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Designing, developing for, and procuring large-
scale system is a multi-faceted problem


Scale..... Many 
Cores 

+ 
Memory 

Many 
Many 
Nodes 

Many 
Many 
Many 

Threads 

Multi-Physics Apps 
Informatics Apps 

Complexity..... 
Communication Libraries 

Run-Times 
OS Effects 

Existing Languages 
New Languages 

Constraints..... 
Performance Reliability Usability Size 

Architecture simulation enables co-design by providing a way to explore this 
large problem space.
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Goals for Structural Simulation Toolkit macroscale 
(SST/macro) components


• Take into account the coupling of communication and computation in 
applications using

– Trace files that record an actual application run

– Skeleton applications that mimic application behaviour


• Run very large simulations (complex applications at large scales)

– 1,000,000's of cores simulated on a single processor


• Parallelism used for parameter studies


• Allow investigation of effects of

– Topology, process placement, and interference between jobs

– Changes in the routing algorithm, network latency, and bandwidth

– Having many cores share the same network interface

– Modifications to the MPI layer and the application

– Incorporation of more detailed models w/multiscale simulation




SST/macro design


Generic event interface: permits 
integration into the hybrid multi-
scale SST simulator framework:


Extremely lightweight events: 
Measured real time to perform MPI 
ping pong round trips (simulator ran 
on a single processor):


Data no longer fits in 8 
MiB L3 cache (Core i7) 



Examples of SST usage and impact


Obtain traces for applications 
and compact applications. Use 

SST for parameter studies.


Write skeleton applications for 
extreme scale studies.


Simulate new architectural 
feature such as extended 
memory semantics and 
transactional memory.


Develop acceptance tests and 
estimate performance before 

machine is built.


Understand performance and 
issues for machines several 

years from deployment.


Allow co-design of advance 
architectures and applications 

many years before deployment.
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SST/macro has a flexible MPI model


• Traces & skeleton apps record MPI 
calls—but that can entail a lot

– MPI model can generate all of the 

messages that a real MPI library 
generates …


– … or a simplified model with less 
overhead can be used


• Allows details of the MPI 
implementation to be a part of the 
design space


• Not just restricted to MPI2

– Other programming models can be 

easily added

– Implemented immediate mode 

collectives (MPI3 proposal)




Translating an application into discrete events


MPI_Recv


Yield until data available



MPI_Recv completes

MPI_Send 0 to 1



Schedule data sent


Schedule data recd


Yield until data sent


       MPI_Send completes

Continue processing



...


MPI_Send 1 to 0


Schedule data sent


Schedule data recd


Yield until data sent


MPI_Send completes


Begin computation


Schedule completion


Yield until complete



Computation completes

MPI_Recv



Yield until data available



MPI_Recv completes

Continue processing



...


D
iscrete event


tim
eline


THREAD 0
 THREAD 1
•  MPI ping pong with 
computation: Simulation 
time increases going 
down, events are bars on 
the time axis, thread 0 
executes code on left 
and process 1 on right


•  Each thread inserts 
events into the discrete 
event queue until it yields


•  Events can cause a 
process to resume 
execution


•  Single MPI calls can 
result in multiple events


•  Scheduling of data sent/
received events depends 
on network traffic




Coarse-grain CPU Modeling


•  Research directions

– Compact representations of memory activity (Snavely et. al.)


• Locality metrics

• Cache simulation


- Stochastic approaches (Cook et. al.)


•  Accurately capture trends due to architecture changes without 
overhead of cycle-accurate simulation

•  Simple models (currently implemented)


•  Time scale factor

•  Performance counters interleaved within dumpi traces, assume 

average event rates

• Limitations on simultaneous performance counter collection
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Network Model


•  Designed as a separate module keeping  with the focus of the project.

•  Allows experimenting with new topologies, routing techniques, network 

parameterssuch as bandwidth and latency.

•  Designed for maximum runtime efficiency.

•  Can be replaced with a high-fidelity simulator (e.g.  cycle-by-cycle 

simulation)

•  For a new network, a user has to define 



•  the topology, 

•  a routing algorithm that returns the links to be used by a specific message


•  Congestion is explicitly modeled. 

•  Currently support topologies high dimensional torus/mesh, fat-tree, 

hypercube, gamma, clos

•  Routing is currently static, dynamic routing is in progress




The circuit network component: a simple model 
that includes network congestion effects


Circuit model handles this case as follows:

•  T = 0s: Traffic begins from node 1 to node 3; duration is 4s.

•  T = 1s: Attempt to begin traffic from node 0 to 2; duration is 2s. Attempt 

fails so attempt is rescheduled at T = 4s.

•  T = 4s: Traffic from node 1 to node 3 completes.

•  T = 4s: Traffic from node 0 to 2 begins; duration is 2s.

