

Ten Million and One Penguins
SAND 2010-xxxx

Ron Minnich

Sandia is a multiprogram laboratory operated by Sandia Corporation, a
Lockheed Martin Company, for the United States Department of Energy’s

National Nuclear Security Administration under contract DE-AC04-94AL85000.

SAND2010-0986C

The idea

● We're working to boot ten million machines
● We'd like to run a real botnet at scale and scale

seems to be “huge”
● Of course, the numbers are open to argument,

but …
● “A computer botnet is known to have breached

almost 75,000 computers in 2,500
organizations around the world,” – last week

● Found almost by accident

● No. 1: Zeus: 3.6 million

● No. 2: Koobface: 2.9 million

● No. 3: TidServ: 1.5 million

● No. 4: Trojan.Fakeavalert: 1.4 million

● No. 5: TR/Dldr.Agent.JKH: 1.2 million

● No. 6: Monkif: 520,000

● No. 7: Hamweq: 480,000

● No. 8: Swizzor: 370,000

● No. 9: Gammima: 230,000

● No. 10: Conficker: 210,000 <<= we thought this was bad!

● Source: http://www.networkworld.com/news/2009/072209-
botnets.html

Current situation: over 10M
compromised in US

How are botnets built?
● Typically “overnet” (nice writeup at wikipedia)

● So-called because it is an overlay network
● i.e. it has structure “overlaid” on the internet

● Using edonkey2 protocol
● The legal overnet taken down 2006
● Like that did any good, because:
● The illegal version out there, alive, and kicking

● Just try to tell the RIAA that!

● If p2p is outlawed only outlaws will have p2p

Edonkey implemented kademlia
protocol

● That's another long talk … and wikipedia does
a better job than I can do

● Kademlia implements a Distributed Hash Table
(DHT)

● Hash is 128 bits
● Nodes have a hash (i.e. 128-bit ID)
● Nodes contain information stored by hash as

(key,value) pairs
● Hash uses XOR for “distance” metric

Kademlia network operations

● PING(hash) – what you expect
● STORE(hash, value)
● FIND_NODE(hash) – recipient of request

returns set of nodes with least “distance”
● For nodes, you want “close to”, because you

already know yourself

● FIND_VALUE(hash) – return value of exact
match of hash
● For values, you want an exact match of course

DHT information values
● For talking to a node: (IP, port) – can be used to

contact other nodes
● Otherwise, whatever you want

● Movies
● Songs
● RIAA takedown notices

● And here's an interesting thought:
● Executables
● Command files
● commands

Put it together

● You have a way to uniquely name a node with
low probability of collision

● You have a distributed way to:
● Find a node
● Join the set of nodes
● store information
● query information

● So you've got a fault-tolerant, distributed,
programming support environment

RIAA shut down the legal uses

● But it's all there for the bad guys
● And they use it
● Again, that's another very long talk but, as

usual, wikipedia has great foundation article
● The statistics are overwhelming
● And kind of hard to verify: how do you really

know, if every attempt to probe it is foiled?
● But it's real enough to scare researchers

● Some are physically afraid!

So what to do?

● One possibility is to apply High Performance
Computing (HPC) resources to attempts to
understand behavior
● 180,000 core/30,000 node “Jaguar” at Oak Ridge
● 20,000 core/5,000 node “Thunderbird” at Sandia
● And all those little 10,000 core systems out there

● This idea has (in some cases) met with both
skepticism and outright hostility

● I'll address two objections here

“The guys who wrote this stuff didn't
need a supercomputer so you don't”
● Recall that a lot of the NRE for Storm was done

by researchers (kademlia) and .com's (overnet)
● Their scale up was done on the Internet:

● By consent when it was legal (pre-RIAA-takedown)
● By deception after it was illegal (by criminals)

● The Internet, as you know, has literally dozens
(of millions) of nodes

● As a legal entity, Sandia would have some
difficulty pursuing this approach :-)

“You can't simulate it”

● If I had a dime for every time I've heard that
claim over 30 years, well …
● Every time we apply simulation to new areas, the

[non-]experts in that area are revolting

● Let's just say that we have reason to believe we
can do this
● And, until we try, we won't know

● One STORM researcher: “Virtualization is the
holy grail for us”

● So somebody thinks it's a good idea

Why run at large scale?

● We don't know on a large scale what
● Denial of service
● Exfiltration of data
● Botnets
● Virus transmission

● And other exploits look like
● Can not be predicted by running 1000 or so

Remember that 128-bit hash?

