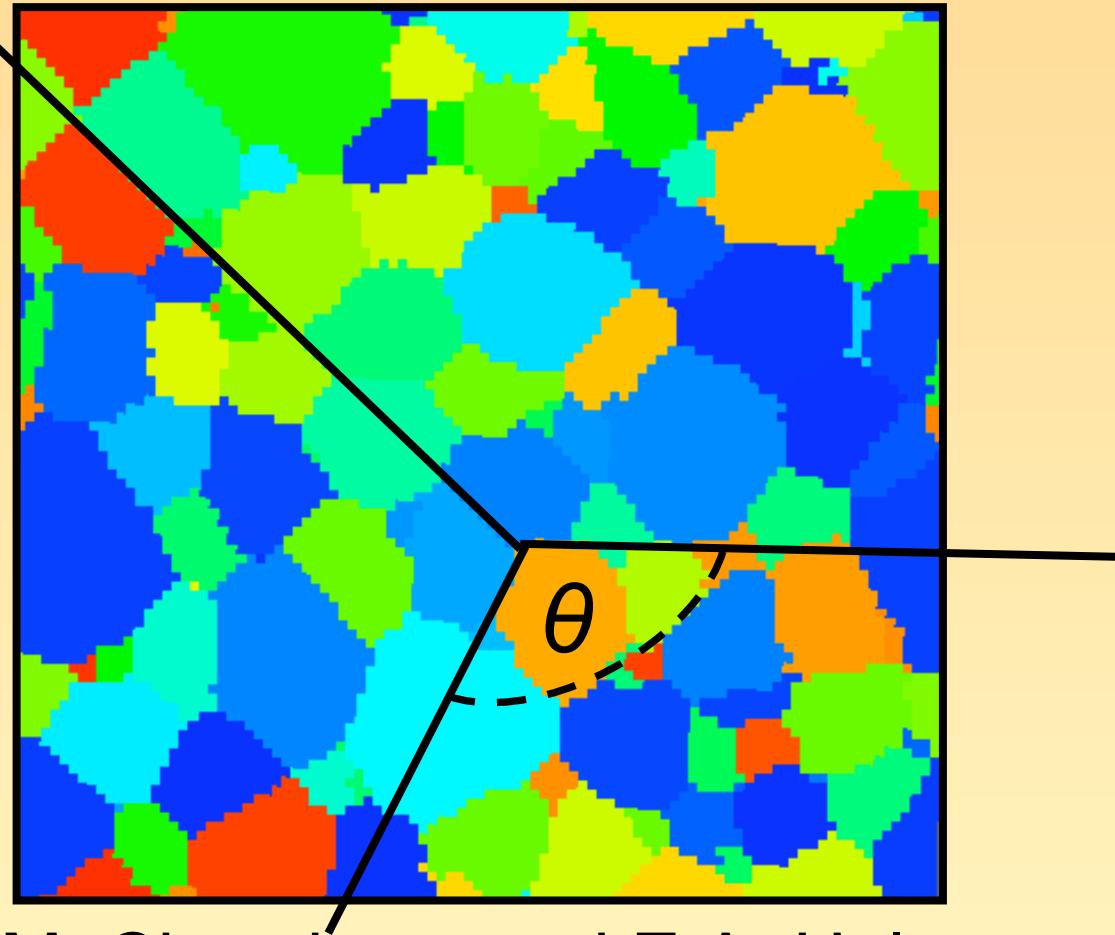


Calculation of Grain Boundary Angles in 3D Digitized Microstructures

SAND2010-0913C



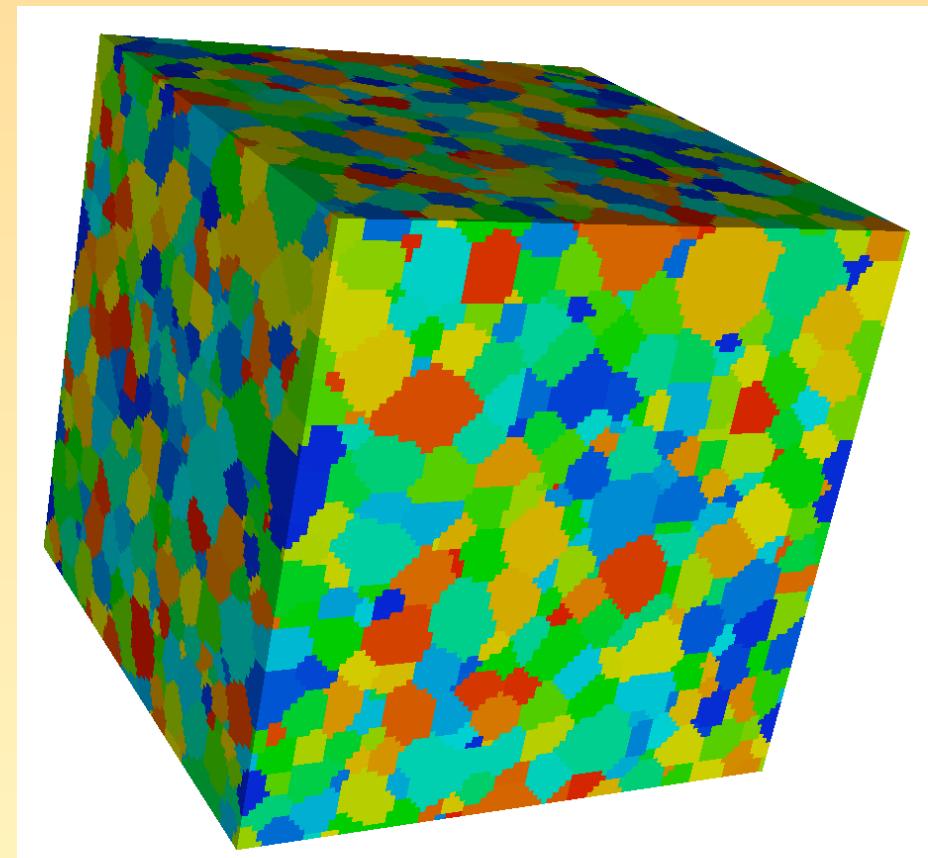
M. Chandross and E.A. Holm

Sandia National Laboratories, Albuquerque NM

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy's National Nuclear Security Administration
under contract DE-AC04-94AL85000.

