
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

 under contract DE-AC04-94AL85000.

A Simulator for Large-scale Parallel Computer
Architectures

Curtis Janssen, Helgi Adalsteinsson, Scott Cranford,
Joseph Kenny, Ali Pinar, David Evensky, Jackson

Mayo

Sandia National Laboratories

Livermore, CA

SAND2010-1068C

Designing, developing for, and procuring large-
scale system is a multi-faceted problem

Scale..... Many
Cores

+
Memory

Many
Many
Nodes

Many
Many
Many

Threads

Multi-Physics Apps
Informatics Apps

Complexity.....
Communication Libraries

Run-Times
OS Effects

Existing Languages
New Languages

Constraints.....
Performance Reliability Usability Size

Architecture simulation enables co-design by providing a way to explore this
large problem space.

X X

X X

Cost Power Cooling Risk

Goals for Structural Simulation Toolkit macroscale
(SST/macro) components

• Take into account the coupling of communication and computation in
applications using

– Trace files that record an actual application run

– Skeleton applications that mimic application behaviour

• Run very large simulations (complex applications at large scales)

– 1,000,000's of cores simulated on a single processor

• Parallelism used for parameter studies

• Allow investigation of effects of

– Topology, process placement, and interference between jobs

– Changes in the routing algorithm, network latency, and bandwidth

– Having many cores share the same network interface

– Modifications to the MPI layer and the application

– Incorporation of more detailed models w/multiscale simulation

SST/macro design

Generic event interface: permits
integration into the hybrid multi-
scale SST simulator framework:

Extremely lightweight events:
Measured real time to perform MPI
ping pong round trips (simulator ran
on a single processor):

Data no longer fits in 8
MiB L3 cache (Core i7)

Examples of SST usage and impact

Obtain traces for applications
and compact applications. Use

SST for parameter studies.

Write skeleton applications for
extreme scale studies.

Simulate new architectural
feature such as extended
memory semantics and
transactional memory.

Develop acceptance tests and
estimate performance before

machine is built.

Understand performance and
issues for machines several

years from deployment.

Allow co-design of advance
architectures and applications

many years before deployment.

C

O
M

PLEX
ITY

SST/macro has a flexible MPI model

• Traces & skeleton apps record MPI
calls—but that can entail a lot

– MPI model can generate all of the

messages that a real MPI library
generates …

– … or a simplified model with less
overhead can be used

• Allows details of the MPI
implementation to be a part of the
design space

• Not just restricted to MPI2

– Other programming models can be

easily added

– Implemented immediate mode

collectives (MPI3 proposal)

Translating an application into discrete events

MPI_Recv

Yield until data available

MPI_Recv completes

MPI_Send 0 to 1

Schedule data sent

Schedule data recd

Yield until data sent

 MPI_Send completes

Continue processing

...

MPI_Send 1 to 0

Schedule data sent

Schedule data recd

Yield until data sent

MPI_Send completes

Begin computation

Schedule completion

Yield until complete

Computation completes

MPI_Recv

Yield until data available

MPI_Recv completes

Continue processing

...

D
iscrete event

tim
eline

THREAD 0
 THREAD 1
•  MPI ping pong with
computation: Simulation
time increases going
down, events are bars on
the time axis, thread 0
executes code on left
and process 1 on right

•  Each thread inserts
events into the discrete
event queue until it yields

•  Events can cause a
process to resume
execution

•  Single MPI calls can
result in multiple events

•  Scheduling of data sent/
received events depends
on network traffic

Coarse-grain CPU Modeling

•  Research directions

– Compact representations of memory activity (Snavely et. al.)

• Locality metrics

• Cache simulation

- Stochastic approaches (Cook et. al.)

•  Accurately capture trends due to architecture changes without
overhead of cycle-accurate simulation

•  Simple models (currently implemented)

•  Time scale factor

•  Performance counters interleaved within dumpi traces, assume

average event rates

• Limitations on simultaneous performance counter collection

€

texe =
n float

rate float
+

nmem
ratemem

Network Model

•  Designed as a separate module keeping with the focus of the project.

•  Allows experimenting with new topologies, routing techniques, network

parameterssuch as bandwidth and latency.

•  Designed for maximum runtime efficiency.

•  Can be replaced with a high-fidelity simulator (e.g. cycle-by-cycle

simulation)

•  For a new network, a user has to define

•  the topology,

•  a routing algorithm that returns the links to be used by a specific message

•  Congestion is explicitly modeled.

•  Currently support topologies high dimensional torus/mesh, fat-tree,

hypercube, gamma, clos

•  Routing is currently static, dynamic routing is in progress

The circuit network component: a simple model
that includes network congestion effects

Circuit model handles this case as follows:

•  T = 0s: Traffic begins from node 1 to node 3; duration is 4s.

•  T = 1s: Attempt to begin traffic from node 0 to 2; duration is 2s. Attempt

fails so attempt is rescheduled at T = 4s.

•  T = 4s: Traffic from node 1 to node 3 completes.

