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The needs

Front-end needs

– Off-gas treatment

• Existing technologies: Ag-impregnated materials, e.g. AgZ

• No disposition pathway available for those materials 

– Direct/easy conversion of adsorbing materials to waste forms 

Back-end needs

– Flexibility to accommodate various radionuclides

– Durable waste forms

Radionuclides of concern

– 129I, 99Tc & other volatile/soluble radionuclides
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Limitations of Existing Waste Forms 

 Immobilization Mechanism

– Incorporation of radionuclides (RNs) 
into mineral structure sites

 Limited ability to accommodate 
different radionuclides

 Limited waste loading factors

 Dilemma in Durability

– Soluble RN vs. durable WF

• Changing stability of hosting minerals

– Dissolution kinetics vs. long term (1 My)

• Metal/alloy for Tc

 Thermodynamically stable waste 
forms?
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Development of New Generation of Waste 
Forms: Nano-immobilization & Nano-
encapsulation

Nanoporous 
material

Encapsulation 
by collapsing/ 

sealing

Functionalized 
pore surface

Sorption & 
immobilization

Fixation & 
encapsulation

1 patent issued

2 patents pending

2 Technical advances

Funding

LDRDs

FOA
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Why Nano-scale?

Novel sorption capability: e.g. I-129, Kr & Xe

Fast sorption kinetics
– Getter materials

– Membrane separation

Easy to engineer material chemistry
– Surface modification & grafting

Easy to encapsulate
– Durability: host minerals

– Flexibility

Chemical durability
– Thermodynamically stable

Mechanic strength
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Nanopore Confinement & 
Sorption

Nanopore confinement enhances ion sorption onto a solid-water interface 
for both cations and anions.

Wang et al., 2003, Mat. Res. Soc. Symp. Proc.; 2003, Geology
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Material Synthesis

General route for synthesizing nanostructured metal 
oxides

– Based on a sol-gel method

– Inorganic precursors & block copolymer (as a structural template) 

– Inexpensive, scalable for a large quantity production

One-pot synthesis

– Multiple metal oxides

– Compositional & structural homogeneity ensured

Formation of monolith

– Preferred for material handling

U.S. Patent No. 7,238,288; two pending patents
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Material Synthesis (cont.)

TEM image of nanoporous double metal oxide 
synthesized using the one-pot route, showing 
worm-like pore structures.
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Iodine Sorption on Nanoporous Alumina 
and Its Derivatives
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No silver is needed for I sequestration!

Ag-zeolite (?): Zeolite itself is not a good adsorbent for.
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Nanopore Structures & Radionuclide 
Retention
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 Nanoporous structures not only enhance I sorption but also help to 
retain I during the fixation and encapsulation.

 Silver is not needed either for iodine retention!
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Waste Form Formation by 
Encapsulation

 Optimal conditions for vitrification 

 Formation of nanocrystals

 Durability of waste forms
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Relative Humidity Testing

 Control of relative humidity

– Saturated Salt Solutions

• LiCl = 10.23% RH

• MgCl2 = 24.12% RH

• KCl = 78.5% RH

– DI Water = 100% RH

500mL Teflon vessel

Glass vial with 
water or
saturated salt 
solution
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I2 Sorption: Effect of Humidity

SNL-NCP (NC77) is the least sensitive to water vapor.
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I2 Sorption: 
Effect of Other Gaseous Components
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I2 Sorption: Temperature Effect
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Kr & Xe Sorption Tests

TGA analysis

Two stages:

– Heating & Degassing

– Cooling & sorption
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Ar & Kr Sorption @ Room Temperature & 0.9 atm
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Testing Results: Ar and Kr adsorption

Activated carbon materials have high adsorption 
capacities for Ar, followed by SNL-NCP and naturally 
occurring layered silicates.  These samples have 
adsorption capacities higher than 0.30%.

Activated carbon, SNL-NCP materials (SNL-CBD 
series), naturally occurring layered silicates have 
high adsorption capacities for Kr. 

New SNL-NCP materials (nanostructured C-inorganic 
composites) have high adsorption rates, comparable 
to activated carbon.
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Molecular Dynamic Modeling: 
Model System for Iodine Sorption

 Capturing the 
polarization effect of I2
is the key to the 
simulation of iodine 
gas adsorption on 
metal oxide surfaces.
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MD Simulations: Iodine Sorption on alumina surfaces

gamma-Alumina (363K)
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MD Simulations: Iodine Sorption on alumina 
surfaces (cont.)
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 Material design & optimization

– Surface modification

– Control of pore sizes
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Concluding Remarks

Performance of SNL-NCP materials

– Nanostructured

– High sorption capability/selectivity

– No Ag needed for entrapment and immobilization

– Easily converted to durable waste forms

– Applicable to a wide range of radionuclides

– Inexpensive for synthesis

Future work

– Enhancement of Kr & Xe sorption

– Functionalization of nanopore surfaces

– MD modeling

– Collaboration with other labs
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