Introduction: Why?

- Grain boundary angles control:
 - microstructure morphology
 - grain shape
- Angles arise from balance of surface tensions
- Isotropic energies: $\text{angles} = 120^\circ$
- Varying energies:
 - Angles deviate
 - Quad junctions

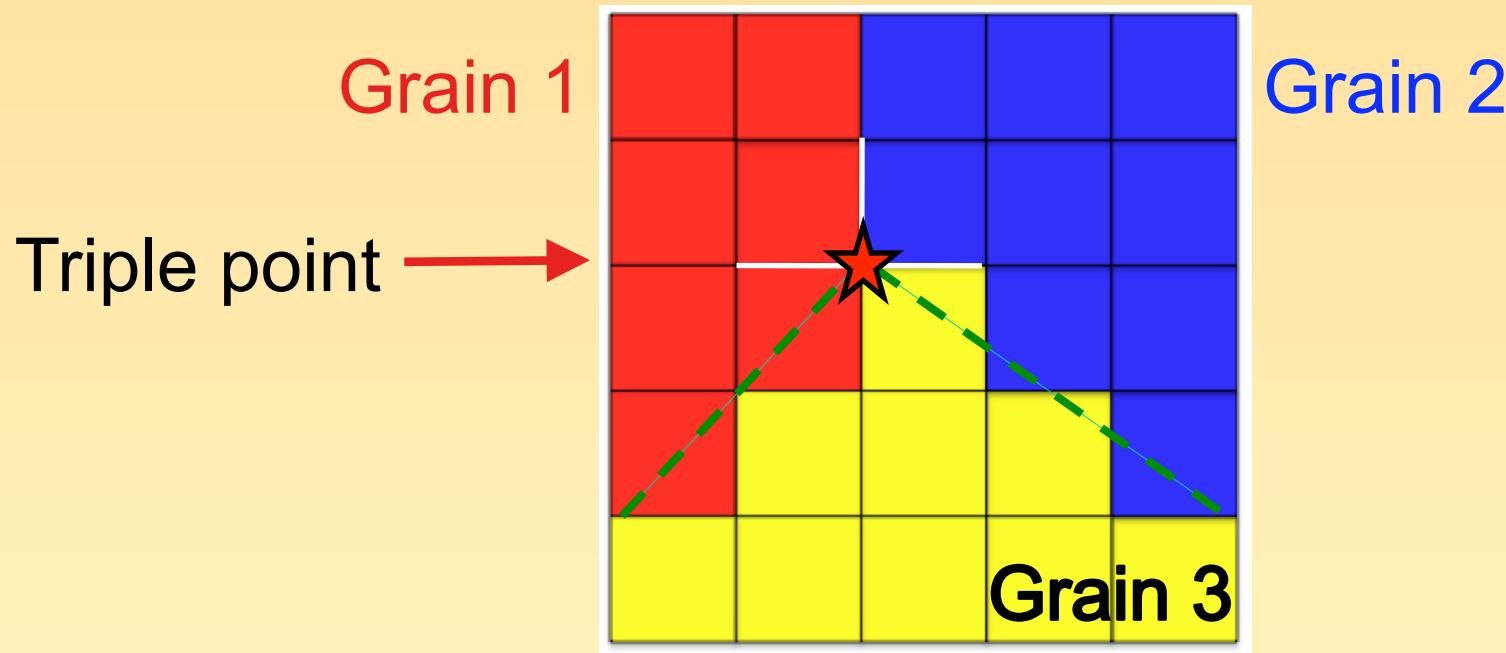


Introduction: Why not?

- Previous representations were analog, now digital
 - Protractor vs. computer
 - Explicit vs. implicit boundaries
- Tangents are not uniquely defined
- Always looking at 2D section of 3D structure
 - what is the correct distribution?

Method: Desired Results

We want angles between tangents to grain boundaries in discretized microstructures

