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B Front-end needs
— Off-gas treatment
» Existing technologies: Ag-impregnated materials, e.q. AgZ
» No disposition pathway available for those materials
— Direct/easy conversion of adsorbing materials to waste forms
B Back-end needs
— Flexibility to accommodate various radionuclides
— Durable waste forms
B Radionuclides of concern
— 129] 99T ¢ & other volatile/soluble radionuclides
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B Immobilization Mechanism

— Incorporation of radionuclides (RNs)
into mineral structure sites

B Limited ability to accommodate
different radionuclides
B Limited waste loading factors

B Dilemma in Durability
— Soluble RN vs. durable WF
» Changing stability of hosting minerals
— Dissolution kinetics vs. long term (1 My)
« Metal/alloy for Tc

B Thermodynamically stable waste
forms?
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e Development of New Genera
ENERGY Forms: Nano-immobilization

Nuclear Energy encapsulation
. g©g . :.: : gﬁg 1 patent issued
| 2 patents pending
Nanoporous Functionalized Sorption & Fixation & 2 Technical advances
material pore surface immobilization encapsulation Fu nding
@ LDRDs
FOA

|
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B Novel sorption capability: e.g. 1-129, Kr & Xe

B Fast sorption kinetics
— Getter materials
— Membrane separation
B Easy to engineer material chemistry
— Surface modification & grafting
B Easy to encapsulate
— Durability: host minerals
— Flexibility
B Chemical durability
— Thermodynamically stable

B Mechanic strength
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Nanopore Confinem
Sorption
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Nanopore confinement enhances 1on sorption onto a solid-water interface
for both cations and anions.
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Wang et al., 2003, Mat. Res. Soc. Symp. Proc.; 2003, Geology
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B General route for synthesizing nanostructured metal
oxides

— Based on a sol-gel method
— Inorganic precursors & block copolymer (as a structural template)
— Inexpensive, scalable for a large quantity production
B One-pot synthesis
— Multiple metal oxides
— Compositional & structural homogeneity ensured
B Formation of monolith
— Preferred for material handling

H U.S. Patent No. 7,238,288; two pending patents
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TEM image of nanoporous double metal oxide
synthesized using the one-pot route, showing
worm-like pore structures.

BET measurements of nanoporous double metal
oxide
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lodine Sorption on Nanop
and Its Derivatives

Material I/(m-Al) ratio | Sample wt, [I] uptake, ppm
g
Nanoporous alumina w/ Ag 0.114 0.2036 35674
Monolithic Nanoporous alumina 0.107 0.2035 66245
w/o Ag
BET measurements
Material Surface area, Pore vol. Pore Micropore vol.
m?/g cm?/g size, nm cm?/g
Nanoporus alumina w/ Ag 215 0.706 12.7 0.006644
Monolithic Nanoporous alumina 354 1.75 19.15 0.014549
w/o Ag

No silver is needed for | sequestration!
Ag-zeolite (?): Zeolite itself is not a good adsorbent for.
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Material I sorption (ppm) % of I lost during % of I lost during
fixation vitrification
Particles 98 ~100% ~100%
Activated 8700 45 65
particles
Nanoporous 25000 ~0 ~0
material

B Nanoporous structures not only enhance | sorption but also help to
retain | during the fixation and encapsulation.

B Silver is not needed either for iodine retention!
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B Optimal conditions for vitrification
B Formation of nanocrystals
B Durability of waste forms
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B Control of relative humidity

— Saturated Salt Solutions 500mL Teflon vess
e LiCl=10.23% RH

« MgCl, =24.12% RH S — —
« KClI=785% RH
— DI Water=100% RH

Glass vial with
water or
saturated salt
solution
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|, Sorption: Effect
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SNL-NCP (NC77) is the least sensitive to water vapor.
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Enhancement of | sorption by CO,?
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B TGA analysis

B Two stages:
— Heating & Degassing
— Cooling & sorption

Amount of Kr absorbed, mg/g

SNL-CBD-5 with Kr at room temperature

60 80 100 120
Time, minute
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Ar & Kr Sorption @ Room Tem

Table 1. Adsorption Expenments with Ar af room temperarure and (9 amm (683 torr) pressure®

