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Inverse Radiation Transport Problems

e Objective: infer the configuration of an unknown radiation source from its measured
radiation signatures

e Source features
e |sotopic composition
e Fissile mass & multiplication
e Geometric arrangement of radiating and shielding materials

e Radiation signatures
e Gamma spectrometry
e Neutron time-correlation and multiplicity counting

e Applications
e Non-intrusive, non-destructive inspection & interrogation
e Nonproliferation & counterterrorism
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Solution Method

e Start with an initial model of the source;
treat some model parameters as variable

e Estimate the radiation field incident on
the detector(s) using radiation transport
calculations

¢ Fold the radiation field with a model of
the detector response function(s) to
calculate the radiation signature(s)

e |[teratively minimize the error between the
calculated and measured signature(s)
using nonlinear regression
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Components of the Inverse Transport Framework

Radiation Transport Detector Response
e Discrete ordinates transport solvers ¢ Point models are used to estimate the
are used to compute the neutron, response to photons & neutrons
electron, and photon radiation fields e Detector material & dimensions
e Neutron transport e Energy calibration & resolution
e Neutron flux & leakage e Near- & far-field scatter
¢ Induced fission gammas e Shielding & collimation

e Capture & inelastic scatter gammas

e Electron transport Nonlinear Regression

e Bremsstrahlung e The Levenberg-Marquardt regression
solver is used to find transport model
parameters that minimize the error in
the calculated detector response

e Photon transport
e Photon flux & leakage
e Decay gammas
e Spontaneous fission gammas
¢ (o, n) gammas
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Solution Requirements

e Forward computations (radiation field and detector response) must be accurate
e Minimize bias in the solution due to systematic errors in the model

e Forward computations must be fast
e Minimize the time per iteration required to find the solution

e The model must have a finite number of numeric parameters

e Minimize the degrees of freedom/dimensionality of solution

e Accuracy requires high-fidelity spectral synthesis: coupled
neutron/electron/photon transport calculations

e Speed requires explicit solution of transport problem: deterministic transport
e Tractable problems do not have arbitrary geometry

~ Sandia
N ""‘S o) @ National
o i Laboratories



Radiation Observables

e Most externally observable radiation
signatures result from gamma and
neutron emissions

e Observables are usually differential over
one or more independent variables (e.g.,
energy, position, time)

e Gamma spectrometry measures the
distribution of photons versus energy

e Neutron multiplicity counting measures
the distribution of neutrons versus
number and counting time
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Gamma Spectrometry

e A radionuclide decays from its unstable

state through a series of discrete energy
levels

e Decay between levels of a single daughter
nucleus is achieved via emission of
discrete energy gammas

e The gammas are characteristic of the
daughter level scheme

e Gamma spectrometers measure the
distribution of photon energies

e The gamma spectrum can be used to
identify radionuclides and shielding
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Photopeaks and Compton Continua

e Photopeak positions identify source
e Differential attenuation of photopeaks and Compton continua identify shielding
e Fitting the full spectrum enables the source and shielding to be characterized
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Fission Chain-Reactions

e Fission chain reactions multiply the
number of neutrons in fissile transport
medium

e Chain reaction characteristics:

e Number of neutrons made during the chain
reaction: neutron multiplication

e Speed of chain reaction evolution: neutron
generation time

e Neutron multiplicity measurements are
sensitive to both characteristics

e Neutron multiplicity counting can be used
to estimate kinetics properties of the
source

Source strength

Multiplication

Neutron lifetime

Leakage probability
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Neutron Multiplicity Counting

e Neutron multiplicity counting measures

the frequency of neutron detection LANL BeRP Ball / 3.8 EmUPOIV Reflector
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Example Problem

e The gamma spectrum below exhibits features
consistent with plutonium

e The spectrum can be fit (top-right) via nonlinear
regression using variable isotopics, volume,
shielding, and age

e The regression analysis (bottom-right) provides
approximate model of source
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10
10°
200 400 600 800 1000 1200 1400
Channel Number
Plutonium wt.% (@ 33 +/— 1 years) @ t=0
Pu-236: 2.69E-12 +-— 1.19E-12 8.98E-09 +-— 4 . 75E-09
Pu-23%: 0.014 +-— 0.008 0.019 +-— 0.010
Pu-239: 94,205 +-- 0.603 94,295 +-- 0.604
Fu—240: 5.279 +/- 1.157 £.298 +-— 1.161
Pu-241: 0.095 +-— 0.006 0.513 +-— 0.038
Pu-242: [ 0.010] [ 0.010]
An—241: 0.396 +/— 0.o008
Hp-237: 0.017 +/- 0.o0z
0-237: 2.94E-09 +-/— 1.92E-10
U-232: 8.98E-09 +-— 3.97E-09
Confidence for measured 180-an-21He gammas: -1.6 sigma
Heasured (a.n) relative to expected for oxide: -3.0 sigma
Aluminum—inelastic pealk: 1011.7 keV @ 2.3 =igma
Chemnical form: METALLIC
Exzternal shielding: AW = 30 +-- 1; AD = 3.9 +-- 0.1
Outer radius if plutonium i= spherical: 3.8 cm
Estimated void radius: 3.3 cn
Eztimated ma==s if delta-pha=e plutonium: 1.3 kg

