SAND2010- 0971C

Understanding and Effectively Preventing the ABA Problem in
Descriptor-based Lock-free Designs

Damian Decheyv, Peter Pirkelbauer, and Bjarne Stroustrup
dechev@tamu.edu, peter.pirkelbauer@tamu.edu, bs@cs.tamu.edu
Texas A&M University
College Station, TX 77843-3112

Abstract

An increasing number of modern real-time systems and
the nowadays ubiquitous multicore architectures demand
the application of programming techniques for reliable and
efficient concurrent synchronization. Some recently devel-
oped Compare-And-Swap (CAS) based nonblocking tech-
niques hold the promise of delivering practical and safer
concurrency. The ABA' problem is a fundamental prob-
lem to all CAS-based designs. Its significance has increased
with the suggested use of CAS as a core atomic primitive for
the implementation of portable lock-free algorithms. The
ABA problem’s occurrence is due to the intricate and com-
plex interactions of the application’s concurrent operations
and, if not remedied, ABA can significantly corrupt the se-
mantics of a nonblocking algorithm. The current state of
the art leaves the elimination of the ABA hazards to the in-
genuity of the software designer. In this work we provide the
first systematic and detailed analysis of the ABA problem in
lock-free Descriptor-based designs. We study the semantics
of Descriptor-based lock-free data structures and propose a
classification of their operations that helps us better under-
stand the ABA problem and subsequently derive an effective
ABA prevention scheme. Our ABA prevention approach out-
performs by a large factor the use of the alternative CAS-
based ABA prevention schemes. We demonstrate our ABA
prevention scheme by integrating it into an advanced non-
blocking data structure, a lock-free dynamically resizable
array.

1 Introduction

The modern ubiquitous multi-core architectures demand
the design of programming libraries and tools that allow
fast and reliable concurrency. In addition, providing safe

TABA is not an acronym and is a shortcut for stating that a value at a
shared location can change from A to B and then back to A

and efficient concurrent synchronization is of critical impor-
tance to the engineering of many modern real-time systems.
Lock-free programming techniques [11] have been demon-
strated to be effective in delivering performance gains and
preventing some hazards, typically associated with the ap-
plication of mutual exclusion, such as deadlock, livelock,
and priority inversion [5], [2]. The ABA problem is a funda-
mental problem to many CAS-based nonblocking designs.
Avoiding the hazards of ABA imposes an extra challenge
for a lock-free algorithm’s design and implementation. To
the best of our knowledge, the literature does not offer an
explicit and detailed analysis of the ABA problem, its rela-
tion to the most commonly applied nonblocking program-
ming techniques (such as the use of Descriptors) and cor-
rectness guarantees, and the possibilities for its avoidance.
Thus, at the present moment of time, eliminating the haz-
ards of ABA in a nonblocking algorithm is left to the in-
genuity of the software designer. In this work we study in
details and define the conditions that lead to ABA in a non-
blocking Descriptor-based design. Based on our analysis,
we define a generic and practical condition, called the A\§
approach, for ABA avoidance for a lock-free Descriptor-
based linearizable design (Section 4). We demonstrate the
application of our approach by incorporating it in a complex
and advanced nonblocking data structure, a lock-free dy-
namically resizable array (vector) [2]. The ISO C++ Stan-
dard Template Library [17] vector offers a combination of
dynamic memory management and constant-time random
access. We survey the literature for other known ABA pre-
vention techniques (usually described as a part of a non-
blocking algorithm’s implementation) and study in detail
three known solutions to the ABA problem (Sections 2.1
and 2.3). Our performance evaluation (Section 5) estab-
lishes that the single-word CAS-based Ad approach is fast,
efficient, and practical.

2 The ABA Problem

The Compare-And-Swap (CAS) atomic primitive (com-
monly known as Compare and Exchange, CMPXCHG, on the
Intel x86 and Itanium architectures [12]) is a CPU instruc-
tion that allows a processor to atomically test and mod-
ify a single-word memory location. The application of a
CAS-controlled speculative manipulation of a shared loca-
tion (L;) is a fundamental programming technique in the
engineering of nonblocking algorithms [11] (an example is
shown in Algorithm 1).

