickly with machine size;and 11/6 in a three-dimensional mesh.) They also gave a
from 0.0056 seconds/job for thigx16 mesh to 0.15 secondsPTAS, an algorithm to that solves within a factor bft e
for the 32x32 mesh. This shows how allocation speed cain time polynomial in the mesh size ande for any e > 0.
become an issue as machines grow. Using these algorithms tThe first curve-based allocation algorithm was Paging by Lo
allocate cores on a multicore chip would make the differeneg al. [6]. Paging divides the machine’s processors into blocks
immediately important by shrinking the timescale involved. and uses the curve to order the blocks. When an allocation

Figure 17 also shows that the running time of MC1x1 i& needed, the first free blocks in this list are used. In this
sensitive to the machine shape as well as its size. It ruwsrk, we restrict our attention to “blocks” consisting of a
significantly faster on the cube-like shapes than the flat ongfgle processor to avoid internal fragmentation, when a job
We attribute this to the fact that using a cube-like shape makssallocated more processors than it needs. (We also use the
the dimension lengths smaller, allowing MC1x1 to find thein packing heuristics as proposed by Leung et al. [1] rather
needed processors in fewer shells. The curve- and MBS-bagesh always taking the first free processors in the list.) Using a
algorithms are relatively insensitive to the system’s shape. Tleger blocks has the potential advantage of reducing average
exception is the anomalously high running time for OctetMBpairwise distance, however, since the processors in a block
with the LANL-CM5 trace on the32x32 mesh. We cannot are guaranteed to be close together. Mache et al. [25] give
explain this beyond the previous observation that OctetMBfnother curve-based strategy that strives to minimize network

is not really appropriate for a flat machine. contention caused by I/O as well as intrajob communication.
Some allocation algorithms are neither center-based nor
V. OTHER RELATED WORK curve-based. In particular ANCA [8] and GABL [26] both

Now we discuss other algorithms for allocation and relatedlork from the job rather than a representation of the free
problems. Of particular interest is the MC algorithm by Machprocessors. They first find a contiguous allocation for as much
et al. [10] and its relatives. MC is the algorithm upon whiclof the job as possible, then repeat for any remaining processors
MC1x1 is based. MC assumes that users submit jobs witkeded. We did not consider these algorithms because, like
a desired shape. For example, instead of a job requestind/1€, they assume that jobs come with desired dimensions.
processors, it can request2a3 shape. The runtime system Slightly less related are algorithms that only give contiguous
is not obligated to find a submesh of this shape, but tlaflocations, delaying jobs until one is available if necessary.
hope is that the extra information allows the system to firffor example, the single buddy algorithm [6] maintains a
a group of processors whose topology is similar to the jobfserarchy of blocks as in MBS except that a job is only
actual communication pattern. The MC algorithm uses thidlocated if a single block is big enough. When an eligible
information by making shell 0 have the desired dimensionlock is found, the job gets the entire block. Contiguous
Subsequent shells expand by one in each direction asailocation algorithms eliminate contention between jobs, but



they have been repeatedly shown to limit overall systens]
utilization (e.g. [5], [27]). Despite this, they are needed for
some systems such as BlueGene/L which guarantee each j
an appropriate submesh or sub-tori, a task facilitated by the
presence of extra network links [23].

A problem that is related to processor allocation is tadk”
mapping. In task mapping the goal is to assign the tasks
of a job to a group of preselected processors in a way that
minimizes contention. This is an old problem [28], but on
that continues to attract attention (e.g. [29], [2], [30], [31]). [12]

VI. DISCUSSION [13]

We have shown that our faster allocation algorithms can
find allocations whose quality is comparable, and in somgy
cases better than, the best truly three-dimensional algorithm.
In particular, the curve-based algorithm with a curve that goes
along the smallest dimension first is worthy of consideratiqgis)
on any mesh. Our Granular MBS algorithm is even better when
the mesh dimensions and expected job sizes are powers of t
The faster algorithms also run as much as 200 times faster.

Possible future work is to try making Granular MBS morél7]
broadly applicable so systems outside of its special case co
benefit. Alternately, the algorithm could be improved by using
a bin packing heuristic or an MC1x1-like search to assigidl
blocks from the free list. Also interesting would be other ideas
for fast but effective allocation algorithms. [20]
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