•  T = 4s: Traffic from node 0 to 2 begins; duration is 2s.

•  T = 6s: Traffic from node 0 to 2 completes.

0

1

2

3

Congestion

Example: Two pairs of nodes try to use the same network link simultaneously:

 The flower network component: an alternative to
model network congestion

Flow based model allows messages share the bandwidth

Flower model handles this case as follows:

•  T = 0s: Traffic begins from node 1 to node 3; duration is 4s w/ 100%

bandwidth.

•  T = 1s: Attempt to begin traffic from node 0 to 2; duration is 2s w/

100%bw. Bandwidth is split between two messages.

•  T = 5s: Traffic from node 0 to node 2 completes. Traffic from node 1 to

node 3 receives full bandwidth.

•  T = 6s: Traffic from node 1 to 3 completes.

0

1

2

3

Congestion

Methods for driving the SST/macro simulator

Trace Driven

• Open Trace Format

– Tools exist to generate trace

– Visualizers exist for trace

– Data not complete

• dumpi trace format

– Custom SST/macro format

– Records full MPI signature

• size vectors

• MPI_Request info

– Well behaved when
application is not

• Skips irrelevant but resource
intensive info (like
MPI_Iprobe)

Skeleton Application

• Programmer writes program that behaves
like application

– Skip heavy computation

• Permits extreme-scale runs

void mpipingpong::run() {
 this->mpi_->init();
 mpicomm world = this->mpi_->comm_world();
 mpitype type = mpitype::mpi_double;
 int rank = world.rank().id;
 int size = world.size().id;
 if(! ((size % 2) && (rank+1 >= size))) {
 mpiid peer(rank ^ 1);
 mpiapi::const_mpistatus_t stat;
 for(int half_cycle = 0;
 half_cycle < 2*iterations_; ++half_cycle) {
 if((half_cycle + rank) & 1)
 mpi_->send(count_, type, peer, mpitag(0), world);
 else
 mpi_->recv(count_, type, peer, mpitag(0), world, stat);
 }
 }
 mpi_->finalize();
}

A more sophisticated skeleton app: miniMD

•  Simulator runs a skeletonized molecular dynamics application

•  Computation time is derived from measurements with various input

parameters

–  The calls to estimate computation time is shown in blue type

•  MiniMD control logic remains mostly intact

void minimd::integrate::run(shared_ptr<atom> atm, shared_ptr<force> frc,
 shared_ptr<neighbor> nbr, shared_ptr<comm> cmm,
 shared_ptr<thermo> thm, shared_ptr<timer> tmr)
{
 mpiid rank = mpi_->comm_world().rank();
 for(int n = 0; n < this->ntimes; ++n) {
 env_->compute(this->interpolator_->get("integrate::run", 0));
 if((n+1) % nbr->every) {
 cmm->communicate(atm);
 }
 else {
 cmm->exchange(atm);
 cmm->borders(atm);
 nbr->build(atm);
 }
 frc->compute(atm, nbr);
 env_->compute(this->interpolator_->get("integrate::run", 1));
 if(thm->nstat)
 thm->compute(n+1, atm, nbr, frc);
 }
}

The DUMPI MPI profiling library

•  libdumpi: collects information for detailed simulation of parallel MPI
programs

•  Tracks all non-data arguments to MPI functions

•  Time (wall- and CPU time) and PAPI counters on entry and exit for every MPI

function

•  Fine-grained control over tracing level

•  Collect reasonably compact (big-endian binary) trace file with a minimal runtime

overhead.

•  libundumpi: Callback-driven parsing of DUMPI trace files.

•  Mapping of implementation-defined values (e.g. type sizes,

MPI_COMM_WORLD, MPI_CONGRUENT, etc.) to common tokens
(DUMPI_COMM_WORLD, etc.).

•  Tested on a number of HPC platforms (Cray CNL, BG/P, Catamount)

Validation of simulator

• Used AMG2006: part of NNSA ASC/Sequoia acceptance tests

• Collected traces on the Thunderbird machine and played back
through simulator

“Narrow” decomposition “Fat” decomposition

Sensitivity of AMG2006

to architectural parameters

• Examined simulated time to
solution as bandwidth,
latency, and processors per
node are varied for several
topologies.

Current Work

•  Extended validation studies

–  Using Red Storm Qualification system

•  Can control process placement

•  Results are highly consistent from run to run

•  Advanced routing

–  Dispersive routing

–  Adaptive routing

•  Trace file format (dumpi)

–  Finalizing full MPI support

•  User interface and visualization

–  Developing a GUI to simplify problem setup

–  Working with others to visualize network congestion, etc.

•  Processor models

–  Developing more sophisticated but inexpensive processor models

•  Integration into the SST/Core interface

The more the merrier!

•  We welcome collaborations.

•  Summer internships are available.

•  We are hiring! Please visit http://www.sandia.gov/careers/

 for specific job postings.

•  Contact Information: Ali Pinar (apinar@sandia.gov)