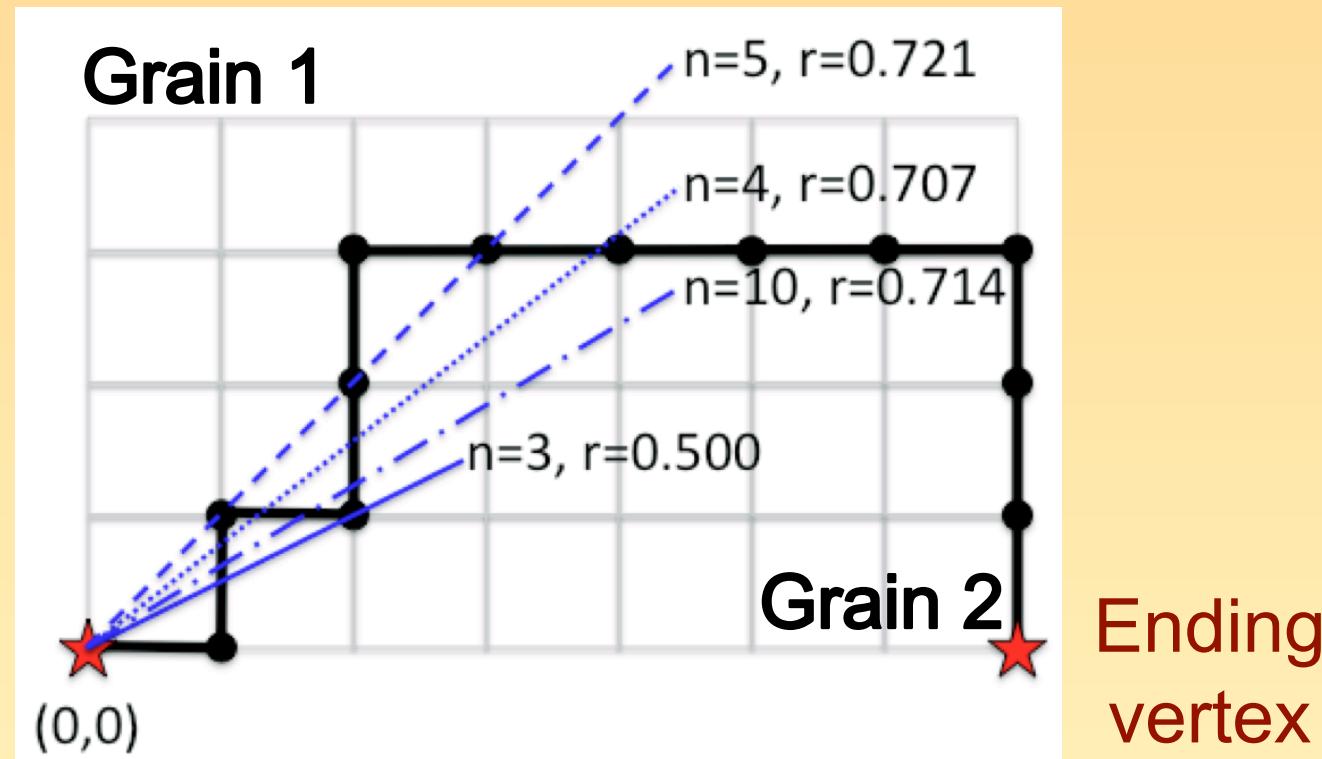


What are the tangents?

Extreme case: One segment away: 90° or 180°

Better solution: Curve fitting

Method: A Series of Linear Fits



Starting vertex

Ending vertex

- 1) Find all triple/quad points (vertices)
- 2) For a given vertex, map out all emanating boundaries
- 3) Find best linear fits to each of those boundaries
- 4) Find angles between those linear fits

Fitting Method: Linear Regression

- Constrain line to start at origin (i.e. vertex)

$$y = ax$$

- Set $\chi^2 = 0$ for the number of points to be fit (i.e. number of points along the boundary)

$$\chi^2 = \sum_{i=1}^n (y_i - ax_i)^2$$

$$a = \frac{\sum_{i=1}^n x_i y_i}{\sum_{i=1}^n x_i^2}$$

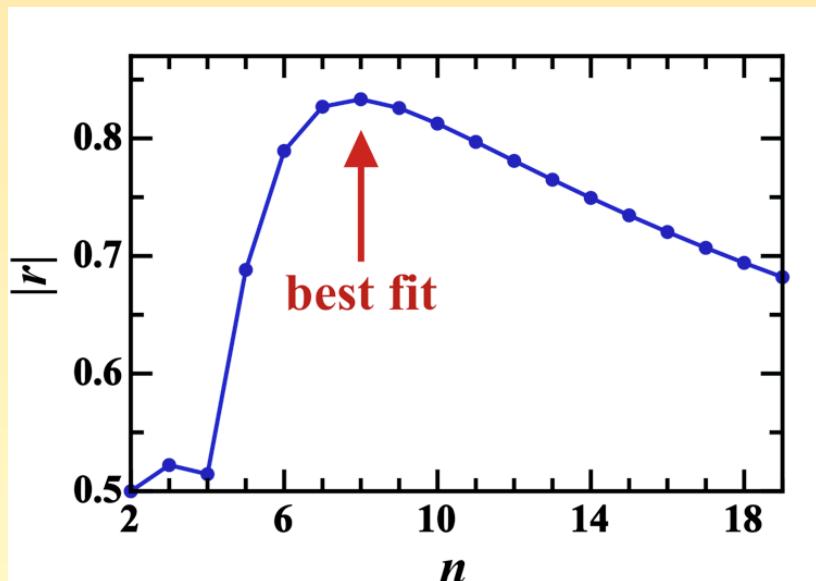
- Gives a different line for each n . Which is best?