•  T = 6s: Traffic from node 0 to 2 completes.
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Example: Two pairs of nodes try to use the same network link simultaneously:




 The flower network component: an alternative to 
model network congestion 


Flow based model allows messages share the bandwidth


Flower model handles this case as follows:

•  T = 0s: Traffic begins from node 1 to node 3; duration is 4s w/ 100% 

bandwidth.

•  T = 1s: Attempt to begin traffic from node 0 to 2; duration is 2s w/ 

100%bw.  Bandwidth is split between two messages. 

•  T = 5s: Traffic from node 0 to node 2 completes. Traffic from node 1 to 

node 3 receives full bandwidth.

•  T = 6s: Traffic from node 1 to 3 completes. 
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Methods for driving the SST/macro simulator


Trace Driven

• Open Trace Format


– Tools exist to generate trace

– Visualizers exist for trace

– Data not complete


• dumpi trace format

– Custom SST/macro format

– Records full MPI signature


• size vectors

• MPI_Request info


– Well behaved when 
application is not


• Skips irrelevant but resource 
intensive info (like 
MPI_Iprobe) 


Skeleton Application

• Programmer writes program that behaves 
like application

– Skip heavy computation


• Permits extreme-scale runs


void mpipingpong::run() { 
  this->mpi_->init(); 
  mpicomm world = this->mpi_->comm_world(); 
  mpitype type = mpitype::mpi_double; 
  int rank = world.rank().id; 
  int size = world.size().id; 
  if(! ((size % 2) && (rank+1 >= size))) { 
    mpiid peer(rank ^ 1); 
    mpiapi::const_mpistatus_t stat; 
    for(int half_cycle = 0; 
        half_cycle < 2*iterations_; ++half_cycle) { 
      if((half_cycle + rank) & 1) 
        mpi_->send(count_, type, peer, mpitag(0), world); 
      else 
        mpi_->recv(count_, type, peer, mpitag(0), world, stat); 
    } 
  } 
  mpi_->finalize(); 
} 



A more sophisticated skeleton app: miniMD


•  Simulator runs a skeletonized molecular dynamics application

•  Computation time is derived from measurements with various input 

parameters

–  The calls to estimate computation time is shown in blue type


•  MiniMD control logic remains mostly intact

void minimd::integrate::run(shared_ptr<atom> atm, shared_ptr<force> frc, 
                            shared_ptr<neighbor> nbr, shared_ptr<comm> cmm, 
                            shared_ptr<thermo> thm, shared_ptr<timer> tmr) 
{ 
  mpiid rank = mpi_->comm_world().rank(); 
  for(int n = 0; n < this->ntimes; ++n) { 
    env_->compute(this->interpolator_->get("integrate::run", 0)); 
    if((n+1) % nbr->every) { 
      cmm->communicate(atm); 
    } 
    else { 
      cmm->exchange(atm); 
      cmm->borders(atm); 
      nbr->build(atm); 
    } 
    frc->compute(atm, nbr); 
    env_->compute(this->interpolator_->get("integrate::run", 1)); 
    if(thm->nstat) 
      thm->compute(n+1, atm, nbr, frc); 
  } 
} 



The DUMPI MPI profiling library


•  libdumpi: collects information for detailed simulation of parallel MPI 
programs

•  Tracks all non-data arguments to MPI functions

•  Time (wall- and CPU time) and PAPI counters on entry and exit for every MPI 

function

•  Fine-grained control over tracing level

•  Collect reasonably compact (big-endian binary) trace file with a minimal runtime 

overhead.


•  libundumpi: Callback-driven parsing of DUMPI trace files. 


•  Mapping of implementation-defined values (e.g. type sizes, 

MPI_COMM_WORLD, MPI_CONGRUENT, etc.) to common tokens 
(DUMPI_COMM_WORLD, etc.).


•  Tested on a number of HPC platforms (Cray CNL, BG/P, Catamount)




Validation of simulator


• Used AMG2006: part of NNSA ASC/Sequoia acceptance tests

• Collected traces on the Thunderbird machine and played back 
through simulator


“Narrow” decomposition “Fat” decomposition 



Sensitivity of AMG2006

to architectural parameters


• Examined simulated time to 
solution as bandwidth, 
latency, and processors per 
node are varied for several 
topologies.




Current Work


•  Extended validation studies

–  Using Red Storm Qualification system


•  Can control process placement


•  Results are highly consistent from run to run


•  Advanced routing

–  Dispersive routing

–  Adaptive routing


•  Trace file format (dumpi)

–  Finalizing full MPI support


•  User interface and visualization

–  Developing a GUI to simplify problem setup

–  Working with others to visualize network congestion, etc.


•  Processor models

–  Developing more sophisticated but inexpensive processor models


•  Integration into the SST/Core interface




The more the merrier!


•  We welcome collaborations. 


•  Summer internships are available. 


•  We are hiring!  Please visit  http://www.sandia.gov/careers/

 for specific job postings. 


•   Contact Information:  Ali Pinar (apinar@sandia.gov)



