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Cook (1999) defines “shale” as a rock with over 50% by wt. clay
minerals, and with a continuous network of clay, i.e. clay matrix
is load supporting. Other workers use the term “mudrock” with
this definition, wherein “shales” are mudrocks with well
developed fissility or bedding plane partings.

Schlumberger Oil-Field Glossary defines shale more generally
as a “fine-grained, fissile, detrital sedimentary rock formed by
consolidation of clay- and silt-sized particles into thin, relatively
impermeable layers” (<62 microns)



http://www.glossary.oilfield.slb.com/Display.cfm?Term=impermeable
http://www.glossary.oilfield.slb.com/Display.cfm?Term=consolidation
http://www.glossary.oilfield.slb.com/Display.cfm?Term=rock
http://www.glossary.oilfield.slb.com/Display.cfm?Term=sedimentary
http://www.glossary.oilfield.slb.com/Display.cfm?Term=detrital
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Upper and Lower Kirtland Shale, Cretaceous, San Juan Basin, NM
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Gothic Shale, Pennsylvanian,Paradox Basin, Utah

nGnmm:l Ry API Units

Aneth Unit No. H-117
ME ME Sec. 17 T. 405 R. 24E
San Juan County, Utah
KB 4553'
Cumulative Production =
479,197 BO, 296,878 MCFG, 1,871,016 BW

NeutsereLitho-Density Porosity
200 0% 200% 105% 0%
5300

Lower Ismay

- 3 7
T |
UT co : :
o
™ o .'_
L AZ
G
"T...; .-_.L‘ # -.;-. g nEry A
Figure 7-2. Gothic shale in the Pennsylvanian Paradox Fogmation exposed along
the Honaker Trail, San Juan River Canyon, Utah.
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Figure 7-1. Diagrammatic lithofacies east-west cross section across Greater Aneth and

Ismay fields, San Juan County, Utah. Modified from Peterson (1992).

Source: Chidsey et al., 2009

Figure 7-3. Interpreted geophysical log from the Aneth Unit No. H-117
well, NENE section 17, T. 40 5., R. 24 E.. SLEL&M. Cored inferval of
the Desert Creek zone and Gothic shale shown in red.
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A Word on Mud Depositional Environments & Facies

Facies
*RM - grey coastal plain

Overbank/flood deposits; Soil formation

UpperMand Fm
| Loker Kirtland Fm

Facies

Facies S

BM

Intepse bioturbation

Lowerfuscaloosa Fm

/Storm induced offshore /

*SM — sandy near-shore
*BM - intensely bioturbated offshore
*GM — graded “tempestites” Faci
LM — laminated, fine grained turbidites
*CM - deep marine black shales
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Very minor bioturbation

Simplified from Schieber, 1998
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1024x884 pixels, 1 pixel = 15.6 nm, 400 slices at 25 nm per slice Sandia

Lower Kirtland Shale, 2692 ft bgs e



el

A\

Upper Kirtland Shale @ 2049 ft bgs
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.0 microns
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3D reconstructed pores

1.04% porosity
37% connected @ ﬁaaggil?al
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Compacted clay floccules
of Scheiber and 7?? @ Sandia
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Lower Kirtland Shale @ 2692 ft bgs
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Lower Kirtland Shale @ 2692 ft bgs

Dewars Nov2009_2692_9A_SI2_3000nm300pix_1-out-8 (10 nm/pixel)

Red = Ca-C-O-Mn-Fe

Green = Si-O

Blue = Si-Al-Ca-K-Fe-Mn-O
Magenta = Si-Al-Mg-Ca-K-Fe-Mn-O
Cyan = Ti-Ca-Si-O

Normalized Counts

X-ray Energy [kV]
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Lower Tuscaloosa @ 8590 ft bgs

Porosity = 2.93%
Connectivity = 34%
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Registered, cropped, and
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Marine Tuscaloosa @ 7925 ft bgs

Pore throats
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Marine Tuscaloosa @ 7925 ft bgs

Dewars_Nov2009_7925 5 SI1_3000nm 150pix_1-out-5 (20nm/pixel)

Green = Si-AFK-Fe-O
Blue = Ca-P-O
Magenta = C-O-5-ClI
Cyan = Ti-Si-O
Yellow = Si-AEO
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Marine Tuscaloosa @ 7925 ft bgs
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Gothic @ 5390 ft bgs
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Shale “Nano” Pore Networks

Type I* Typell* Typelll* Typelv TypeV  Type Vi

Elongated pores  Crescent-shaped  “Jagged”poresin  Tubular pores in Diagenetic; clay  Microfracture related;
between similarly pores in “saddle compaction “foamy” organics seams o_r micro- may or may not be
oriented clay reefs” of folded clay shadows around stylolitic; grain induced

sheets1 sheets larger clasts dissolution, etc.