Best Line: Pearson's Correlation Coefficient

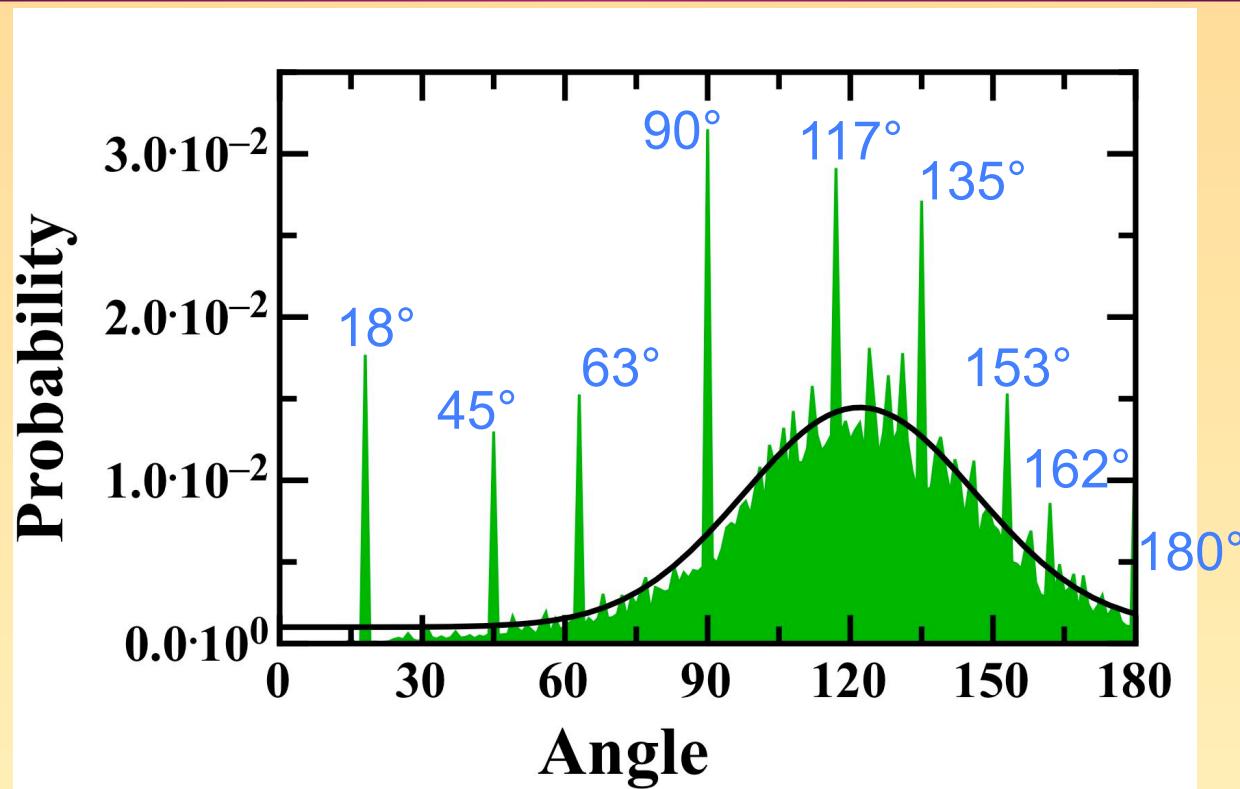
- Divide the covariance of two variables by their standard deviation

$$r = \frac{\text{cov}(x,y)}{\sigma_x \sigma_y} = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^n (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^n (y_i - \bar{y})^2}}$$

- Gives the amount of correlation between two variables (here: how reasonable is a linear fit?)