Algorithm 1 CAS-based speculative manipulation of L;

1: repeat

2: value_type A;="L;

3: value_type B; = ComputeB
4: until CAS(L;, A;, B;) == Bi

In our pseudocode we use the symbols ", &, and . to in-
dicate pointer dereferencing, obtaining an object’s address,
and integrated pointer dereferencing and field access. When
the value stored at L; is the target value of a CAS-based
speculative manipulation, we call L; and ~ L; control loca-
tion and control value, respectively. We indicate the con-
trol value’s type with the string value_type. The size of
value_type must be equal or less than the maximum num-
ber of bits that a hardware CAS instruction can exchange
atomically (typically the size of a single memory word). In
the most common cases, value_type is either an integer or
a pointer value. In Algorithm 1, the function fComputeB
yields the new value, B;, to be stored at L;.

Definition 1: The ABA problem is a false positive execu-
tion of a CAS-based speculation on a shared location L;.

As illustrated in Table 1, ABA can occur if a process P;
is interrupted at any time after it has read the old value (A;)
and before it attempts to execute the CAS instruction from
Algorithm 1. An interrupting process (F5) might change
the value at L; to B;. Afterwards, either Py or any other
process P; # P; can eventually store A; back to L;. When
P; resumes, its CAS loop succeeds (false positive execu-
tion) despite the fact that L;’s value has been meanwhile
manipulated.

Step Action
Step 1 Py reads A; from L;
Step 2 | Py interrupts P;; Py stores the value B; into L;
Step 3 P; stores the value A; into L;
Step 4 P1 resumes; P; executes a false positive CAS

Table 1. ABA at L;

Definition 2: A nonblocking algorithm is ABA-free when
its semantics cannot be corrupted by the occurrence of ABA.

ABA-freedom is achieved when: a) occurrence of ABA
is harmless to the algorithm’s semantics or b) ABA is
avoided. The former scenario is uncommon and strictly spe-
cific to the algorithm’s semantics. The latter scenario is the
general case and in this work we focus on providing details
of how to eliminate ABA.

2.1 Known ABA Avoidance Techniques I

A general strategy for ABA avoidance is based on the
fundamental guarantee that no process P; (P; # Pp) can
possibly store A; again at location L; (Step 3, Table 1).
One way to satisfy such a guarantee is to require all values
stored in a given control location to be unique. To enforce
this uniqueness invariant we can place a constraint on the
user and request each value stored at L; to be used only
once (Known Solution 1). For a large majority of concur-
rent algorithms, enforcing uniqueness typing would not be
a suitable solution since their applications imply the usage
of a value or reference more than once.

An alternative approach to satisfying the uniqueness in-
variant is to apply a version tag attached to each value. The
usage of version tags is the most commonly cited solution
for ABA avoidance [6]. The approach is effective, when it
is possible to apply, but suffers from a significant flaw: a
single-word CAS is insufficient for the atomic update of a
word-sized control value and a word-sized version tag. An
effective application of a version tag [3] requires the hard-
ware architecture to support a more complex atomic primi-
tive that allows the atomic update of two memory location,
such as CAS2 (compare-and-swap two co-located words)
or DCAS (compare-and-swap two memory locations). The
availability of such atomic primitives might lead to much
simpler, elegant, and efficient concurrent designs (in con-
trast to a CAS-based design). It is not desirable to sug-
gest a CAS2/DCAS-based ABA solution for a CAS-based
algorithm, unless the implementor explores the optimiza-
tion possibilities of the algorithm upon the availability of
CAS2/DCAS. A proposed hardware implementation (en-
tirely built into a present cache coherency protocol) of an in-
novative Alert-On-Update (AOU) instruction [16] has been
suggested by Spear et al. to eliminate the CAS deficiency
of allowing ABA. Some suggested approaches ([15]) split
a version counter into two half-words (Known Solution 2):
a half-word used to store the control value and a half-word
used as a version tag. Such techniques lead to severe lim-
itations on the addressable memory space and the number
of possible writes into the shared location. To guarantee
the uniqueness invariant of a control value of type pointer
in a concurrent system with dynamic memory usage, we
face an extra challenge: even if we write a pointer value no
more than once in a given control location, the memory al-
locator might reuse the address of an already freed object