● “Distance” in the hash has no relation to
distance in IP or geography

● So nodes “next to each other” in hash space
can be anywhere

● Need to “populate” the space
● Or it just fragments
● Need at least 50K machines

Botnets exhibit “emergent behavior”

● So running 1,000 or so won't let you see its
behavior at scale

● Only choice is to make the scale “big”

How to get to the scale we need

● We need to run a nation-scale network
● We define this as 10 million nodes or more
● Including routers

● Which, at this point, we can not afford
● We have an option however
● Given a large enough cluster, we can boot 10

million nodes on virtual machines
● Virtual machine software is a (not so) recent

addition to Linux

Virtual Machines

● Kernels normally run in a privileged (a.k.a.
Supervisor or Ring 0) CPU mode

● In the 1960s, IBM devised a means by which a
kernel could run other kernels as a program

● IBM currently runs 7,000 VM's per machine
● Starting about 5 years ago, VM's came to Linux

● There are now 7 different VM systems in Linux
● Three are commercial

● Given a cluster of several thousand nodes, we
can run 10 million Linux kernels via VM's

What we're doing

● Use OneSIS cluster software (onesis.org)
● Used to bring up 4600-node cluster (T-bird)
● Relied on NFS root in earlier version

● Extend OneSIS with what we learned from Los
Alamos Clustermatic (9grid.net/clustermatic)
● Extremely light-weight, RAMdisk-based nodes
● Can boot a node w/20M footprint
● Compare to huge footprint of current cluster

software such as Rocks, DOE CCE(TOSS(TriPOD))

Result: extremely light nodes

● With lots of room for … lots of Virtual Machines
● On T-bird nodes, 250 are easy, x4600 nodes
● Modern nodes, 1000 are easy, x10K on RS
● So we've gone to 1M on T-bird
● And we hope to go to 10M on Red Storm
● Was it easy? No. Success once, failure once

● How I hate IPMI ...

● But it can be done.

Plus new stuff

● Pushmon
● bproc2

Building a nation scale network on a
cluster

● For each cluster node (“host”), start 250-1000
VM's (“guests”)

● Need very low-overhead control system
● Want the time to go to the VM's, not the host

● Need very small memory footprint
● Primary limit on number of guests is memory

● Need to be able to efficiently start programs on
100s of thousands of guests at a time

Once it is booted, monitor it

● What VM's are up?
● What are they doing?
● What packets are they sending?
● We have the tools
● But this scale is 1000x the current scale
● Time frequency is at least 10x current

frequency

Once it is booted and monitored,
attack it

● i.e. find and run real malware
● This gets a bit tricky on your company

network ..
● See if we can statistically characterize bad

behavior from good
● And determine how much we need to monitor

● Can we put probes at strategic points?
● What is good enough?

Three-part program

● Year 1: Boot 10M Linux kernels
● Run programs on them (hard!)

● Year 2: Show that we can measure/control at
this scale
● Both “real-time” and “emulator time”

● Year 3: Show that we can emulate real
cybersecurity events at this scale
● DDOS against TCP stacks
● Botnets
● Worms

A note on scale: 100 nodes

10,000 (supercomputer)

1M: 10x10 supercomputer
we've run out of pixels ...

10M nodes: diffraction pattern

At 10M scale

● A DHCP file is at least 350 Mbytes
● Parsing /etc/hosts dominates startup time
● If all nodes talk to all nodes, kernel tables

consume all of memory
● Even efforts to implement hierarchy get hard

● Because in the end, using conventional tools, all the
information has to go to/come from somewhere

● The tools we use today are designed for a
small world

● This is a large world

Other issues (from experience at
50,000 VM's)

● Can not have global knowledge
● Nodes come and go with no warning
● Not possible to have all nodes booted at once

● And how would you know if they were?

● Simple case: monitor nodes at 1 hz.
● 1 bit per node -> 1.2 Mbytes/second
● But we want more information

To sum up

● Lots of machines
● No central configuration possible
● Status unknown/unknowable
● Firehose of data
● Hierarchy is fine but it has to be resilient
● But we know the hackers and others do it

● Botnets of 100s of thousands are old news
● One vendor had a 2M node botnet ca. 2001

● Might use botnet tools to run this network

Algorithmic self-configuration – for a
logo

That logo was written by a program

● Other C code in distributed runtimes make
similar decisions
● Intermediate nodes convert from clients to servers

● Same self-configuring code used on
Clustermatic clusters
● No configuration files; node roles derived

dynamically

● We need to take this model to the limit;
algorithmic self-configuration for everything