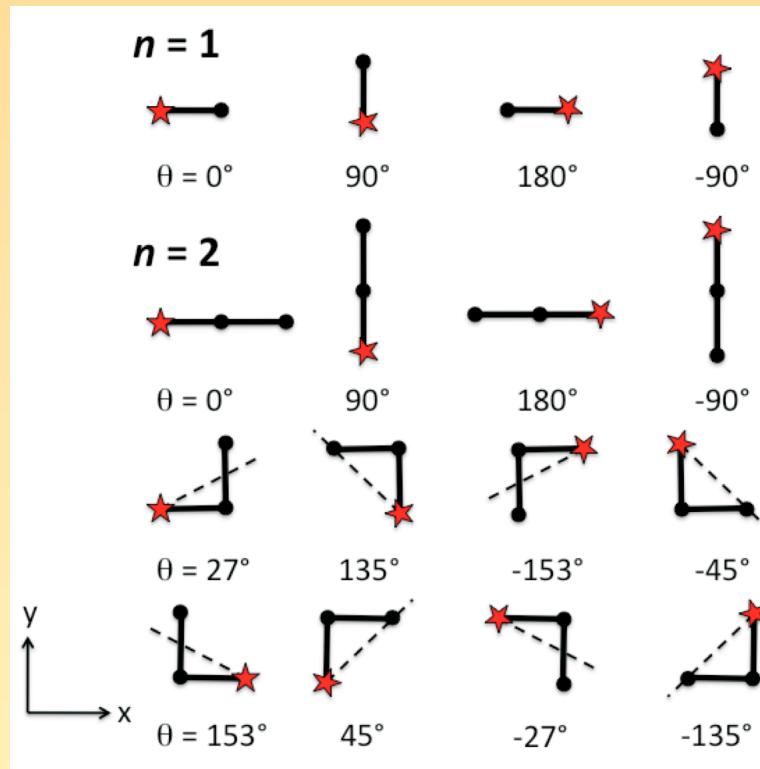


Results: Example Distribution



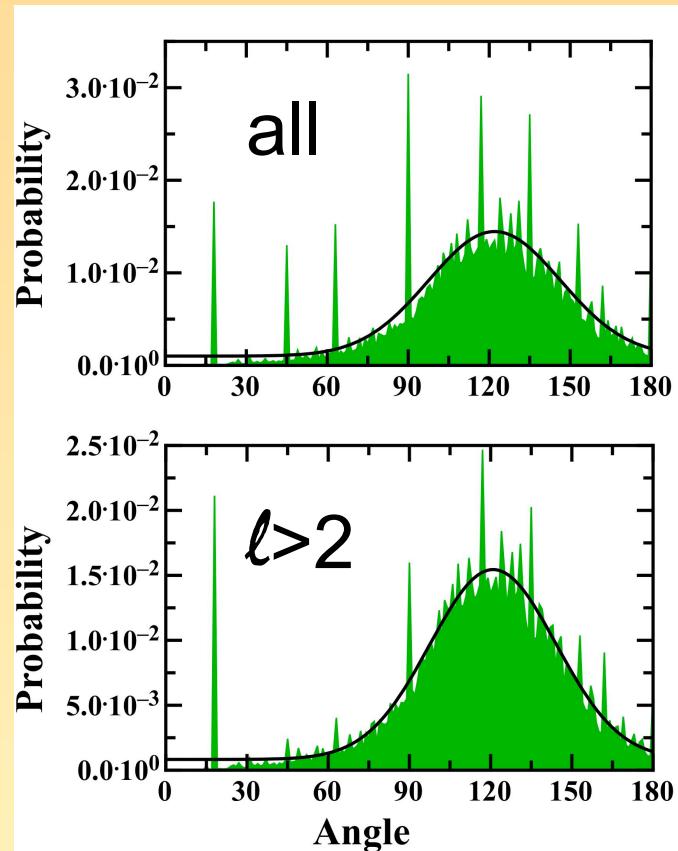
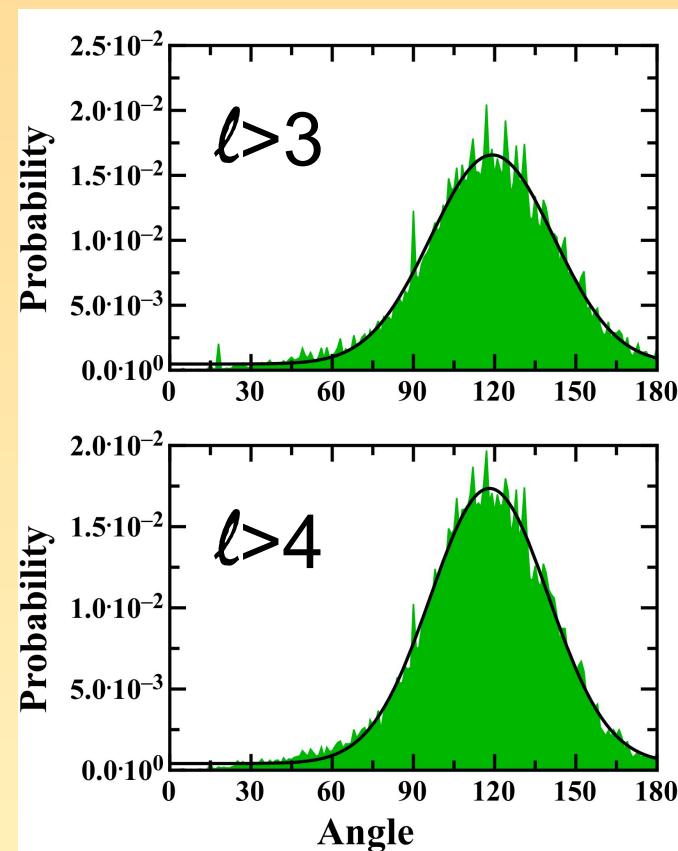
- 3D MC Potts model, 150^3 , $T=1.5$, 100 timesteps
- Calculation for series of 2D slices separated by grain radius
- Averaged over all three dimensions
- Fits well to Gaussian centered at 120° , except for peaks

Taxonomy of Short Segments



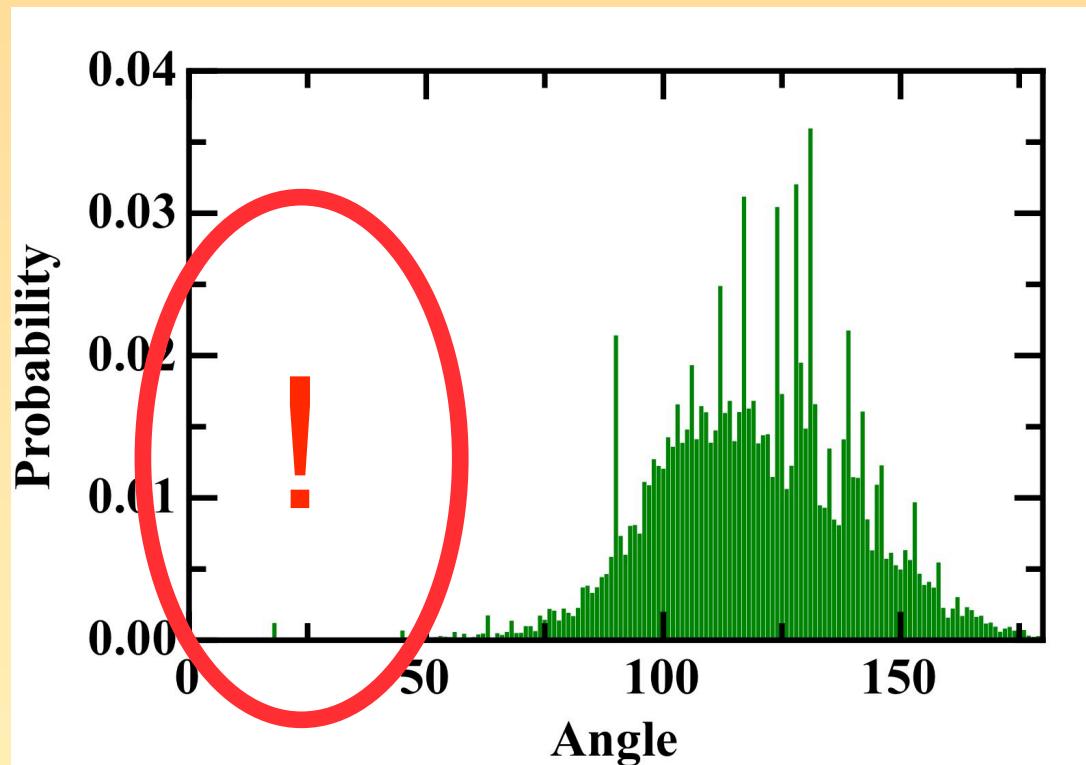
- All fits to boundaries of length 1 and 2
- Angles come from *differences* (i.e. $45^\circ - 27^\circ = 18^\circ$)
- Prove this by restricting the length of boundaries in analysis