(A;) and pose an ABA hazard. To prevent this scenario, all
control values of pointer type must be guarded by a concur-
rent nonblocking garbage collection scheme such as Hazard
Pointers [14] (that uses a list of hazard pointers per thread)
or Herlihy et al.’s Pass The Buck algorithm [10] (that uti-
lizes a dedicated thread to periodically reclaim unguarded
objects). While enhancing the safety of a concurrent algo-
rithm (when needed), the application of a complementary
garbage collection mechanism might come at a significant
performance cost (Section 5).

2.2 The Descriptor Object

Linearizability is an important correctness condition for
concurrent objects [11]. The implementations of many non-
blocking data structures require the update of rwo or more
memory locations in a linearizable fashion [2], [5]. The
engineering of such operations (e.g. push_back and re-
size in a dynamically resizable array) is particularly chal-
lenging in a CAS-based design. A common programming
technique applied to guarantee the linearizability require-
ments for such operations is the use of a Descriptor Object
(6 object) [2], [S]. The pseudocode in Algorithm 2 shows
the generalized two-step execution of a Descriptor Object.
Our definition of a Descriptor Object requires the Descrip-
tor to store three types of information:

(1) Global data describing the state of the shared container
(v9), e.g. the size of a dynamically resizable array [2].

(2) A record of a pending operation on a given memory lo-
cation. We call such a record requesting an update at a
shared location L; from an old value, old_val, to a new
value, new_val, a Write Descriptor (wd). The shortcut
notation we use is wd @ L; : old_val — new_val. The
fields in the Write Descriptor Object store the target lo-
cation as well as the old and the new values.

(3) Aboolean value indicating whether wd contains a pend-
ing write operation that needs to be completed.

The use of a Descriptor allows an interrupting thread help
the interrupted thread complete an operation rather than
wait for its completion. As shown in Algorithm 2, the
technique is used to implement, using only two CAS in-
structions, a linearizable update of two memory locations:
1. a reference to a Descriptor Object (data type pointer
to § stored in a location L) and 2. an element of type
value_type stored in L;. In Step 1, Algorithm 2, we per-
form a CAS-based speculation of a shared location L that
contains a reference to a Descriptor Object. Step 1 executes
in the following fashion:

1. we read the value of the current § reference stored in Lg
(line 3)

2. if the current § object contains a pending operation, we
need to help its completion (lines 4-5)

3. we record the current value, A;, in location L; (line 6)
and compute the new value,B;, to be stored in L; (line
7)

4. a new wd object is allocated on the heap, initialized (by
calling f.s), and its fields Target, OldValue, and New-
Value are set (lines 8-11)

5. any state carrying data stored in a Descriptor Object
must be computed (by calling f,,5). Such data might be
a shared element or a container’s size (line 12)

6. anew Descriptor Object is initialized containing the new
Write Descriptor and the new descriptor’s data. The new
descriptor’s pending operation flag (WDpending) is set
to true (lines 13-14)

7. we attempt a swap of the old Descriptor Object with the
new one (line 15). Should the CAS fail, we know that
there is another process that has interrupted us and mean-
while succeeded to modify Ls and progress. We need to
go back at the beginning of the loop and repeat all the
steps. Should the CAS succeed, we proceed with Step 2
and perform the update at L;.

The size of a Descriptor Object is larger than a memory
word. Thus, we need to store and manipulate a Descriptor
Object through a reference. Since the control value of Step
1 stores a pointer to a Descriptor Object, to prevent ABA at
Ly, all references to descriptors must be memory managed
by a safe nonblocking garbage collection scheme. We use
the prefix p for all variables that require safe memory man-
agement. In Step 2 we execute the Write Descriptor, WD, in
order to update the value at L;. Any interrupting thread (af-
ter the completion of Step 1) detects the pending flag of wd
and, should the flag’s value be still positive, it proceeds to
executing the requested update wd @ L; : A; — B;. There
is no need to execute a CAS-based loop and the call to a
single CAS is sufficient for the completion of wd. Should
the CAS from Step 2 succeed, we have completed the two-
step execution of the Descriptor Object. Should it fail, we
know that there is an interrupting thread that has completed
it already.