{wit o)

MP zeolite 0.00
Zeolite 13X 008
NCT7 033
NC &3 (vaground) 023
NC 05 (ground) 031
S31HF 0.68
Hydromasneste 0.02
DARCO 072
Activated Carbon (Alfar Aesar) 0.50
SNL-CBD-1 0420 06
SNL-CBD-2 037001
SNL-CBD-5B 024
Loge33 0.175=0.005 (avemnge of un-gronnd and

ground samples)
Log#355 (nneround) 0.14
S5155-2-B {umsroud) 020
Sihicate-P 026
Salicate-5 036
Mordemte N 027
Mordenite-A 012
Spectrum zeolite 0.03
Wako zeolste 0.07
Spectrum Al{OH), (Spectrum Chenneal MFG 0
Carp)
51854 0.19
5185-3 0.13
5187 0.01
5128 0.03
5189.1 0.10
S5186.2 0.02
Brucite (Fisher Scientific) 0.00
Neaquehonite (Synthetic) 000
Caloiem citrate nibasic (earlandie) (ACROS 0.00

ORGANICS)

*Samples are first subjected to 2 howrs desorption at 90 °C. and then 2 howrs adsorption at room

temperatore in the vacim microbalance
10/22/2009

Table 2. Adsorption Expenments with Kr at room tenypernture and 0.9 atm (6835 tosr) pressure®

Adzorbents Wesght percentage of noble gas adsorbed
(wt. %)

MF zecline 0360 08
Leolite 13X 064
NC 77 024
Hydromapneste (Svathetic) 0.05
DARCO 3.60
SNL-CBD-1 3.01
SNL-CBD-2 251
Silicate-5 0.71
ENL-CBD-3" 1.93
SNL-CBD-3B* 197
SNL-CBD-3C 2 56
SNL-CBD-4 1.63
SNL-CBI-5 269
SNL-CBD-6 206
Mordepite-N 1.74
Mordenite- A4 1.31
Silicate-F 1.03
Wako zeclite (20
Spectmm zeolite (Spectrum Chenucal MFG 033
Corp)
Calcium catrate tribasic (earlandate) (ACROS 016
ORGANICS)
5150-2-B 0.30
51854 0.30
51835 042
5187 0.29
5138 039
5180-1 0.32
5180.2 0

*Samples are first subgected to 2 hours desorption at 90 °C, and then 2 howrs adsorption at room

temperature in the vacmm microbalance

‘Samp]r spull outzide of the crucible was observed; therefore true value should be higher than
thas

FCR&D Annual Meeting
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B Activated carbon materials have high adsorption
capacities for Ar, followed by SNL-NCP and naturally
occurring layered silicates. These samples have
adsorption capacities higher than 0.30%.

B Activated carbon, SNL-NCP materials (SNL-CBD
series), naturally occurring layered silicates have
high adsorption capacities for Kr.

B New SNL-NCP materials (nanostructured C-inorganic
composites) have high adsorption rates, comparable
to activated carbon.
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Molecular Dynamic Modeling:
Model System for lodine Sorptio

B Capturing the
polarization effect of |,
is the key to the
simulation of iodine
gas adsorption on
metal oxide surfaces.
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gamma-Alumina (363K)

14 q
S There existence of optimal pore sizes
: — for iodine sorption onto nanoporous
N s materials (2.5 — 3.5 nm).
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B Material design & optimization
- — Surface modification
] — Control of pore sizes

N

Loading (Molecule 12/UC)

@
o

N
S

N
5}

o

°
N
»
>
®
3
3

Molecular design

10/22/2009 FCR&D Annual Meeting 21



ZS R, U.S. DEPARTMENT OF

@WENERGY  Concluding Re

Nuclear Energy

B Performance of SNL-NCP materials

— Nanostructured

— High sorption capability/selectivity

— No Ag needed for entrapment and immobilization
— Easily converted to durable waste forms

— Applicable to a wide range of radionuclides

— Inexpensive for synthesis

B Future work

— Enhancement of Kr & Xe sorption

— Functionalization of nanopore surfaces
— MD modeling

— Collaboration with other labs
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