Removing the Short Boundaries



- Short boundaries unavoidable in 2D slices of 3D microstructures
 - Shrinking and/or disappearing grains
 - Most slices not on equator

Short Boundaries are a 3D Effect

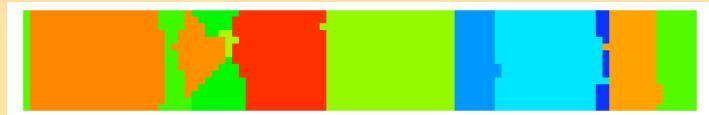


- 2D calculation, 1000^2 , $T=1.5$, 100 timesteps
- Gaussian, peaked near 120° , skewed to high angles
- Low angle peaks are gone. Can we exploit this?

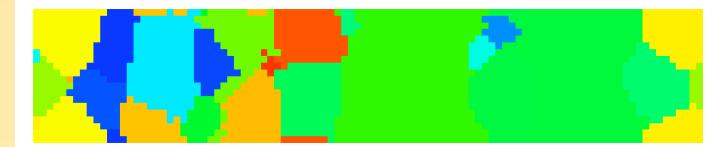
Exploitation!

$z=5$

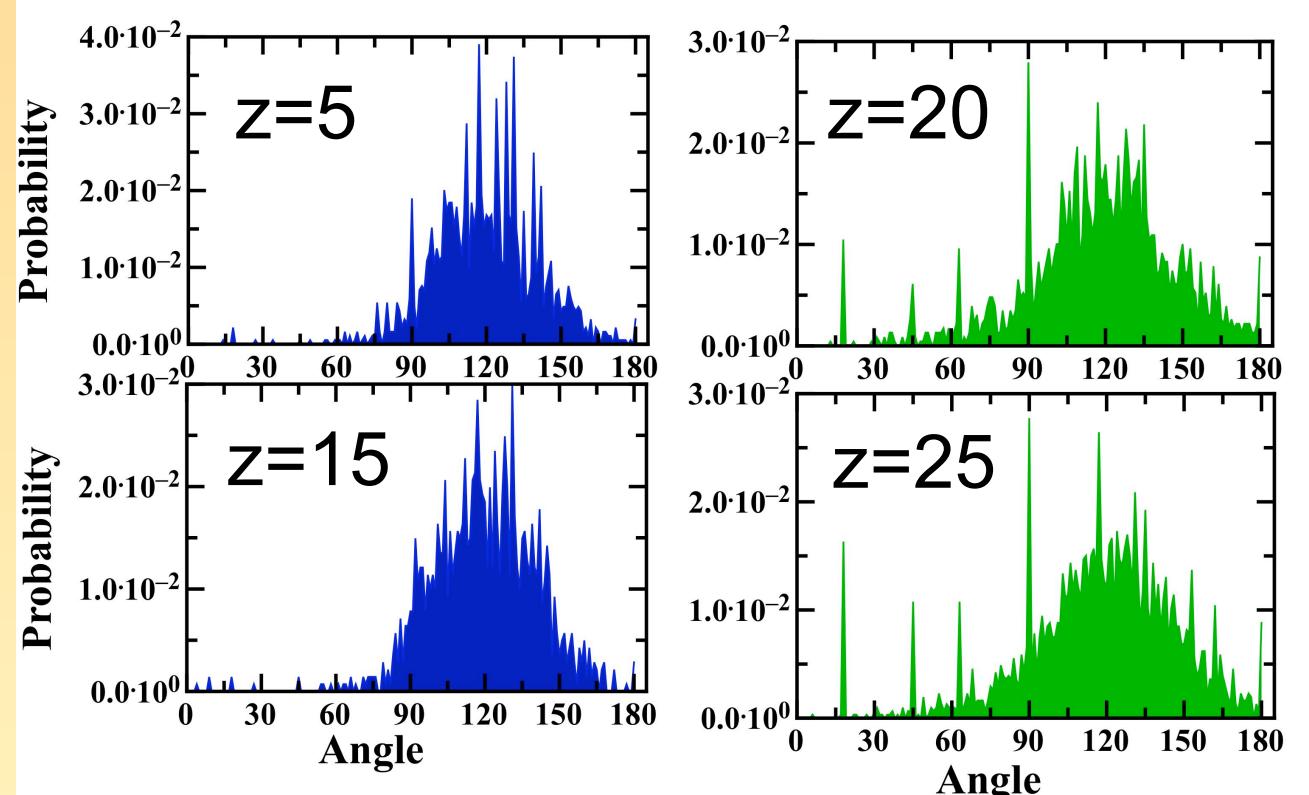
$z=15$



$z=20$

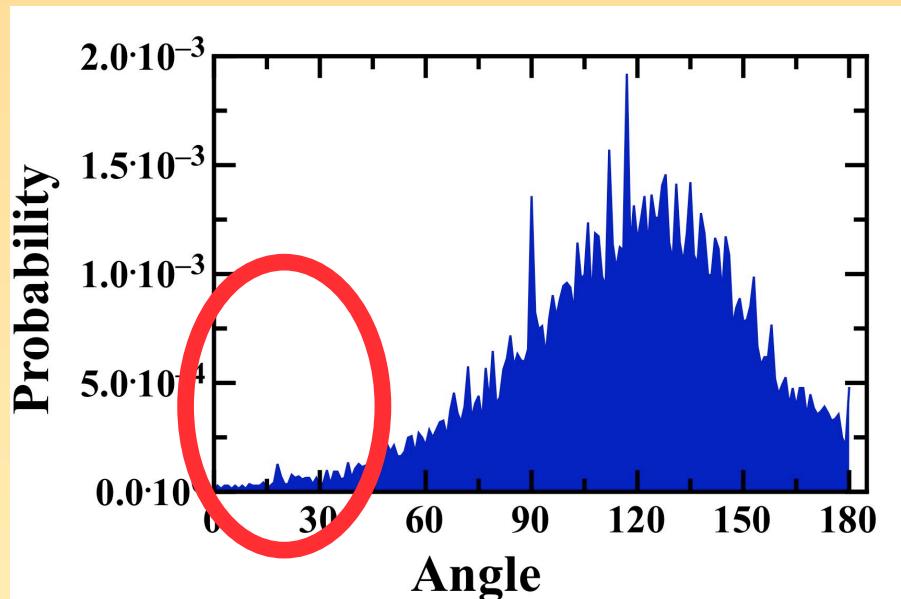


$z=25$

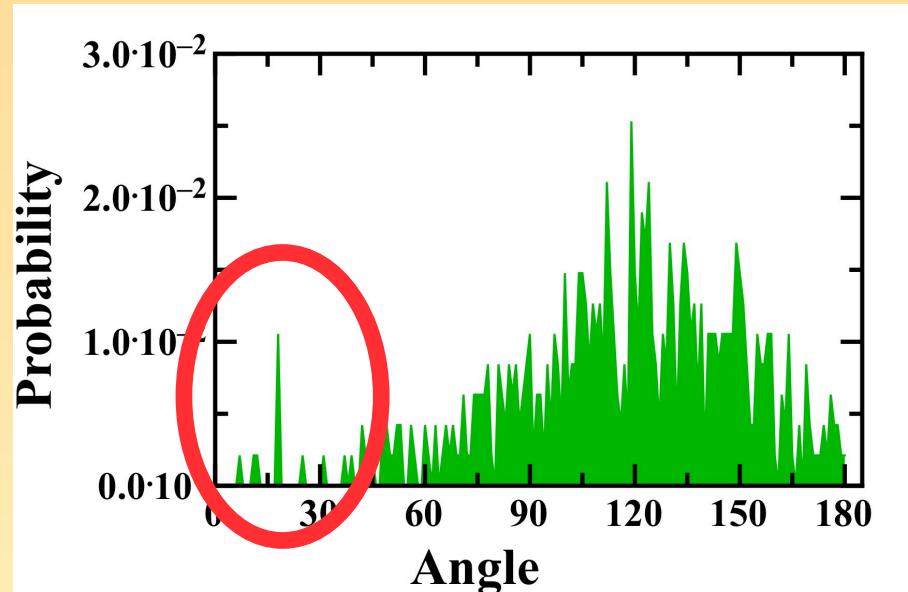


- Increase thickness of film to transition between columnar and equiaxed
- Low angle (18°) peak distinguishes between 2D and 3D

Experimental Verification



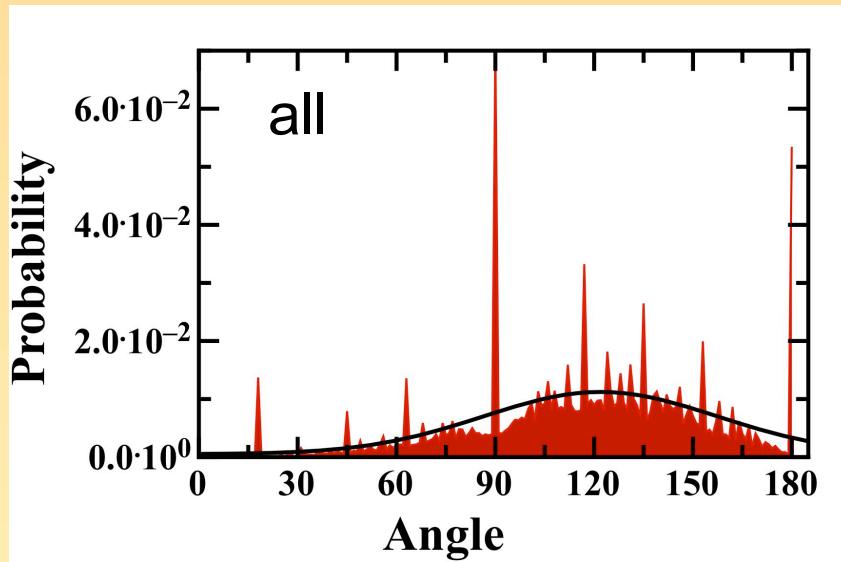
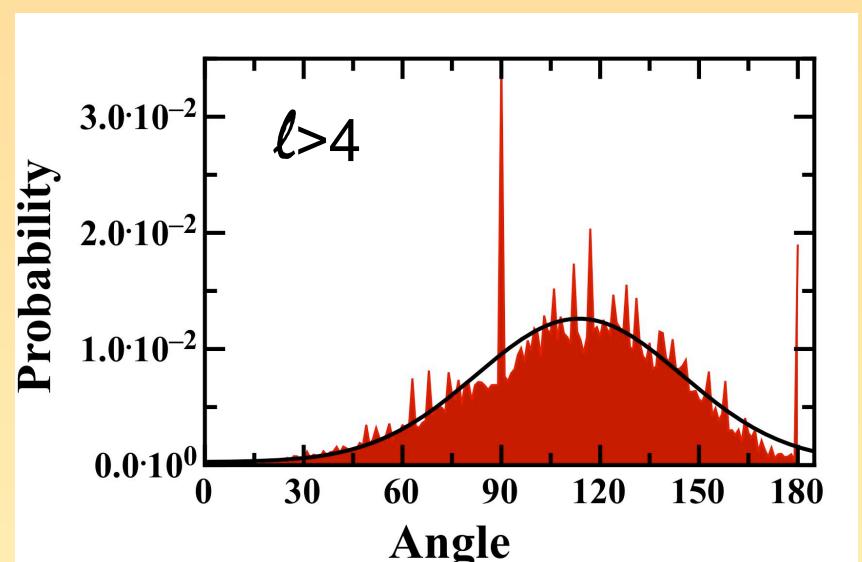
1.7 μm columnar Al film
(courtesy K. Barmak and G. Rohrer)