2.3 Known ABA Avoidance Techniques II

A known approach for avoiding a false positive execu-
tion of the Write Descriptor from Algorithm 2 is the appli-
cation of value semantics for all values of type value_type
(Known Solution 3). As discussed in [9] and [2], an ABA
avoidance scheme based on value semantics relies on:

Algorithm 2 Two-step execution of a § object
1: Step I: place a new descriptor in L

2: repeat
3: & uOldDesc = L

4 if 1OldDesc.WDpending == true then
5: execute pOldDesc.WD

6: valuetype A, ="L;

7: value_type B; = fComputeB

8 wSWD= fus()

9: WD.Target = L;

10: WD.OIdElement = A;

11: WD.NewElement = B;

12: vé DescData = f,,5()

13: & uNewDesc = f5(DescData, WD)
14: pNewDesc.WDpending = true

15: until CAS(L;s, uOldDesc, uNewDesc) == uNewDesc

17: Step 2: execute the write descriptor
18: if uNewDesc.WDpending then

19: CAS(WD.Target, WD.OldElement, WD.NewElement) == WD.NewElement

20: 1NewDesc.WDPending = false

a. Extra level of indirection: all values are stored in shared
memory indirectly through pointers. Each write of a
given value v; to a shared location L; needs to allocate
on the heap a new reference to v; (1,,), store 7,,, into L;,
and finally safely delete the pointer value removed from
L;.

b. Nonblocking garbage collection (GC): all references
stored in shared memory (such as 7,,) need to be safely
managed by a nonblocking garbage collection scheme
(e.g. Hazard Pointers, Pass The Buck).

As reflected in our performance test results (Section 5), the
usage of both an extra level of indirection as well as the
heavy reliance on a nonblocking GC scheme for managing
the Descriptor Objects and the references to value_type ob-
jects is very expensive with respect to the space and time
complexity of a nonblocking algorithm. However, the use
of value semantics is the only known approach for ABA
avoidance in the execution of a Descriptor Object. In Sec-
tion 4 we present a 3-step execution approach that helps us
eliminate ABA, avoid the need for an extra level of indirec-
tion, and reduce the usage of the computationally expensive
GC scheme.

3 Descriptor-based Operations Classification

The use of a Descriptor Object provides the program-
ming technique for the implementation of some of the com-
plex nonblocking operations in a shared container, such as
the push_back, pop_back, and reserve operations in a
shared vector [2]. The use and execution of a Write De-
scriptor guarantees the linearizable update of two or more
memory locations. Here, to better understand the interac-
tions among these operations and the cause of ABA, we
classify the operations in a nonblocking Descriptor-based
design.

Definition 3: An operation whose success depends on
the creation and execution of a Write Descriptor is called
an wi-executing operation.

The operation push_back of a shared vector [2] is an
example of an wd-executing operation. Such wd-executing
operations have lock-free semantics and the progress of
an individual operation is subject to the contention on the
shared location L;. For a shared vector, operations such as
pop-back do not need to execute a Write Descriptor Object
[2]. Their progress is dependent on the state of the global
data stored in the Descriptor Object, such as the size of a
container.

Definition 4: An operation whose success depends on
the state of the v6 data stored in the Descriptor Object is a
d-modifying operation.

A §-modifying operation, such as pop_back, needs only
update the shared global data (the size of type vJ) in the
Descriptor Object. Since an wd-executing operation by
definition always performs an exchange of the entire De-
scriptor Object, every wd-executing operation is also J-
modifying. The semantics of a J-modifying operation are
lock-free and the progress of an individual operation is de-
termined by the interrupts by other §-modifying operations.
An wd-executing operation is also §-modifying but as is the
case with pop_back, not all -modifying operations are wd-
executing. Certain operations, such as the random access
read and write in a vector [2], do not need to access the
Descriptor Object and progress regardless of the state of the
descriptor. Such operations are non-6-modifying and have
wait-free semantics (thus no delay if there is contention at
Ls).

