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Introduction: Why?

Grain boundary angles control:

microstructure morphology

grain shape

Angles arise from balance of
surface tensions

Isotropic energies: angles = 120°
Varying energies:

Angles deviate

Quad junctions



Introduction: Why not?

Previous representations were analog, now
digital

» Protractor vs. computer

« Explicit vs. implicit boundaries

- Tangents are not uniquely defined

. Always looking at 2D section of 3D structure

— what is the correct distribution?




Method: Desired Results

We want angles between tangents to grain
boundaries in discretized microstructures

Grain 1 Grain 2

Triple point —»

What are the tangents?
Extreme case: One segment away: 90° or 180°
Better solution: Curve fitting



Method: A Series of Linear Fits

,nh=5,r=0.721

Grain 1

Starting Grain 2| Ending
vertex g vertex

1) Find all triple/quad points (vertices)
2) For a given vertex, map out all emanating boundaries
3) Find best linear fits to each of those boundaries

4) Find angles between those linear fits




Fitting Method: Linear Regression

- Constrain line to start at origin (i.e. vertex)
y = ax
. Set x 2=0 for the number of points to be fit
(i.e. number of points along the boundary)
X = 2(_\', —ax,) a=-+l ’
i=1 Z}_‘.;
- Gives a different line for each n. Which is
best?




Best Line: Pearson’s
Correlation Coefficient

Divide the covariance of two variables by their standard deviation

2 _cov(x,y) _ 2” (x; “)(“ - )

S-S0

Gives the amount of correlation between two variables (here:
how reasonable is a linear fit?)




Results: Example Distribution
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3D MC Potts model, 1503, T=1.5, 100 timesteps
Calculation for series of 2D slices separated by grain radius
Averaged over all three dimensions

Fits well to Gaussian centered at 120°, except for peaks



Taxonomy of Short Segments
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All fits to boundaries of length 1 and 2
Angles come from differences (i.e. 45° — 27° = 18°)

Prove this by restricting the length of boundaries in analysis



Removing the Short Boundaries
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Short boundaries unavoidable in 2D slices of 3D microstructures

«  Shrinking and/or disappearing grains

« Most slices not on equator



Short Boundaries are a 3D Effect
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2D calculation, 10002, T=1.5, 100 timesteps
Gaussian, peaked near 120°, skewed to high angles

Low angle peaks are gone. Can we exploit this?



Exploitation!
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. Increase thickness of film to transition between columnar and
equiaxed

- Low angle (18°) peak distinguishes between 2D and 3D



Experimental Verification
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1.7 um columnar Al film 1.6 mm Ni tensile bar
(courtesy K. Barmak and G. Rohrer) 33 um equiaxed grains

twins removed
(courtesy L. Brewer)

- Works for experimental films, too

« Non-destructive technique



How Much Would You Pay?
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. Indicates issues with Voronoi tesselation

Same system size as Potts simulations (1503), topologically
similar

- Massive peaks at 90, 180 — Iattice effects



Temperature

Another Use: Simulation

below roughenlng
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- Can help determine appropriate simulation temperature
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above roughenlng
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- Below roughening, faceting gives peaks at 90° and 180°

= Above roughening, peaks are temperature independent

120 150 180



Conclusions

- Robust method for determining triple junction angles

- Many uses:

« Validation of simulation parameters/methods

Temperature
Voronoi tesselation vs. Potts model
Roughening

« Dimensionality of sample

Columnar vs. Equiaxed grains
Suitable for simulations and experiments
Non-destructive surface probe technique

Further analysis may lead to degree of columnarity (peak ratios, etc.)