<—— Remnant Pore Types ——— <«—— Secondary Pore Types ———

Sandia
"As proposed by Desbois et al., 2009 @ Paat}g]rg?éﬁes



Pore Statistics: Lower Tuscaloosa

Mercury Porosimetry: D = 2.86
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Image-based pore distributions: D = 2.54
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CFD Simulations
Type | Pore; Upper Kirtland Shale @ 2049 ft bgs

i}

1000

Upper Kirtland Klinkenberg-
corrected permeability = 8.3e-20 K
from 5 measurements from 2048 p

— 2067 feet bgs km

ore = 1.0€-19 m?
oas =7.26-20 m? () i
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CFD Simulations

Type Il Pore: Lower Tuscaloosa @ 8590 ft bgs

Lower Tuscaloosa Klinkenberg- k
corrected permeability = 2.8e-17 P
from 3 measurements from 8584 k

to 8590 feet bgs m @ Sandia

ore = 8.7€-17 m?

cas =0.8e-17 m?
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CFD Simulations

Type Il Pore: Gothic Shale @ 5390 ft bgs

P o T !

LB
™ Apv .

Gothic Klinkenberg-corrected
permeability = 1.4e-19 from 4
measurements from 5379 to
5391 feet bgs

Koore = 2.1€-17 m?

p
Sandia
— 2 :
kmeas =1.3e-19m @ I.Naal;[g]rg?tllﬁes



Marine Tuscaloosa horizontal k = 4.5e-18 m?

Klinkenberg-corrected permeability = pore

— 2
1.5e-18 m? from 6 measurements Keas =9.96-20 m -
from 7818 to 7934 feet bsg () i
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i CFD Simulations

Type V Pore: Lower Kirtland Shale @ 2692 ft bg:

4000

Ry

K

Lower Kirtland horizontal p
Klinkenberg-corrected permeability = k =7 9e-20 m?
8.1e-20 m2 from 2 measurements meas @ —

from 2692 to 2697 feet bgs National

ore = 4.56-18 m?
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Summary: Sealing Types
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Path Forward

« SANS (with Alexis
Navarre-Stitchler) at
ORNL

- 3DTEM (with Paul Kotula)

* Acoustic
Emissions/Mancos Shale
(with David Holcomb)

* Cryo-FIB, FIB/e-SEM,
eSEM with loading frame,
nano-indenter

« Confocal work with re-
hydration/swelling

 Membrane Efficiency

Lattice-
Boltzmann
simulation of
flow through
type 3 pore
network

500kV|CDM-E| 3 |4.917| 45.0° H6337 10.0 kX

= 5 micron diameter
& by 10 micron long

& ion milled column of
=S8 Gothic Shale

Sandia
National
Laboratories



>~

Summary: Shale Transport Properties

 What can we know? By examining a variety of shale
types from distinct depositional environments and burial
history, we can infer generalizations about pore types and
connectivity, and effect of pore topology on single and
multiphase transport and sealing behavior.

 How can we know it/study it/model it? Combination
of old and new technology (i.e. MICP with FIB/SEM, NANS)
allows fundamental assessment of pore types and influence
on flow behavior.

« What do the fundamental observations mean to

broader problems? Can justify application of certain
model methodology in making predictions on e.g. shale
gas, CCS, waste disposal PA, etc.
@ Sandia
National
Laboratories
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* Fracture and
fracture-fill porosity

* Pedogenic

* Diagenetic, associated
with concretions/nodules

Mainly ealcite and dolonrite
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BSE BSE

Figure 7-25. Additional views of the inclined shear fracture zone from 5392.30 to 5392.5 feet
(core shown en figure 7-23) displayed on various BSE, XPL, and LSCM images at different

magnifications derived from the thin section shown on the left.
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Figure 7-12. Low

1z ding 1. SCM images of a bedding
Gothic shale from 5380.0 feet. A - Image showing topography in an obligue 1
Image shows green, yellow-orange, and red fluorescing material

Figure 7-17. Scanning electron images of argillaceous mudstone in Gothic shale from
5382.8 feet A — Overview of argillaceous mudstone highlighting distinct grain orientation.
B — Closer view of mudstone matrix showing wavy parting planes between clay packets. The
tube at center (box) is enlarged in the next image (7-17C). C — Detail of pyrite tube (arrow)
shown in the previous image. The form represents a replaced microfossil, and is lined with
scruffy kerogen residue (k). Note the Hakey matrix clays. likely illite and/or mixed laver
illite-smectite. I} — Matrix detail showing unaltered and altered carbonaceous material. The
smooth particle at lower right (uo) represents a discrete carbonaceous grain with little
altaration. At top center a paricle representine a differert ofass of oreanics ambedded