Definition 5: An operation whose success does not de-
pend on the state of the Descriptor Object is a non-6-
modifying operation.

3.1 Concurrent Operations

When two J-modifying operations (Os, and Os,) are
concurrent [11], according to Algorithm 2, Oy, precedes
Os, in the linearization history if and only if Os, completes
Step 1, Algorithm 2 prior to Os,.

Definition 6: We refer to the instant of successful ex-
ecution of the global Descriptor exchange at Ls (line 15,
Algorithm 2) as 5.

Definition 7: A point in the execution of a § object that
determines the order of an wé-executing operation acting
on location L; relative to other writer operations acting on
the same location L;, is referred to as the Ad-point (Tys) of
a Write Descriptor.

The order of execution of the \Jj-points of two concur-
rent wd-executing operations determines their order in the
linearization history. Let us designate the point of time
when a certain 6-modifying operation reads the state of the

Step Action
Step 1 Os,: Treadg
Step 2 | Os,: Taccess;
Step 3 Os,: Ts
Step 4 Osy' Treads
Step 5 Os,: Twd
Step 6 | Oi: Twrite;

Step 7 Osyt Twd

Table 2. ABA occurrence in the execution of
a Descriptor Object

Descriptor Object by 7,¢4q;, and the instants when a thread
reads a value from and writes a value into a location L;
by Taccess; and Typrite, . respectively. Table 2 demonstrates
the occurrence of ABA in the execution of a ¢ object with
two concurrent §-modifying operations (Os, and Os,) and
a concurrent write, O;, to L;. We assume that the J ob-
ject’s implementation follows Algorithm 2. The place-
ment of the A\J-point plays a critical role for achieving ABA
safety in the implementation of an wd-executing operation.
As shown in Table 2, at time 7,4 when Oj, executes the
write descriptor, O, has no way of knowing whether Os,
has completed its update at L; or not. Since Oj, ’s Ad-point
= 75, the only way to know about the status of Oy, is to
read Ls. Using a single-word CAS operation prevents Os,
from atomically checking the status of L; and executing the
update at L;.

Definition 8: A concurrent execution of one or more
non-wd-executing 0-modifying operations with one wo-
executing operation, Og,, performing an update at location
L; is ABA-free if Os,’s Ad-point = Tyccess;. We refer to an
wd-executing operation where its ANJ-point = Tyccess; as d
AS-modifying operation.

Assume that in Table 2 the Os,’s Ad-point = Tyecess; -
As shown in Table 2, the ABA problem in this scenario oc-
curs when there is a hazard of a spurious execution of Os,’s
Write Descriptor. Having a Ad-modifying implementation
of Os, allows any non-wd-executing d-modifying operation
such as Os, to check Og,’s progress while attempting the
atomic update at L; requested by Os,’s Write Descriptor.
Our 3-step descriptor execution approach, explained in Sec-
tion 4, offers a solution based on Definition 8. In an imple-
mentation with two or more concurrent wd-executing oper-
ations, each wd-executing operation must be Ad-modifying
in order to eliminate the hazard of a spurious execution of
an w4 that has been picked up by a collaborating operation.