There 1= no evidence that uranium is present.
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Example Problem

e A one-dimensional transport model (top)
can be generated from regression analysis
e The model is displayed as a section of

sphere with the center at the bottom and
outer surface at the top

e The dimensions of the model layers are
treated as variables for nonlinear regression

e An initial estimate of the gamma spectrum
(bottom) is generated from coupled
neutron/electron/photon transport
calculations

e Nonlinear optimization procedures are
used to find the model dimensions that
minimize the error in the calculated
spectrum
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Solution Optimization

Transport Model

Measurement vs. Calculation
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Actual Source

Plutonium Sphere Optimized Transport Model
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Solution using Gammas and Neutrons

e The gamma spectrum is primarily sensitive
to the outer surface of source

e The solution based on the gamma
spectrum alone is weakly constrained

e Neutron measurements (e.g., count rate)
are more sensitive to the entire volume of
source

e A solution based on the simultaneous
analysis of gamma and neutron signatures
is better constrained

e Neutron multiplicity counting provides a
fairly rich signature of the neutron field
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Challenges to Solving Multivariate Inverse Radiation
Transport Problems

eNeed to accelerate deterministic transport calculations

e Typical computational time for neutron multiplicity statistics can be as much as
10 — 20 seconds

e Need to investigate collapsed cross-section libraries and other approximations
to speed the transport calculations
e Need to validate deterministic transport calculations

e Approximations used to accelerate the calculations can introduce systematic
errors

¢ Need to validate approximations against measurements and higher fidelity
(e.g., 3D Monte Carlo) simulations
eNeed to develop a systematic approach to combining the analysis of
complementary, correlated signatures
e Errors in gamma spectrum and neutron multiplicity calculations are correlated

e Need to correctly weight each signature’s contribution to the error metric

) Sandia
//j?"'m"*‘s’gfi @ National

Laboratories



Accelerating Deterministic Transport Calculations

e University of Florida (UF) is
developing a platform that will be
used to test alternative methods of
accelerating deterministic transport
calculations

e The platform is based on UF codes
PENTRAN (S,) and TITAN (hybrid
Sy/ray-trace)

e UF is currently investigating
contributon-weighted methods to
collapse cross-sections

e So far, UF has been able to reduce the

number of energy groups by a factor UF
of 2 without introducing much error

into neutron multiplicity calculations

UNIVERSITY of
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Using Monte Carlo to Validate Deterministic Calculations

e University of Michigan (UM) is
modifying MCNP-PoliMi and post-
processing software to simulate
neutron multiplicity counting
experiments

e UM developed an MCNP-PoliMi post-
processor that accumulates the
neutron multiplicity distribution

e UM is currently validating their
calculations against experiments
conducted with reflected plutonium

e So far, UM has been able to match the
experiments within about 15% (using
the Feynman variance-to-mean
statistic)
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Combining Gamma Spectral and Neutron Multiplicity
Analyses

° Problem Covariance Matrix

e Sandia is studying alternative * C5-137 shielded by Pb

regression error metrics to « Variables
systematically combine the analysis of * Cs-137 activity 35 f\_
gamma spectrometry and neutron * Pb thickness Lf

multiplicity measurements

@
]
=
8
8

e We developed a methodology that
computes the covariance between
model errors — the covariance matrix
is used to weight the contribution of
individual model errors to the total
error

e Currently, we are investigating the
effect of model error covariance on e
the topography of the solution space Error Surface (With Covariance)

T=(x-x) 2T (x - x)
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Summary

elt is possible to infer the configuration of an unknown radiation
source from its radiation signatures

eSandia has developed and implemented techniques to solve this
inverse transport problem based on gamma spectrometry

eSolutions based on multiple complementary signatures are
generally better constrained

eSandia is working with University of Florida and University of
Michigan to develop methods to solve inverse transport problems
using gamma spectrometry and neutron multiplicity signatures
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