Implementing a real network
requires virtualized routers

● Any realistic emulation requires routing
● Sandia Sepia project demonstrated virtualized

Cisco routers
● As nodes determine their roles, one role of a

node or VM will be routing
● Will also require propagation of routing

information using standard protocols

Year 2: Monitoring, analysis, control

● There are two parallel levels of monitoring
● Real-time: managing the emulation
● Emulator-time: managing the emulation data

● Number of real-time nodes is 1/250-1/1000th the
number of emulation modes

● Emulation sample rate is 1/250-1/1000th the
real time rate

● Example rates:
● Real-time info: 1-10 MB/sec
● 1/250th real-time: 16 MB/sec

Year 2: Monitoring, analysis, control

Need enhanced capabilities for data collection and
analysis
● Scalable, distributed, and highly-responsive

– Gather and analyze large amounts of data on reasonable
timescales (e.g. once per 10 “emulation” seconds)

● Robust
– Infrastructure must function in face of continuous failure
– Analyses must tolerate damaged/missing data

● Virtual Machines need to be extended to allow external
monitoring
– Need new high throughput monitoring interfaces
– Code will be committed back to kernel

Year 3: Emulate and understand
real cyber security events

Run a TCP-based denial of service from 10,000
nodes against the other 9,990,000
● Run a trivial worm
● Run an exfiltration application and try to dedicate

patterns of data
● Run a botnet

Instrument the emulated components
● Analysis leading to attack detection

Response to attacks
● External commands to mitigate/contain attack
● Autonomous systems that can “heal”

Demonstration at SC 09

A prototype botnet using >8000 machines on a
computational cluster

Data collected and the information presented in a movie
where each pixel (!) is a machine (see next slide)

�

Discover emergent behavior from realistic prototypes of
highly organized botnets

“Sandbots” communicate via standard protocols
(TCP/UDP) and obey simple rules

Our simple “botnet” is based on
a square lattice populated by
bot nodes

Simple rules determine when a
bot communicates with its 4
neighbors

Despite the model’s simplicity,
behavior at large scale is
unexpected and rich

Named “Sandbot” due to
similarity to sandpile model of
complexity theory

Demonstration: Simplified prototype
of large-scale, self-organized botnet

Purpose: Demonstrate emergent behavior of bots on a large-scale
network
Develop capability to emulate/simulate networks on a

realistic scale
Discern instabilities and potential attacks that large-scale networks

enable
Platform: ~105 virtual machines on 102 physical nodes

Each VM runs a complete lightweight Linux operating system
Each VM is fully networked and uses the commodity protocols

Bots arrayed in a square lattice, use a nearest neighbor gossip protocol
Requires 103–104 nodes to exhibit emergent behavior

Botnet reveals network “storms” ranging from
smallest scales to the entire network

“Small” example uses 8100
nodes so individual nodes can
be discerned (have capability
for 106 nodes)

�

Red indicates an avalanche (i.e.,
a cascade of tumbles)

�

Smaller avalanches are more
prevalent

Avalanche size will (rarely)
span the entire grid

Avalanches are chaotic but have
well-defined signatures
Statistical features can be of

use in intrusion detection
8100 machines running Sandbot:
Each pixel is a single machine;
network storms appear in red

Differences from real botnets
Organization: lattice not the fractal Kademlia network used

by most botnets
Synchronization: VMs’ proximity—network latency needs to

be better crafted to emulate reality
Similarities to real botnets

Logical organization (i.e., lattice) completely independent of
Internet topology

Uses standard TCP on standard network stack in a standard
OS: timings such as jitter and software latency are
identical

Predictions
Aside from underlying representation, the features

illustrated in this simulation are likely similar to real
malware

Features predicted by simulation can be used for detection
of malware in the wild

Sandbot is prototypical
of large-scale botnets

Summary

● 106 has lots of challenges
● So it's not surprising that everything breaks
● Have upset every apple cart: configuration,

monitor, control, and program execution
● We have a simple bot that shows emergent

properties, complex behavior
● Also working on using real bots but this is a

tricky

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Megatux: emulation/simulation of network phenomena at large scale
	“Sandbots” communicate via standard protocols (TCP/UDP) and obey simple rules
	Demonstration: Simplified prototype of large-scale, self-organized botnet
	Botnet reveals network “storms” ranging from smallest scales to the entire network
	Sandbot is prototypical of large-scale botnets
	Slide 43