4 ABA-free Execution of the
Descriptor Object

In Algorithm 3 we suggest a design strategy for the im-
plementation of a Ad-modifying operation. Our approach is
based on a 3-step execution of the § object. While similar
to Algorithm 2, the approach shown in Algorithm 3 differs
by executing a fundamental additional step: in Step 1 we
store a pointer to the new descriptor in L; prior to the at-
tempt to store it in Lgs in Step 2. Since all § objects are
memory managed, we are guaranteed that no other thread
would attempt a write of the value uNewDesc in L; or
any other shared memory location. The operation is Ad-
modifying because, after the new descriptor is placed in L;,
any interrupting writer thread accessing L; is required to
complete the remaining two steps in the execution of the
Write Descriptor. However, should the CAS execution in
Step 2 (line 28) fail, we have to unroll the changes at L;
performed in Step 1 by restoring L;’s old value preserved
in WD.OIldElement (line 20) and retry the execution of the
routine (line 21). To implement Algorithm 3, we have to
be able to distinguish between objects of type value_type
and §. A possible solution is to require that all value_type
variables are pointers and all pointer values stored in L; are
aligned with the two low-order bits cleared during their ini-
tialization. That way, we can use the two low-order bits for
designating the type of the pointer values. Subsequently,
every read must check the type of the pointer obtained from
a shared memory location prior to manipulating it. Once an
operation succeeds at completing Step 1, Algorithm 3, lo-
cation L; contains a pointer to a § object that includes both:
L;’s previous value of type value_type and a write descrip-
tor WD that provides a record for the steps necessary for
the operation’s completion. Any non-J-modifying opera-
tion, such as a random access read in a shared vector, can
obtain the value of L; (of type value_type) by accessing
WD.OldElement (thus going through a temporary indirec-
tion) and ignore the Descriptor Object. Upon the success
of Step 3, Algorithm 3, the temporary level of indirection is
eliminated. Such an approach would preserve the wait-free
execution of a non-6-modifying operation. The w¢ data type
needs to be amended to include a field TempElement (line
9, Algorithm 3) that records the value of the temporary &
pointer stored in L;. The cost of the A\J operation is 3 CAS
executions to achieve the linearizable update of two shared
memory locations (L; and Ls). The implementation of our
Ad-modifying operation as shown in Algorithm 3 is similar
to the execution of Harris et al.’s M CAS algorithm [8]. Just
like our Ad-modifying approach, for an M CAS update of
Ls and L;, the cost of Harris et al.’s M CAS is at least 3 ex-
ecutions of the single-word CAS instruction. Harris et al.’s
work on MCAS [8] brings forward a significant contribu-
tion in the design of lock-free algorithms, however, it lacks

any analysis of the hazards of ABA and the way the authors
manage to avoid it.

Algorithm 3 Implementing a AJ-modifying operation
through a three-step execution of a § object

1: Step I: place a new descriptor in L;
2: value_type B; = fComputeB
: value_type A;
T wdWD = fo5()
: WD.Target = L;
: WD.NewElement = B;
: v DescData = f,5()
: 6 uNewDesc = fs(DescData, WD)
: WD.TempElement = &NewDesc
: uNewDesc.WDpending = true
. repeat
Ai="L;
WD.OIdElement = A;
: until CAS(L;, A;, uNewDesc) == uNewDesc

3

4

5

6

7

8

9

10

11

12

13

14

15

16: Step 2: place the new descriptor in L s
17: bool unroll = false
18: repeat

19: if unroll then
20 CAS(WD.Target, uNewDesc, WD.OIdElement)
21 goto 3

22 & nOldDesc = " L

23 if ©OldDesc.WDpending == true then

24 execute ;OldDesc.WD

25 unroll = true

26: until CAS(L s, nOldDesc, pNewDesc) == uNewDesc
27:

28
29

. Step 3: execute the Write Descriptor
. if uNewDesc.WDpending then

30: CAS(WD.Target, WD.TempElement, WD.NewElement) == WD.NewElement

31: pNewDesc.WDPending = false

5 Performance Evaluation

To evaluate the performance of the ABA-free program-
ming techniques discussed in this work, we incorporated
the presented ABA elimination approaches in the imple-
mentation of a nonblocking dynamically resizable array [2].
Our test results indicate that the Ad approach offers ABA
prevention with performance comparable to the use of the
platform-specific CAS2 instruction to implement version
counting. This finding is of particular value to the engineer-
ing of some embedded real-time systems where the hard-
ware does not support complex atomic primitives such as
CAS2 [13]. We ran performance tests on an Intel IA-32
SMP machine with two 1.83GHz processor cores with 512
MB shared memory and 2 MB L2 shared cache running the
MAC 10.5.6 operating system. In our performance analysis
we compare:

(1) Ad approach: the implementation of a vector with a AJ-
modifying push_back and a ¢-modifying pop-back.
In this scenario the cost of push_back is 3 single-word
CAS operations and pop_back’s cost is one single-
word CAS instruction.