1.6 mm Ni tensile bar
33 μm equiaxed grains
twins removed
(courtesy L. Brewer)

- Works for experimental films, too
- Non-destructive technique

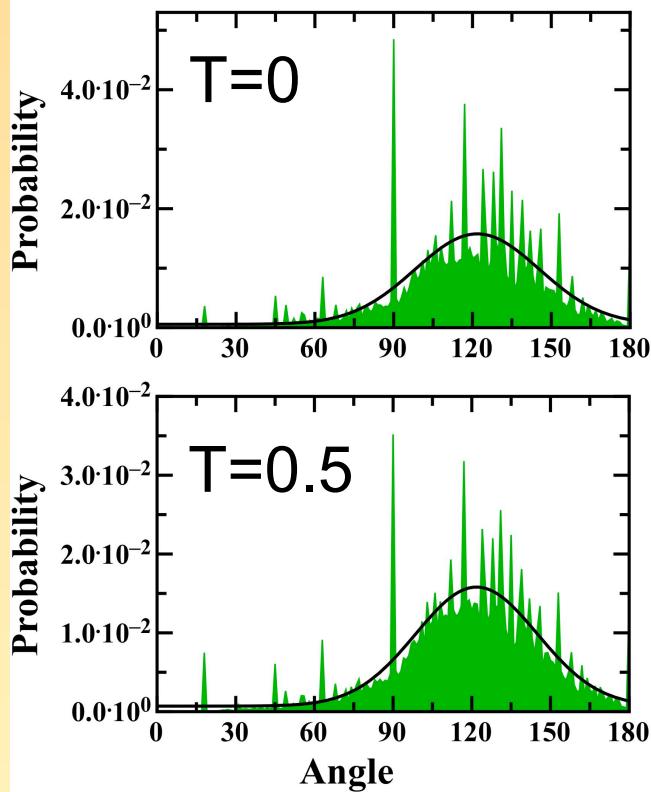
How Much Would You Pay? Don't Answer Yet!



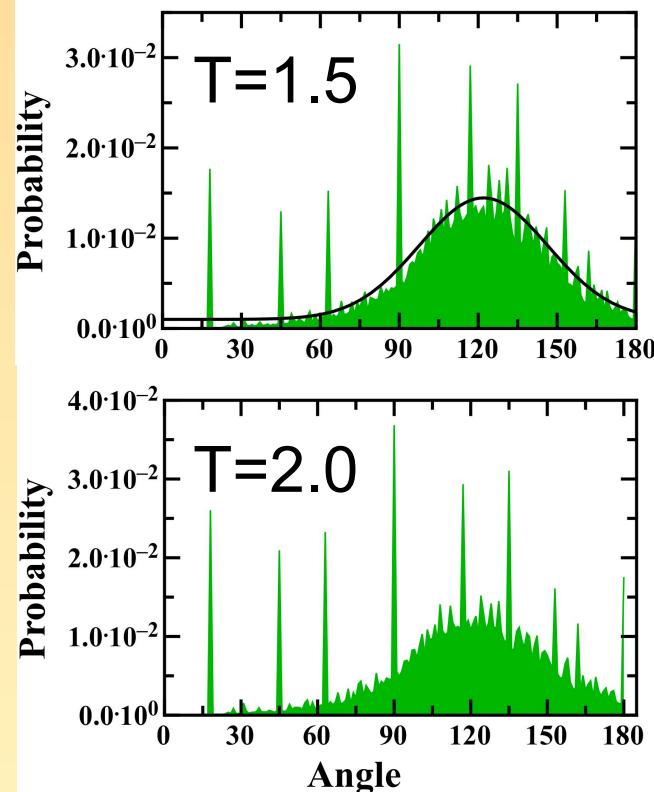
- Indicates issues with Voronoi tessellation
- Same system size as Potts simulations (150^3), topologically similar
- Massive peaks at 90, 180 – lattice effects

Another Use: Simulation Temperature

below roughening



above roughening



- Can help determine appropriate simulation temperature
 - Below roughening, faceting gives peaks at 90° and 180°
 - Above roughening, peaks are temperature independent

Conclusions

- Robust method for determining triple junction angles
- Many uses:
 - Validation of simulation parameters/methods
 - Temperature
 - Voronoi tessellation vs. Potts model
 - Roughening
 - Dimensionality of sample
 - Columnar vs. Equiaxed grains
 - Suitable for simulations and experiments
 - Non-destructive surface probe technique
 - Further analysis may lead to degree of columnarity (peak ratios, etc.)