(2) All-GC approach: the application of Known Solution
3 (Section 2.3), namely the use of an extra level of in-

3)

direction and memory management for each element.
Because of its performance and availability, we have
chosen to implement and apply Herlihy et al.’s Pass The
Buck algorithm [10]. In addition, we use Pass The Buck
to protect the Descriptor Objects for all of the tested ap-
proaches.

CAS2-based approach: the application of CAS2 for
maintaining a reference counter for each element. A
CAS2-based version counting implementation is easy
to apply to almost any pre-existent CAS-based algo-
rithm. While a CAS2-based solution is not portable,
we believe that the approach is applicable for a large
number of modern architectures. For this reason, it is
included in our performance evaluation. In the perfor-
mance tests, we apply CAS2 (and version counting)
for updates at the shared memory locations at L; and
a single-word CAS to update the Descriptor Object at
Ls.

A: 40+/40-/10w/10r

Figure 1. Performance Results A

B: 25+/25-/10w/40r

Figure 2. Performance Results B

C: 10+/10-/40w/40r

Figure 3. Performance Results C

D: 20+/0-/20w/60r

Figure 4. Performance Results D

Similarly to the evaluation of other lock-free algorithms
[4], we designed our experiments by generating a work-
load of the various operations. We varied the number of
threads, starting from 1 and exponentially increased their
number to 64. Each thread executed 500,000 lock-free op-
erations on the shared container. We measured the execu-
tion time (in seconds) that all threads needed to complete.
Each iteration of every thread executed an operation with a
certain probability (push_back (+), pop-back (-), ran-
dom access write (w), random access read (r)). We
show the performance graph for a distribution of +:40%,
—-:40%, w:10%, r:10% on Figure 1. Figure 2 demonstrates
the performance results with less contention at the vector’s
tail, +:25%, —:25%, w:10%, r:40%. Figure 3 illustrates
the test results with a distribution containing predominantly
random access read and write operations, +:10%, —:10%,
w:40%, r:40%. Figure 4 reflects our performance evalua-
tion on a vector’s use with mostly random access read op-
erations: +:20%, —:0%, w:20%, r:60%, a scenario often
referred to as the most common real-world use of a shared

container [4]. The number of threads is plotted along the
z-axis, while the time needed to complete all operations is
shown along the y-axis. According to the performance re-
sults, compared to the All-GC approach, the A\ approach
delivers consistent performance gains in all possible oper-
ation mixes by a large factor, a factor of at least 3.5 in the
cases with less contention at the tail and a factor of 10 or
more when there is a high concentration of tail operations.
These observations come as a confirmation to our expecta-
tions that introducing an extra level of indirection and the
necessity to memory manage each individual element with
PTB (or an alternative memory management scheme) to
avoid ABA comes with a pricy performance overhead. The
Ad approach offers an alternative by introducing the notion
of a A\d-point and enforces it though a 3-step execution of
the & object. The application of version counting based on
the architecture-specific CAS2 operation is the most com-
monly cited approach for ABA prevention in the literature.
Our performance evaluation shows that the A\ approach de-
livers performance comparable to the use of CAS2-based
version counting. CAS2 is a complex atomic primitive and
its application comes with a higher cost when compared to
the application of atomic write or a single-word CAS. In the
performance tests we executed, we notice that in the scenar-
ios where random access write is invoked more frequently
(Figures 3 and 4), the performance of the CAS2 version
counting approach suffers a performance penalty and runs
slower than the \J approach by about 12% to 20%. Ac-
cording to our performance evaluation, the Ad approach is
a systematic, effective, portable, and generic solution for
ABA avoidance. The Ad scheme does not induce a perfor-
mance penalty when compared to the architecture-specific
application of CAS2-based version counting and offers a
considerable performance gain when compared to the use
of All-GC.

6 Conclusion

In this work we studied the ABA problem and the
conditions leading to its occurrence in a Descriptor-based
lock-free linearzibale design. We offered a systematic
and generic solution, called the Ad approach, that outper-
forms by a significant factor the use of garbage collection
for the safe management of each shared location and of-
fers speed of execution comparable to the application of
the architecture-specific CAS2 instruction used for version
counting. Having a practical alternative to the application of
the architecture-specific CAS2 is of particular importance
to the design of some modern embedded systems such as
Mars Science Laboratory. We defined a condition for ABA-
free synchronization that allows us to reason about the ABA
safety of a lock-free algorithm. We presented a practical,
generic, and portable implementation of the \§ approach

and evaluated it by integrating the AJ technique into a non-
blocking shared vector. The literature does not offer a de-
tailed analysis of the ABA problem and the general tech-
niques for its avoidance in a lock-free linearizable design.
At the present moment of time, the challenges of eliminat-
ing ABA are left to the ingenuity of the software designer.
The goal of our work is to deliver a guide for ABA compre-
hension and prevention in Descriptor-based lock-free lin-
earizable algorithms. In our future work, we plan to utilize
a model-checker [7] to express the Ad condition and be able
to formally verify the ABA-freedom of nonblocking data
structures and algorithms.

References

[1] Damian Dechev, Peter Pirkelbauer, and Bjarne Stroustrup.
Lock-Free Dynamically Resizable Arrays. In Alexander A.
Shvartsman, editor, OPODIS, volume 4305 of Lecture Notes
in Computer Science, pages 142—156. Springer, 2006.

[2] David L. Detlefs, Paul A. Martin, Mark Moir, and Guy
L. Steele Jr. Lock-free reference counting. Distrib. Com-
put., 15(4):255-271, 2002.

[3] Keir Fraser. Practical lock-freedom. Technical Report
UCAM-CL-TR-579, University of Cambridge, Computer
Laboratory, February 2004.

[4] Keir Fraser and Tim Harris. Concurrent programming with-
out locks. ACM Trans. Comput. Syst., 25(2):5, 2007.

[5] David Gifford and Alfred Spector. Case study: IBM’s
system/360-370 architecture. Commun. ACM, 30(4):291—
307, 1987.

[6] RP. Gluck and Gerard Holzmann. Using SPIN Model
Checker for Flight Software Verification. In In Proceedings
of the 2002 IEEE Aerospace Conference, 2002.

[7] Timothy L. Harris, Keir Fraser, and Ian A Pratt. A practical
multi-word compare-and-swap operation. In Proceedings of
the 16th International Symposium on Distributed Comput-
ing, 2002.

[8] Danny Hendler, Nir Shavit, and Lena Yerushalmi. A scalable
lock-free stack algorithm. In SPAA 2004, pages 206-215,
New York, NY, USA, 2004. ACM Press.

[9] Maurice Herlihy, Victor Luchangco, Paul Martin, and Mark
Moir. Nonblocking memory management support for
dynamic-sized data structures. ACM Trans. Comput. Syst.,
23(2):146-196, 2005.

[10] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor
Programming. Morgan Kaufmann, March 2008.

[11] Intel. IA-32 Intel Architecture Software Developer’s Man-
ual, Volume 3: System Programming Guide, 2004.

[12] Michael R. Lowry. Software Construction and Analysis
Tools for Future Space Missions. In Joost-Pieter Katoen
and Perdita Stevens, editors, TACAS, volume 2280 of Lecture
Notes in Computer Science, pages 1-19. Springer, 2002.

[13] Maged M. Michael. Hazard Pointers: Safe Memory Recla-
mation for Lock-Free Objects. IEEE Trans. Parallel Distrib.
Syst., 15(6):491-504, 2004.

[14] Kirk Reinholtz. Atomic Reference Counting Pointers, C++
User Journal. December 2008.

[15] Michael F. Spear, Arrvindh Shriraman, Hemayet Hossain,
Sandhya Dwarkadas, and Michael L. Scott. Alert-on-update:
a communication aid for shared memory multiprocessors. In
PPoPP ’07: Proceedings of the 12th ACM SIGPLAN sym-
posium on Principles and practice of parallel programming,
pages 132-133, New York, NY, USA, 2007. ACM.

[16] Bjarne Stroustrup. The C++ Programming Language.
Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2000.

